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MASSACHUSETTS INSTITUTE OF TECHNOLOGY


2.710 Optics Spring ’09 
Solutions to Problem Set #6 Due Wednesday, Apr. 15, 2009 

Problem 1: Grating with tilted plane wave illumination 
1. a) In this problem, one–dimensional geometry along the x–axis is considered. 

The Fresnel diffraction pattern, the field just behind the grating illuminated by the 
plane wave, is 

m x 2π 
g+(x, z = 0) =  gt(x)g−(x, z = 0) = exp i sin 2π exp i θx . (1)

2 Λ λ 

Note that the transmission function can be expanded as 

� � �� ∞ � � m x m 2π 
gt(x) = exp i sin 2π = Jq exp iq x . (2)

2 Λ 2 Λ 
q=−∞ 

Using eq. (2), we can rewrite eq. (1) as 

∞ � � � m 2π qλ 
g+(x, z = 0) =  Jq exp i θ + x . (3)

2 λ Λ 
q=−∞ 

qλSince exp i2
λ
π θ + 

Λ x represents a tilted plane wave whose propagation angle is 
θ + qλ/Λ, eq. (3) implies that the transmitted field just behind the grating is consisted 
of a infinite number of plane waves, where q denotes diffraction order and the amplitude 
of the diffraction order q is Jq(m/2). The propagation direction of the zero–order is 
identical as one of the incident tilted plane wave. 

1.b) The field behind the grating is identical to eq. (1). When the observation plane 
is in the far–zone, the Fraunhofer diffraction pattern is 

g(x ′ , z) =  g+(x, z = 0) exp −i 
2π 

(x ′ x) dx. (4)
λz 

Note that we neglected the scaling factor and phase term because the scaling factor 
change overall magnitude of diffraction pattern and the phase term does not contribute 
to intensity. Substituting eq. (2) into (4), we obtain the field distribution of the Fraun­
hofer diffraction as � ∞ � � �� � � 

g(x ′ , z) =  
� 

Jq 
m 

exp i 
2π

θ + 
qλ 

exp −i 
2π 

(xx ′) dx 
2 λ Λ λz 

q=−∞ � � � � � � � �∞ � m � q θ x′ 
= Jq exp i2π + x exp −i2π x dx 

2 Λ λ λz 
q=−∞ � � ′ � ��∞ � � m x q θ 

= Jq δ − + . (5)
2 λz Λ λ 

q=−∞ 
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(a) on–axis plane wave (b) tilted plane wave 

Figure 1: The whole diffraction patterns rotate by θ as the incident plane wave rotates 

The intensity of the Fraunhofer diffraction pattern is 

∞ � � �� 

I(x ′ , z) =  |g(x ′ , z)|2 
= 

� 
J2 

� m � 
δ

x′ 
− 

q 
+ 

θ
. (6)q 2 λz Λ λ 

q=−∞ 

In the far–region, we should observe a infinite number of diffraction orders. The in­
tensity of the diffraction order is proportional to Jq 

2(m/2) and the offset between two 
neighboring diffraction orders is (λz)/Λ. The zeroth order is located at x′ = zθ. 

1.c) In both cases (Fresnel and Fraunhofer diffraction), the diffraction patterns of 
the grating probed by a on-axis and tilted plane waves are identical except the angular 
shift by the incident angle θ, as shown in Fig. 1. 
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Problem 2: Grating spherical wave illumination 
2.a) Using the same approach as in Prob. 1, we obtain 

z0i2π x2 + y21 x e λ 

g+(x, y, z = 0) =  gt(x, y)g−(x, y, z = 0) =  1 +  m cos 2π exp iπ .

