Graphene

2.674 Jeehwan Kim

Carbon-based nanomaterials

Basic building block

Graphite (3D) van der Waals stack of graphene Conductor

Stack

Graphene (2D)

Single-atom-thick carbon layer sp2 bonding of carbons Semi-metal

Carbon nanotube (1D)

Rolled graphene Semiconductor (2/3) or metal (1/3)

Diamond (3D) sp3 bonding of carbons Wide band gap (5.5 eV)

What is graphene?

T delocalized it electron

Electrical Conductivity

Graphene = A single layer of graphite

A unique 2D electronic material

Graphene overall orbital structure

Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

CNT vs Graphene

	CNT	Graphene	
Electrical conductivity	~100,000 cm ² /VS	>100,000 cm ² /VS	
Thermal conductivity	~5000W/K.m	~5000W/K.m	
Young's modulus	0.9 ~1.1TPa	1 TPa	
Transparency	0	0	
Flexibility	0	0	

	Electron mobility (cm²/Vs)	Electrical characteristics	
Copper	5,770	Conductor	
Silver	9,490	Conductor	
GaAs	6,000	Semiconductor	
Si	1,350	Semiconductor	
Graphene/CNT	>100,000	Semi-metal	

Challenges for Carbon Nanotube Applications

- Control the diameter of nanotubes and chirality.
 - Purification/sorting methods required for uniform CNT
- Large scale integration
 - Placement/alignment methods required for **long-range order**

H. Park et al., Nature Nanotechnology 7, 787(2012)

© Macmillan Publishers Limited. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

- ASSEMBLY, ASSEMBLY, ASSEMBLY!!!
- Graphene → Lab 11

Discovery of carbon allotropes

- 1985: Curl, Kroto, Smalley discovered fullerene (Nobel, Physics 1996)
- 1991: Iijima discovered single wall carbon nanotubes.
- 2010 A. Geim and K. Novoselov (Nobel physics on Graphene)→ Scotch tape method

© sources unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

Graphene fabrication method

- Scotch Tape Method (Top down)
 - Exfoliation of random thickness graphene from graphite
- Growth method (Bottom up)
 - CVD growth on Cu foils
 - Graphitization of SiC wafer
- Layer resolved transfer (Bottom up + Top down)
 - Exfoliation of graphene on SiC wafer/transfer

Pioneers in graphene

Andre Geim (Manchester) Novoselov et al. Science 2004

Individual layers on SiO₂ prepared by mechanical exfoliation.

© 3M and sources unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

Philip Kim (Columbia) Zhang et al. APL 2004

"Nanopencil" on AFM cantilever deposits ~ 15 layer graphite films

Scotch tape process

Scotch tape method (in Lab 11)

© sources unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

The procedure

- A. Apply scotch tape on highly ordered pyrolytic graphite (HOPG) and detach the graphite from HOPG surface.
- B. Fold over the Scotch tape several times at different locations to make multiple clones of exfoliated graphite all over the sticky side of tape
- C. Repeat B for at least 30 times
- D. Place graphite with reduced number of layers on the tape, on the Si substrate and press it hard
- E. Detach the tape
- F. Observe your sample under the microscope at AFM to see if you successfully transferred graphene on the Si substrate and save the image

Graphene flakes on oxide

Optical image

Nanoscale, 2012,4, 5527-5537

© IOP Publishing. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use. Thickness of monolayer graphene typically measured by AFM : 0.5-1nm

Theoretical thickness of graphene : 0.35 nm

Nanotechnology 22 (2011) 365306

CVD growth

This image has been removed due to copyright restrictions. Please see the second image on page https://www.comsol. com/blogs/synthesizing-graphene-chemical-vapor-deposition/.

Selection of catalytic metal

J. Mater. Chem., 2011, 21, 3324–3334

© Royal Society of Chemistry. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

Solubility of carbon in metals determines number of graphene layers : Cu \rightarrow Monolayer, Ni \rightarrow mono-bilayers

Growth mechanism

Transfer of CVD graphene

Properties of CVD graphene

Graphitization of SiC

- When SiC substrates are annealed at high temperature (above 1300 °C), Si atoms selectively desorb from the surface and the C atoms left behind naturally form monolayer graphene
 - Single-oriented flat graphene obtainable

© sources unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

Flat / Single-oriented Un-transferrable / Expensive

Properties of SiC graphene

Layer resolved SiC graphene transfer

© Science. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

Jeehwan Kim et al., "Layer-resolved graphene transfer via engineered strain-layers", *Science*, Vol. 342, 833 (2013)

Thin film mechanics

© sources unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

Delamination criteria

Graphene exfoliated from SiC

1 monolayer stripe

Separation of bilayer stripes

4-inch wafer-scale single-crystalline graphene

Summary of graphene fabrication methods

Excellent Good Poor						
	Scotch Tape graphene	CVD graphene	SiC graphene	Layer-resolve Transfer		
Monolayer Control	Uncontrollable	Self-limiting (>95% ML)	Self-limiting (1.2 ML)			
Crystalline orientation	Single but less than poly grain size	Polycrystal	Single			
Flatness	Pristine	Wrinkle from foils	Same as SiC wafer			
Large-scalability	~50 μm	Depending on CVD reactor size	Wafer size			
Transfer efficiency	Uncontrollable	Wet-transfer	Un-transferrable			
Process cleanliness	Dry-transfer	Wet-transfer	No transfer invovled			
Price	Cheap	Cheap	Extremely expensive			

J. Kim^{*}, H. Park^{*}, J. Hannon, S. Bedell, K. Fogel, D. Sadana, C. Dimitrak "Layer-resolved graphene transfer via engineered strain-layers", *Science*, Vol. 342, 833 (2013)

Application of graphene

© Royal Society of Chemistry. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

Nanoscale, 2015, **7**, 4598-4810

Future of graphene electronics

Future of graphene electronics

In Lab 11

1) Experience Nobel Prize winning method to fabricate graphene from graphite

2) Image different types of graphene using AFM

- Measure thickness of monolayer graphene
- Find thinnest graphene among graphene flakes you made
- 3) Obtain atomic image of graphene using STM

Quiz (May 3)

- Examples
 - Short answer questions
 - What kind of chemical bond between PDMS and glass slide results in after O2 plasma treatment and bonding of the two surfaces?
 Covalent bonding
 - Fill blanks
 - The ratio of inertial force over viscous force defined as, $\rho du/\mu$. This is (*Reynolds*) number
 - True or False
 - Single atom can be resolved by SEM. F
 - Multiple choices

2.674 / 2.675 Micro/Nano Engineering Laboratory Spring 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.