The 3D wave equation

In three-dimensions, the Wave Equation is generalized as

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} - \frac{1}{c^2} \frac{\partial^2 f}{\partial t^2} = 0.$$

Our familiar plane and spherical waves are special solutions.

Plane wave

Spherical wave

Planar and Spherical Wavefronts

03/11/09 wk6-b-14

Planar wavefront (plane wave):

The wave phase is constant along a planar surface (the wavefront).

As time evolves, the wavefronts propagate at the wave speed without changing; we say that the wavefronts are *invariant to propagation* in this case.

Spherical wavefront (spherical wave):

The wave phase is constant along a spherical surface (the wavefront).

As time evolves, the wavefronts propagate at the wave speed and expand outwards while preserving the wave's energy.

Wavefronts, rays, and wave vectors

3D wave vector from the wave equation

We try a sinusoidal solution

 $a \exp\left\{i\left(k_{x}x + k_{y}y + k_{z}z - \omega t\right)\right\} =$ $= a \exp\left\{i\left(\mathbf{k} \cdot \mathbf{r} - \omega t\right)\right\}, \quad \text{where}$ $\mathbf{k} = \hat{\mathbf{x}}k_{x} + \hat{\mathbf{y}}k_{y} + \hat{\mathbf{z}}k_{z} \quad \text{is the wave vector, and}$ $\mathbf{r} = \hat{\mathbf{x}}x + \hat{\mathbf{y}}y + \hat{\mathbf{z}}z \quad \text{is the Cartesian}$ coordinate vector, to the 3D wave equation $\frac{\partial^{2}f}{\partial x^{2}} + \frac{\partial^{2}f}{\partial y^{2}} + \frac{\partial^{2}f}{\partial z^{2}} - \frac{1}{c^{2}}\frac{\partial^{2}f}{\partial t^{2}} = 0 \Rightarrow$ $-a \left(k_{x}^{2} + k_{y}^{2} + k_{z}^{2} - \frac{\omega^{2}}{c^{2}}\right) e^{i(k_{x}x + k_{y}y + k_{z}z - \omega t)} = 0 \Rightarrow$ $k_{x}^{2} + k_{y}^{2} + k_{z}^{2} = \frac{\omega^{2}}{c^{2}}.$

That is,
$$|\mathbf{k}| = \frac{\omega}{c} = \frac{2\pi n}{\lambda} \equiv k$$
 (wave number.)

The wavefront is the surface

 $\mathbf{k} \cdot \mathbf{r} = \text{const.}$

i.e., the locus of points on the wave that have the same phase (modulo 2π) after propagating by the same time t.

3D wave vector and the Descartes sphere

Spherical wave

MIT 2.71/2.710 03/11/09 wk6-b-18 The wavefront in this case is a sphere

 $kr = \text{const.}, \quad \text{where} \quad r \equiv |\mathbf{r}|.$

Without proof (pls. see the textbook) we assert

$$f(\mathbf{r},t) = a \frac{\cos\left(kr - \omega t - \pi/2\right)}{r}$$

In complex representation,

$$\hat{f}(\mathbf{r},t) = a \frac{\exp\left\{i\left(kr - \omega t\right)\right\}}{ir},$$

and in phasor notation (dropping the $\mathrm{e}^{-i\omega t})$

$$\hat{f}(\mathbf{r}) = \frac{a}{ir} \exp\left\{ikr\right\}.$$

In the paraxial approximation, $z\gg\left|x\right|,\left|y\right|$ so

$$r = \sqrt{x^2 + y^2 + z^2} = z\sqrt{1 + \frac{x^2 + y^2}{z^2}} \approx z + \frac{x^2 + y^2}{2z} \Rightarrow$$

$$\hat{f}(\mathbf{r}) \approx \frac{a}{iz} \exp\left\{ikz\right\} \exp\left\{ik\frac{x^2 + y^2}{2z}\right\}$$
$$= \frac{a}{iz} \exp\left\{i\frac{2\pi}{\lambda}z\right\} \exp\left\{i\pi\frac{x^2 + y^2}{\lambda z}\right\}.$$

Dispersive waves

We have learnt from Geometrical Optics that the speed of light can be wavelength dependent, e.g. due to material dispersion $n(\lambda)$. This means that the wave equation for light waves must be written as

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} = \frac{1}{c^2(k)} \frac{\partial^2 f}{\partial t^2},$$

where $c(k) = c_{\text{vacuum}}/n(k)$ denotes the dependence of c on the wave number $k = 2\pi/\lambda$. This kind of wave is called **dispersive**.

Another example of a dispersive wave is a **guided** wave. It turns out that, due to the boundary conditions at the waveguide's edge, the simple dispersion relation $c = \lambda \nu$ does **not** hold for a waveguide, and it must be replaced by a different relationship. Without going into the details here, the dispersion relationship for the metal waveguide shown on the left is

$$\left(\frac{m\pi}{a}\right)^2 + k^2 = \left(\frac{\omega}{c}\right)^2, \qquad m = 0, \pm 1, \pm 2, \dots$$

Dispersion curves for glass

Fig. 9X,Y in Jenkins, Francis A., and Harvey E. White. *Fundamentals of Optics*. 4th ed. New York, NY: McGraw-Hill, 1976. ISBN: 9780070323308. (c) McGraw-Hill. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse-