2 Λ iλz0 λz0 

(7) 
2.b) Since both the cosine term and exponential terms in eq. (8) vary with x, we  

use following relation to understand eq. (8); � � � � � � �� x m x x 
1 +  m cos 2π = 1 +  exp i2π + exp −i2π . (8)

Λ 2 Λ Λ 

Hence, eq. (8) can be rewritten as superposition of three spherical waves; 

z0i2π 1 
� 

x2 + y2 � 
e
 λ 

g+(x, y, z = 0) =  exp iπ +

iλz0 2 λz0 

m 
� 

x2 + y2 x 
� 

m 
� 

x2 + y2 x 
� 

exp iπ + i2π + exp iπ − i2π 
4 λz0 Λ 4 λz0 Λ 

z0i2π 1 
� 

x2 + y2 � 
m 

� 
(x + λz0/Λ)2 + y2 � � 

λz0 
� 

e
 λ −iπ
iπ
 + exp iπ
 +
= exp
 exp

Λ2iλz0 2 λz0 4 λz0 

m 
� 

(x − λz0/Λ)2 + y2 � � 
λz0 

� 

exp iπ exp −iπ . (9)
4 λz0 Λ2 

2.c) Figure 2(a) conceptually shows the diffraction pattern expressed in eq. (10). 
The first exponential term represents the zero–order diffraction, which is identical to 
the incident spherical wave originated at (x = 0, y  = 0, z  = −z0) except amplitude 
attenuation. The second and third exponential terms indicate two spherical waves 
originated at (±λz0/Λ, 0, −z0) with additional phase factor of e−iπλz0/Λ2 

, which is in­
dependent on x and y. 

2.d) If the illumination is a spherical wave emitted at (x0, 0, −z0) as shown in Fig. 
2(b), then we expect that the origins of the three spherical waves will be shifted by x0; 
i.e., the three origins are (x0, 0, −z0), (x0 − λz0/Λ, 0, −z0), and (x0 + λz0/Λ, 0, −z0) if  
the paraxial approximation holds. 

More rigorously, the Fresnel diffraction pattern is computed as 

i2π z0 
(x − x0)

2 + y21 x e λ 

g+(x, z = 0) =  1 +  m cos 2π exp iπ ,
 (10)

2 Λ iλz0 λz0 
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(a) on–axis spherical wave (b) off–axis spherical wave 

Figure 2: The diffraction patterns rotate in the same fashion as the incident spherical 
wave rotates 

and using the same expansion we eventually obtain 

λei2π z0 
1 (x − x0)

2 + y2 

g+(x, y, z = 0) =  exp iπ + 
iλz0 2 λz0 

m 
� 

(x − x0)
2 + y2 x 

� 
m 

� 
(x − x0)

2 + y2 x 
� 

exp iπ + i2π + exp iπ − i2π 
4 λz0 Λ 4 λz0 Λ 

λei2π z0 
1 (x − x0)

2 + y2 

= exp iπ + 
iλz0 2 λz0 

m 
� 

(x − x0 + λz0/Λ)2 + y2 � � � 
2x0 λz0 

�� 

exp iπ exp −iπ − + + 
4 λz0 Λ Λ2 

m 
� 

(x − x0 − λz0/Λ)2 + y2 � � � 
2x0 λz0 

�� 

exp iπ exp −iπ + . (11)
4 λz0 Λ Λ2 

As expected, the diffraction pattern is consisted of three spherical waves originated at 
(x0, 0, −z0), (x0 − λz0/Λ, 0, −z0), and (x0 + λz0/Λ, 0, −z0), respectively. 
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3. (a) The Fourier series coefficients of a periodic function t(x) are given by:


1 2
L 

t(x�)dx�a0 = 
L −

2
L 

2
L 

nπx�2

t(x�) cos dx�an = 

L L/2
L−

2 nπx� 
bn = t(x�) sin dx� 

L −L L/2 

where L is the period of t(x). The function t(x) can then be written as an infinite 
sum: � � � �∞

nπx 
∞

nπx 
t(x) = a0 + an cos + bn sin 

L/2 L/2 
n=1 n=1 

For the given function, 

2� L 

= dx� 
L −

= cos 
L −

L 

L

4
L 

1
 1 
=a0 

2

4 � � � ��LL 

2πnx� 2� L�� 2πnx�2
 2
 πn
44 

dx� sin
 sin
an =
 =

L��
·

L
 2�πn L πn 2
L � 
−�� 4 4 

L 
4 

L 
2πnx� 2� L�� 2πnx�2
 4 

dx�= sin 
LL −

� � 0 

1 sin πn 

∴ a0 = , bn = 0, an = πn 
2 where n = 1, 2, 3, . . . 

