The 3D wave equation

In three-dimensions, the Wave Equation is generalized as
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Our familiar plane and spherical waves are special solutions.

Plane wave Spherical wave
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Planar and Spherical Wavefronts

Eo B, Eo

Planar wavefront (plane wave):

The wave phase is constant along a
~  planar surface (the wavefront).
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As time evolves, the wavefronts propagate
at the wave speed without changing;

we say that the wavefronts are invariant to
propagation in this case.
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0 Spherical wavefront (spherical wave):

The wave phase is constant along a
spherical surface (the wavefront).
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As time evolves, the wavefronts propagate
at the wave speed and expand outwards
while preserving the wave’s energy.
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Wavefronts, rays, and wave vectors

Eq

Ey Ey
/ : Rays are:
/ . / .- 1) normals to the wavefront surfaces
° » o & » 2) trajectories of “particles of light”
e : . , : )

Wave vectors:

iU t="T/8 t=T/4 t=3T/8 At each point on the wavefront, we may
2= z= A8 244 286 assign a normal vector k

This is known as the wave vector;
it magnitude k is the wave number and it
is defined as
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3D wave vector from the wave equation

We try a sinusoidal solution
aexp {i (kzx + kyy + k.2 — wt)} =
—aexp{i(k-r—wt)}, where
k = Xk, + yky + Zk, is the wave vector, and
L= e il e is the Cartesian
coordinate vector, to the 3D wave equation
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w(@+@+@—§>é y ) = 0=
2 2 2 w?
. w 2mn
That is, k| = — = %Y = k (wave number.)
c
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The wavefront is the surface

k - — canst.

i.e., the locus of points on the wave
that have the same phase (modulo 27)
after propagating by the same time t.
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3D wave vector and the Descartes sphere

A

X

The wave vector represents the
momentum of the wave.
Consistent with Geometric
its magnitude is constrajied to be
proportional to the refragtive index n
(2T|'/)\free is a normali

In wave optics, the Descartes sphere
is also known as EWwald sphere
or simply as the k-sphere.
(Ewald sphere may be fami\ar to you
from solid state physics
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Spherical wave

([ ]
“point” >
source

Out;going
rays

Outgoing
wavefronts
(spherical)
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The wavefront in this case is a sphere
kr = const., where r=|r|.

Without proof (pls. see the textbook) we assert

cos (kr — wt — 7/2)

7

fe.6 =g
In complex representation,

f(r, & aexp {z (kr = wt)} |

wr

and in phasor notation (dropping the e™*?)

flr) = — exp fikal .

r

In the paraxial approximation, z > |z|, |y| so
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wavelength dependent, e.g. due to material dispersion n(\). This means that

Dispersive waves

We have learnt from Geometrical Optics that the speed of light can be

the wave equation for light waves must be written as

*f | 0*f  Of

1 0%*f
0xr?  Oy? * 072
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where ¢(k) = cyacuum /1 (k) denotes the dependence of ¢ on the
wave number k = 27 /. This kind of wave is called dispersive.

Another example of a dispersive wave is a guided wave. It turns out that, due
to the boundary conditions at the waveguide’s edge, the simple dispersion
relation ¢ = A\v does not hold for a waveguide, and it must be replaced by a
different relationship. Without going into the details here, the dispersion

relationship for the metal waveguide shown on the left is
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guided light
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Dispersion curves for glass

Fig. 9X,Y in Jenkins, Francis A., and Harvey E. White.
Fundamentals of Optics. 4th ed. New York, NY:
McGraw-Hill, 1976. ISBN: 9780070323308.

(c) McGraw-Hill. All rights reserved. This content

is excluded from our Creative Commons license.

For more information, see http://ocw.mit.edu/fairuse -
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Superposition of waves at different frequencies
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Fig. 7.16a,b,c in Hecht, Eugene. Optics. Reading, MA: Addison-Wesley,
2001. ISBN: 9780805385663. (c) Addison-Wesley. All rights reserved.