Superposition of waves at different frequencies

Fig. 7.16a,b,c in Hecht, Eugene. Optics. Reading, MA: Addison-Wesley, 2001. ISBN: 9780805385663. (c) Addison-Wesley. All rights reserved. This content is excluded from ourCreative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Consider two waves of different frequency and wavelength $f_1(z,t) = a \cos(k_1 z - \omega_1 t), \qquad f_2(z,t) = a \cos(k_2 z - \omega_2 t).$ Their superposition is

$$\begin{aligned} f(z,t) &= f_1(z,t) + f_2(z,t) \\ &= a \cos \left(k_1 z - \omega_1 t \right) + a \cos \left(k_2 z - \omega_2 t \right) \\ &= 2a \cos \frac{\left(k_1 + k_2 \right) z - \left(\omega_1 + \omega_2 \right) t}{2} \cos \frac{\left(k_1 - k_2 \right) z - \left(\omega_1 - \omega_2 \right) z}{2} \\ &\equiv 2a \cos \left(k_c z - \omega_c t \right) \cos \left(k_m z - \omega_m t \right), \end{aligned}$$

If
$$\omega_1 \approx \omega_2$$
 and $k_1 \approx k_2$, then

where
$$k_{\rm c} \equiv \frac{k_1 + k_2}{2}$$
 and $\omega_{\rm c} \equiv \frac{\omega_1 + \omega_2}{2};$

are the wave vector and frequency of the ${\bf carrier}$ wave; and a

$$k_{\rm m} \equiv \frac{k_1 - k_2}{2}$$
 and $\omega_{\rm m} \equiv \frac{\omega_1 - \omega_2}{2};$

are the wave vector and frequency of the modulation. ω_m is also referred to as beat frequency.

The carrier wave propagates at the **phase velocity**

$$v_{\rm p} \equiv \frac{\omega_{\rm c}}{k_{\rm c}},$$

whereas the modulation propagates at the group velocity

 $_{\rm g} \equiv \frac{-m}{k_{\rm m}}$

Group and phase velocity

Spatial frequencies

We now turn to a monochromatic (single color) optical field. The field is often observed (or measured) at a planar surface along the optical axis z. The wavefront shape at the observation plane is, therefore, of particular interest.

Spatial frequencies

Today

- Electromagnetics
 - Electric (Coulomb) and magnetic forces
 - Gauss Law: electrical
 - Gauss Law: magnetic
 - Faraday's Law
 - Ampère-Maxwell Law
 - Maxwell's equations \Rightarrow Wave equation
 - Energy propagation
 - Poynting vector
 - average Poynting vector: intensity
 - Calculation of the intensity from phasors
 - Intensity

Electric and magnetic forces

Electric and magnetic fields

Gauss Law: electric field

 ρ : charge density

Gauss Law: magnetic field

Faraday's Law: electromotive force

Ampère-Maxwell Law: magnetic induction

Maxwell's Equations (free space)

Integral form

$$\oint_C \mathbf{B} \cdot \mathrm{d}l = \mu_0 \left(\iint_A \mathbf{J} \cdot \mathrm{d}\mathbf{a} + \epsilon_0 \iint_A \frac{\partial \mathbf{E}}{\partial t} \cdot \mathrm{d}\mathbf{a} \right) \qquad \nabla \times \mathbf{B} = \mu_0 \left(\mathbf{J} + \epsilon_0 \frac{\partial \mathbf{E}}{\partial t} \right)$$

Differential form

 $rac{\partial \mathbf{B}}{\partial t}$

Wave Equation for electromagnetic waves

We will derive the Wave Equation from Maxwell's electromagnetic equations in free space and in the absence of charges and currents. Starting from Faraday's equation,

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \Rightarrow \nabla \times (\nabla \times \mathbf{E}) = -\frac{\partial (\nabla \times \mathbf{B})}{\partial t}$$

Now we substitute Ampère–Maxwell's Law

$$\nabla \times \mathbf{B} = \mu_0 \epsilon_0 \frac{\partial \mathbf{E}}{\partial t},$$

the following identity from vector calculus

$$abla imes \left(
abla imes {f E}
ight) =
abla \left(
abla \cdot {f E}
ight) -
abla^2 {f E},$$

and Gauss' Law for electric fields,

$$\nabla \cdot \mathbf{E} = 0.$$

Collecting all these results, we obtain

$$\nabla^2 \mathbf{E} - \mu_o \epsilon_0 \frac{\partial^2 \mathbf{E}}{\partial t^2} = 0.$$

MIT 2.71/2.710 03/18/09 wk7-b- 9 Comparing with the 3D Wave Equation,

$$\nabla^2 f - \frac{1}{c^2} \frac{\partial^2 f}{\partial t^2} = 0,$$

we see that *each component* of the vector \mathbf{E} satisfies the Wave Equation with velocity

$$\frac{1}{c^2} = \mu_o \epsilon_0 \Rightarrow c = \frac{1}{\sqrt{\mu_o \epsilon_0}}$$

Since $\epsilon_0 = 8.8542 \times 10^{-12} \text{Cb}^2/\text{N} \cdot \text{m}^2$, $\mu_0 = 4\pi \times 10^{-7} \text{N} \cdot \text{sec}^2/\text{Cb}^2$, we obtain the speed of electromagnetic waves in vacuum

$$c = 3 \times 10^8 \, \frac{\mathrm{m}}{\mathrm{sec}}.$$

2.71 / 2.710 Optics Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.