2
2 

Note that when n is even, an = 0, when n = 1 + 4m, an = +1, and when 
n = 3 + 4m, an = −1, where m is a positive integer. 

bn = 0
− cos
=

L��
·

L
 2�πn L
 L � �� −4 4 

(b) A single boxcar is given by 

2x 
t1(x) = rect 

L 
L L 

T1(u) = F(t1(x)) = sinc u 
2 2 
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(c) An infinite array of boxcars of width L 
2 with a spacing of L 

2 between them can be 
expressed as a convolution of a comb() function and a rect() function: 

2x x 
t2(x) = rect ⊗ comb 

L L 

A truncated centered portion containing N boxcars is then given by � � � � � � �� � � x 2x x x 
t(x) = t2(x) rect = rect ⊗ comb rect· 

NL L L 
· 

NL 

The Fourier transform of t(x) becomes 

L2 L 
T (u) = T2(u) ⊗ (NL)sinc(NLu) = sinc u comb(Lu) ⊗ (NL)sinc(NLu)

2 2 
· 

(d) Single box car: T (u) = L 
2 sinc(L 

2 u) 

Infinite array:
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Finite array (N):


•	 The Fraunhofer diffraction pattern is similar to the Fourier transform of the 
functions (with a scaling factor u = x/λL) 

•	 A single box car creates a sinc() diffraction pattern. Having an infinitely long 
array would generate a set of δ() functions, i.e. single dots whose amplitude 
is modulated by a sinc() envelope profile identical to that generated by one 
boxcar. The spacing of the δ()’s is the reciprocal of the period of the array. 

•	 A finite array of boxcars generates a set of sinc() functions whose peaks are 
modulated by another sinc() function and whose spacing is the reciprocal of 
the period of the boxcar array. Limiting the size of the array is equivalent 
to imposing a window onto an infinite array. This window spreads the δ() 
functions into sinc() functions. The spread of each of these sinc()’s is inversely 
proportional to the width of the ‘window.’ 

4. Tilted ellipse: 

x2 + y2 

Circle: f2(x2, y2) = circ 
r 

a b 
Ellipse: x1 = x2; y1 = y2 

r r 
r r 

x2 = x1; y2 = y1 
a b 

Tilted: x = x1 cos θ − y1 sin θ 

y = x1 sin θ + y1 cos θ �� � ��	 � 
( r x1)2 + ( r y1)2 � x1 

�2 � y1 
�2 

f1(x1, y2) = circ a b = circ + 
r	 a b 
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F1(u1, v1) = F(f1) = |ab|jinc(2π (au1)2 + (bv1)2) 

A rotation by θ in the space domain is equivalent to a rotation by θ in the frequency 
domain; hence, 

u1 = u cos θ + v sin θ, v1 = −u sin θ + v cos θ 

∴ The Fourier transform of an ellipse tilted by an angle θ is 

F (u, v) = |ab|jinc(2π a2(u cos θ + v sin θ)2 + b2(−u sin θ + v cos θ)2) 

(a) Sketch of Fourier transform 

(b) The Fraunhofer diffraction pattern is given by


F (u, v)
 a
2( 
x� 

cos θ + 
y� 

sin θ)2 + b2(− 
x� 

sin θ + 
y� 

cos θ)2 

λ� λ� λ� λ� 
ab jinc 2π


( x
� 
, y� 

)
λ� λ� 

=
|
 |
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Problem 5: Blazed grating In this problem, the given phase profile of the grating 
is shown in Fig. 3. So it is important to properly construct the complex transparency 
of the grating. 

Figure 3: phase profile of the blazed grating 

3.a) Since the grating is a periodic function without any truncation, Fourier se­
ries can be used and the Fourier coefficient (its square for intensity) represents the 
diffraction efficiency. 