This content is excluded from ourCreative Commons license. : : : :
For more information, see http://ocw.mit.edu/fairuse . i ; i i

Consider two waves of different frequency and wavelength

fi(z,t) = acos (klz — wlt) , fa(z,t) = acos (kgz — wgt) : where k. = k1 + ko and I +wa
Their superposition is cT 2 cT 2 7
f(z,t) = fi(z,t) + fa(z,1) are the wave vector and frequency of the carrier wave; and
= acos (k:lz — wlt) + acos (k:gz — wgt)
L k’l — kg d w1 — W2
_ _ _ _ m = an Wm = :
— 94c0s (k)l + k‘z) z > (wl +WQ)fJ cos (kl kg) z 5 (wl w2)t 9 2
= 9qcos (k:cz _ wct) coS (k:mz _ wmt) , are the wave vector and frequency of the modulation. w,,
is also referred to as beat frequency.
If w; ~ ws and ky = ko, then The carrier wave propagates at the phase velocity Vp = %,
C
0
MIT 2.71/2.710 v = % and v, = a_: . RO . it  m
03/16/09 wk7-a- 2 w=w(k) whereas the modulation propagates at the group velocity Vg = .
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Group and phase velocity
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Spatial frequencies

We now turn to a monochromatic (single color) optical field.
The field is often observed (or measured) at a planar surface along the optical axis z.
The wavefront shape at the observation plane is, therefore, of particular interest.

/ observa tion planes \
i\

\—

N\=

Plane wave Spherical wave
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Spatial frequencies
E(z,z) = eXp{i%r(zL‘sinH—lrzcosO)} Bl 2) o~ exp{i27ﬂ-\/m}

il A 2 2
: x g N 2wz .
= SEbavla (K + const) } Jix A e A~ exp {z—)\ } exp {m i }
A spatial trequency
As . 2
sin 6 . ) Chirped frequency fx(x) ~ »

X

Plane wave Spherical wave
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Today

« Electromagnetics

MIT 2.71/2.710

Electric (Coulomb) and magnetic forces
Gauss Law: electrical

Gauss Law: magnetic

Faraday’'s Law

Ampere-Maxwell Law

Maxwell's equations = Wave equation

Energy propagation
* Poynting vector
« average Poynting vector: intensity
Calculation of the intensity from phasors
* Intensity
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Electric and magnetic forces

1

free charges

Coulomb force

‘F‘ 1 qq ’
- 2
e, r
\ (dielectric) permitivity (magnetic) permeability
of free space of free space

N - sec?

Cb?

2
€0 = 8.8542 10—12NCb

o = dar x 1077
. 2
MIT 2.71/2.710
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Electric and magnetic fields

=

Observation Generation
F velocity E
. Vr i static charge:
electric g q L« : s =
field electric field

electric
magnetic B charge
induction

B Y moving charge
F = q (E + VX B) (electric current):

Lorentz force magnetic field
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Gauss Law: electric field

Gauss theorem v
#E da——///pdV —_— V~E:€—
0

p: charge density
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Gauss Law: magnetic field

there are no

magnetic } B

charges

Gauss theorem
# B-da=0 — V-B=0
A
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Faraday’s Law: electromotive force

’: \ B(¢) (in/de)creasing
I ! .
|l i
oA )
\\1—,/ C
d Stokes theorem
E-dl:——//B da —_— VXE:_d_B
at J /, ot




Ampere-Maxwell Law: magnetic induction

B
dl <7 dL_(,'» i

\
\

1
[ E .
I I
I i | |
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VS ," current B :. capacitor
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Stokes theorem OF
del:/L()(//Jda—l—Eo/ —— da)<=> VXB:/L()(J_'_EOE)
C A
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Maxwell’s Equations (free space)

Integral form

) ® da——///pdV

AR

jéE dl:——//B da
%}B dl = uo(//J da+eo/ — - da)
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Differential form

v =2
€0
V-B=0
0B
E=——
V x Y
OE
B J
W X /lo( +608t)




Wave Equation for electromagnetic waves

We will derive the Wave Equation
from Maxwell’s electromagnetic equations
in free space and in the absence of charges and currents.
Starting from Faraday’s equation,

Comparing with the 3D Wave Equation,

VXE:—a—B:>V><(V><E):—

d (V x B) ,
ot 1 @&f

ot vepo LO&F
/ 2 @2 ‘

Now we substitute Ampere—Maxwell’s Law

we see that each component of the vector E

OE satisfies the Wave Equation with velocity
VxB= NOEOEa
11
the following identity from vector calculus @ TR £ N
Vx (VxE)=V(V-E)- V2, Since €p = 8.8542 x 10 12Cb?/N - m?,
‘ o = 4m x 107N - sec?/Cb?, we obtain
and Gauss’ Law for electric fields, the speed of electromagnetic waves in vacuum
V-E=0. c=3x108 —.
sec
Collecting all these results, we obtain
0’E
V2E — u, =
Ho€o 912
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