
Fourier transforming property of lenses 
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Fourier transform by far field propagation or lens
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Spherical-plane wave duality


The two pictures above are interpretations of the same physical phenomenon. 
On the left, the transparency is interpreted in the Huygens sense as a superposition of “spherical wavelets.” 

Each spherical wavelet is collimated by the lens and contributes to the output a plane wave, propagating at the 
appropriate angle (scaled by f.) 

On the right, the transparency is interpreted in the Fourier sense as a superposition of plane waves (“angular” or 
“spatial frequencies.”) Each plane wave is transformed to a converging spherical wave by the lens and contributes 
to the output, f to the right of the lens, a point image that carries all the energy that departed from the input at the 

corresponding spatial frequency. 
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Fourier transforming by lenses


MIT 2.71/2.710 
04/13/09 wk10-a- 9 

f 
flens 

f 
flens 

f 
flens 

f 
flens 



Imaging: the 4F system 
The 4F system (telescope with finite conjugates 
one focal distance to the left of the objective and 
one focal distance to the right of the collector, 
respectively) consists of a cascade of two Fourier 
transforms 
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Spatial filtering: the 4F system 
Spatial frequencies which have the misfortune of 

hitting the opaque portions of the pupil plane 

transparency vanish from the output. Of course the

transparency may be gray scale (partial block) or a

phase mask; the latter would introduce 

relative phase delay between 

spatial frequencies. collector lens
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Imaging and spatial filtering: physical justification
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Today


•	 Spatial filtering in the 4F system 
•	 The Point-Spread Function (PSF) 

and Amplitude Transfer Function (ATF) 

next Wednesday 
•	 Lateral and angular magnification 
•	 The Numerical Aperture (NA) revisited 
•	 Sampling the space and frequency domains, and 

the Space-Bandwidth Product (SBP) 
•	 Pupil engineering 
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Spatial filtering by a telescope (4F system)
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Low-pass filtering: analysis
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Example: low-pass filtering a binary amplitude grating
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Consider a binary amplitude grating, with perfect contrast m=1, period Λ=10µm, duty cycle 1/3 (33.3%), 

illuminated by an on-axis plane wave at wavelength λ=0.5µm.

The 4F system consists of two identical lenses of focal length f=20cm.

A pupil mask of diameter (aperture) 3cm is placed at the Fourier plane, symmetrically about the optical axis. 

What is the intensity observed at the output (image) plane?


The sequence to solve this kind of problem is:

➡ calculate the Fourier transform of the input transparency and scale to the pupil plane coordinates x”=uλf1 

➡ multiply by the complex amplitude transmittance of the pupil mask 
➡ Fourier transform the product and scale to the output plane coordinates x’=uλf2 
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Example: low-pass filtering a binary amplitude grating


−30 −25 −20 −15 −10 −5 0 5 10 15 20 25 30
0

0.25

0.5

0.75

1

x [µm]

|g
t(x

)|2  [a
.u

.]

MIT 2.71/2.710 
04/15/09 wk10-b- 5 

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
0

0.25

0.5

0.75

1

x’’ [cm]

|g
P(x

’’)
|2  [a

.u
.]

binary amplitude grating pupil mask 

A binary amplitude grating of duty cycle α is expressed in a Fourier series harmonics expansion as 

The field at the pupil plane to the left of the pupil mask is 
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Example: low-pass filtering a binary amplitude grating


The pupil mask itself is so the field at the pupil plane to the right of the pupil mask is 

Its Fourier transform is 

from which we may obtain the output field as 
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Example: low-pass filtering a binary amplitude grating 
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The output intensity is 

Note the 2nd harmonic term 
in the intensity, due to the 

magnitude-square operation! 
This term explains the 

“ringing” in coherent low-pass 
filtering systems 



Example: low-pass filtering a binary amplitude grating
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Example: band-pass filtering a binary amplitude grating
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Now consider the same optical system, but with a new pupil mask consisting of two holes, each of diameter 
(aperture) 1cm and centered at ±1cm from the optical axis, respectively. 
What is the intensity observed at the output (image) plane? 
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Example: band-pass filtering a binary amplitude grating 
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binary amplitude grating pupil mask 