1 Λ 2π q 
aq = exp i x exp −i2π x dx 

Λ 0 Λ Λ 

=
1 Λ 

exp i 
2π 

(1 − q) x dx = 
1 exp {i

i

2
2

π
π 

(1 − q)} − 1 
Λ 0 Λ Λ 

Λ (1 − q) 

= e iπ(1−q) sin(π(1 − q)
= e −iπqsinc (q − 1) , (12)

π(1 − q) 

where q denotes the diffraction order. Hence, the efficiency of the diffraction order q is 
proportional to 

Iq ∼ |aq|2 = sinc2(q − 1). (13) 

Note that only the first order is survived and other orders are canceled out. The blazed 
grating produces the same number of diffraction orders as non–blazed gratings; but the 
blazed grating concentrates more light into a specific order due to the phase profile. 
(You can imagine that the one period of the grating behaves as a prism to bend light!) 

The same conclusion can be obtained with Fourier transform. We first choose one 
period of the grating whose complex transparency (not phase profile!) as 

x − Λ 
2 i2π x 

tΛ(x) = rect e Λ , (14)
Λ 

and it is shown in Fig. 4(a). To make the grating periodic, it convolves with a comb 
function (impulse train) whose period is Λ shown in Fig. 4(b). Note the comb function is 
shifted by Λ/2 to correctly represent the given grating. Then, the complex transparency 
of the grating can be written as 

t(x) =  

� 

rect 

� 
x − Λ 

2 

Λ 

� 

e i2π x 
Λ 

� 

⊗ comb 

� 
x − Λ 

2 

Λ 

� 

. 
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(a) phase of the one period of the grating (b) desired comb function 

Figure 4: The grating can be constructed by the convolution of a triangular phase 
profile and comb function. 

To find the diffraction efficiencies, we compute Fraunhofer diffraction pattern, which 
is identical to taking Fourier transform of the complex transparency. 

�� 

F 

� 
x − Λ 

� 
2 i2π x 

Λ 

� � 
x − Λ 

2 

�� 

⊗ comb =rect e 

Λ 

Λ Λ � � � � � � �� 
x − Λ x − Λ 

i2π x 22rect e comb
F
 F
 =

Λ Λ � � � ��� 

Λcomb (Λu) e 
1
Λ Λ−i2π −i2πu u⊗ δ u −
Λsinc (Λu) e
 2 2 =

Λ
� � � �� �


1 −i2π Λ [u− 1 
Λ

] Λ−i2πΛ2 usinc Λ u −
 comb (Λu) e
2 2e
 =

Λ
 � � � ��� 

2ΛΛ2 e −i2πΛ[u− 1 ] sinc Λ u − 
1 

comb (Λu) . (16)
Λ 

Thus, the intensity of the diffraction pattern is proportional to 

1 
I(u) ∼ sinc2 Λ u − comb (Λu) , (17)

Λ 

where the sinc2 and comb functions are shown in Fig. 4(a) and (b). Fig. 4(c) shows 
the Fraunhofer diffraction pattern replacing with x′ = uλz at an observation plane. 
Again, the diffraction efficiency of the diffraction order q, which is defined by the comb 
function, is found to be 

Iq ∼ sinc2 (q − 1) . (18) 

Note that the lateral shift of the grating does not make any significant change in 
the intensity of the Fraunhofer diffraction pattern; i.e., if the grating is shifted by Λ/2 
laterally, then the complex transparency would be 

2
Λx x− x
i2πt(x) = 
 ⊗ comb
 .
 (19)
rect e
 Λ 

Λ Λ 

10 
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(a) (b) 

(c) 

Figure 5: The Fraunhofer diffraction pattern 

Using the same procedure, we obtain the same result as 

−iπ i2π x 
ΛF 

�� 
e rect 

� x � 
e 

� 
⊗ comb 

� x �� 
= Λ2 e −iπsinc Λ u − 

1 
comb (Λu) (20)

Λ Λ Λ 

and 
Iq ∼ sinc2 (q − 1) . (21) 

3.b) If the phase contrast is reduced from 2π to φ0, then the complex transparency 
of the new grating is written as � � � � � � 

x − Λ x − Λ 

t(x) =  rect 2 e iφ0 
x ⊗ comb 2 . (22)Λ 

Λ Λ 

Using the same procedure, we obtain � � � � � � �� 
x − Λ x − Λ


F {t(x)} = F rect 2 e iφ0 
x 

F comb 2 =
Λ 

Λ Λ � � � ��� 
−i2π Λ u φ0 −i2π Λ u

2Λsinc (Λu) e ⊗ δ u − Λcomb (Λu) e 2 = 
2πΛ � � � �� � 
2 2πΛ 2Λ2 sinc Λ u − 

φ0 
e −i2π Λ [u− φ0 ] comb (Λu) e −i2π Λ u = 

2πΛ � � � ��� 

Λ2 e −i2πΛ[u− 
4
φ
π
0
Λ ] sinc Λ u − 

φ0 
comb (Λu) . (23)

2πΛ 

11 
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Hence, the efficiency of the diffraction order q is proportional to


Iq ∼ sinc2 q − 
φ0 

. (24)
2π 

Note that now we have an infinite number of diffraction orders, and the efficiencies 
can be tuned by changing the phase modulation. The Fourier series approach should 
expect the same result. 

3.c) Since a prism exhibits refraction, all incoming light bends based on the Snell’s 
law. The prism does not produce additional diffraction orders. Also the dispersion of 
the prism is normal dispersion, in which long wavelength bends less than short wave­
length, as shown in Fig. 6(a). The blazed grating, even though its shape of the profile 
is similar to the prism, it exhibits diffraction and produces multiple diffraction orders. 
The zero–order diffraction keeps propagating along the same direction as the incident 
wave but no dispersion happens, Other higher orders, whose efficiency is dependent on 
the modulation of the phase (in this problem, φ0), are p in the same way of the inci­
dent light except the amplitude attenuation. This phase grating produces an infinite 
numbers of diffraction, and the efficiency of the diffraction order depends on the mod­
ulation of the phase (in here, φ0). The dispersion of the grating is anormal, in which 
longer wavelength diffracts more than short wavelength. Another way to understand 
is that since u = x/(λz). Thus, although spatial frequencies are same, they appear at 
different location due to x = λzu, where longer wavelength length deviates more. 

(a) Prism (b) Blazed grating 

Figure 6: Comparison of a prism and blazed grating 
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6. The grating can be expressed as a convolution of a rect() function and a comb() func­
tion, where the comb() is an infinite sum of equally spaced δ() functions. 

The truncated grating is the product of a 2D rect() function (the window) and the 
infinite grating. 

+∞

Upright grating: δ(y − nΛ) ⊗ rect(y/d) 
n=+−∞ 

From problem # 2, we know that this convolution results in:


� 2 sin(n 2π d )∞ 

n 
Λ 2 ·δ(u − n 2

Λ 
π , v)n=−∞ � �� � 

sinc envelope 

A rotation by 60 ◦ in space results in a rotation by 60 ◦ in the frequency domain: 

u� = u cos 60 ◦ + v sin 60 ◦, v� = −u sin 60 ◦ + v cos 60 ◦ 

� 2π d∞
2 sin(n 

Λ 2 ) 
� 

1 
√

3 2π 
√

3 1 
� 

n 
· δ 

2 
u +

2 
v − n 

Λ 
, − 

2 
u +

2 
v = F1(u, v) 

n=−∞ 

The Fourier transform of the truncated grating is the convolution of F1 with the Fourier 
transform of the rectangular window: 

F (u, v) = F1(u, v) ⊗ |ab|sinc(au)sinc(bv) 

13 
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i2π � 
e λ 

The Fraunhofer diffraction pattern is [F (u, v)]
iλ� ( x , y )

λ� λ� 

Sketches of Fourier Transforms 

(a) Infinite grating 

(b) Rotated infinite grating


(c) Rectangular aperture


(d) Truncated grating (b ⊗ c) 
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