Its Fourier transform is 

The new pupil mask is so the field at the pupil plane to 
the right of the pupil mask is 
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Example: band-pass filtering a binary amplitude grating
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Example: band-pass filtering a binary amplitude grating

with tilted illumination
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Now consider the same optical system, again with the pupil mask consisting of two holes, each of diameter 
(aperture) 1cm and centered at ±1cm from the optical axis, respectively. We illuminate this grating with an 
off-axis plane wave at angle θ0=2.865o. 
What is the intensity observed at the output (image) plane? 

As you saw in a homework problem, the effect of rotating the input illumination is that the entire diffraction 
pattern from the grating rotates by the same amount; so in this case the 0th order is propagating at angle θ0 

off-axis, the +1st order at angle θ0+λ/Λ, etc. 
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Analytically, we find this by expressing the illuminating plane wave as 
and the field after the input transparency gt(x) as 



Example: band-pass filtering a binary amplitude grating 
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The field to the left of the pupil mask is the Fourier transform of gin(x). Using the shift theorem, 

all diffracted orders are 

displaced by 1cm


in the positive x” direction
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Example: band-pass filtering a binary amplitude grating
with tilted illumination 

After passing through the pupil mask , the field is 

so the output field and intensity are 
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Example: band-pass filtering a binary amplitude grating
with tilted illumination 
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Example: band-pass filtering a binary amplitude grating
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Consider the same optical system yet again, with a new pupil mask consisting of two holes, each of 
diameter (aperture) 1cm and centered further away from the axis at ±2cm from the optical axis, respectively. 
What is the intensity observed at the output (image) plane? 
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Example: band-pass filtering a binary amplitude grating 
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Its Fourier transform is 
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The new pupil mask is so the field at the pupil plane to 
the right of the pupil mask is 

so the output field and intensity are 



Example: band-pass filtering a binary amplitude grating
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Example: binary amplitude grating through phase pupil mask
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s=0.25µm 
The phase mask imparts a phase delay in the portion of the optical field 
that strikes the region where the glass is thicker. The phase delay is 

in this case. 

We finally consider a pupil mask consisting of 3cm aperture placed 
symmetrically with respect to the optical axis, and filled with a glass 
transparency that is thicker by 0.25µm in its central 1cm-wide portion. 
This is known as a “phase pupil mask” or “pupil phase mask.” 
What is the intensity observed at the output (image) plane? 
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Example: binary amplitude grating through phase pupil mask 
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Example: binary amplitude grating through phase pupil mask 
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The Point-Spread Function (PSF) of a low-pass filter
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Now consider the same 4F system but replace the input transparency with an ideal point source, 

implemented as an opaque sheet with an infinitesimally small transparent hole and illuminated with a plane 

wave on axis (actually, any illumination will result in a point source in this case, according to Huygens.)

In Systems terminology, we are exciting this linear system with an impulse (delta-function); 

therefore, the response is known as Impulse Response. 

In Optics terminology, we use instead the term Point-Spread Function (PSF) and we denote it as h(x’,y’).

The sequence to compute the PSF of a 4F system is:

➡ observe that the Fourier transform of the input transparency δ(x) is simply 1 everywhere at the pupil plane

➡ multiply 1 by the complex amplitude transmittance of the pupil mask 
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➡ Fourier transform the product and scale to the output plane coordinates x’=uλf2. 
➡Therefore, the PSF is simply the Fourier transform of the pupil mask, scaled to the output coordinates x’=uλf2 



Example: PSF of a low-pass filter

PSF
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The output field, i.e. the PSF is 

The pupil mask is . If the input transparency is δ(x), the field at the pupil plane to the 

right of the pupil mask is 
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The scaling factor (3×) in the PSF ensures that the integral ∫|h(x’)|2dx equals the portion of the input energy 
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Example: PSF of a phase pupil filter


The pupil mask is 


The PSF is
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Comparison: low-pass filter vs phase pupil mask filter
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PSF: phase pupil mask filter
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