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1. Brief review of the electromagnetic wave equation  

The wave equation governs the spatial and temporal variation of a wave as it propagates. The one-
dimensional wave equation can be written as:  
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For electromagnetic waves, this 1D wave equation becomes: 
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where the speed of light in an optical medium with dielectric constant   and magnetic permeability   

( =1 for most optical material) is 1/v  . In vacuum, this equals 8
0 0 2.99791/ [m/s]10c     . 

While the electric field is most commonly used to represent the amplitude and the phase of the optical 
field distribution, the magnetic field can do the same because they are both governed by the same wave 
equation (1.2). In 3D, the wave equation is: 
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The two most useful solutions of (1.3) for a field that propagates along the wave vector k  are a plane 
wave and a spherical wave. The length of k  equals the wave number 2 /k   , and the direction 
vector can be noted as k̂ . Using the complex vector field notation, we can express: 
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In the input plane, the spherical wave can be expressed as a delta function, and a plane wave as a 
constant multiplied by a phase factor.  

Other solutions to the wave equation also exist, with different shapes of phase-fronts, such as Gaussian 
beam, Airy beam, Bessel beam, etc.  
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2. Approximations and conventions for the E field expression 

In order to manipulate them easily, the solutions of the wave equations in (1.4) and (1.5) are modified 
with some approximations and conventions.  

 Why is the field complex? All physical observables are purely real, with no imaginary 
component. In case of the electric field, the actual field value is represented by the real part of 
the complex notation as E Re{ ( , , )}E x y z , to be strict. The complex form is conventionally 
accepted without writing the real part notation Re{}every time, and is more popular because 
other physical observables (such as Intensity) can be computed with minimal trigonometric 
calculations. Experimentally, what we can actually observe is the intensity, which is real. Using 
the complex notation of electric field, Intensity is simply obtained from: 

 2 *)| | ( ) (tot tot totE EI E   ,  (1.6) 

where *
totE  is the complex conjugate of the total complex electric field. 

 Why do you keep multiplying/dropping a constant factor of 2, , ,i    in front?  
A constant term multiplied does not alter the intensity pattern at all, and is of minimal 
importance in optics. Different books multiply different factors by convention usually to cancel 
out a constant multiplier that comes out during the Fresnel/Fraunhofer diffraction. For example, 
the Goodman book uses the following notation for a point source: 
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with i  in the denominator. Note that 0E  is already a lumped term for the field amplitude. The 
physically measured variable is usually the “normalized intensity”, which does not depend on 
convention. 

 Why do you keep dropping e /ikz z ?  

When you are asked to calculate for the field pattern at a screen on the x-y plane, the z value is 
identical for every point in the plane and therefore is a constant. Since the normalized intensity is 
never affected by this constant factor, omission is conventionally allowed. This is the same 
reason why e ti can be omitted for a temporally coherent light source.  
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3. Fresnel diffraction equation and the paraxial approximation 

The most important concept in Diffraction is the Huygens principle, where every point on a wavefront is 
regarded as a new point source, which interferes with neighboring point sources to produce a diffracted 
(blurry) image. The Fresnel expression for a point source at 0 0 0, )( ,x y z  measured after a propagation in 
the z direction can be used when paraxial approximation is valid. 
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The Fresnel diffraction pattern of a transmission function ( , )t x y  illuminated by ( , ;z 0)E x y  , 
propagated by z  and measured at ;( , )x y z   can be expressed as: 

 
2 2) ( )

Fresn

(

el 0
2( ( , ) ( , )e, ) e

y y
ikz ik

x x

z
E x xy E dxdyy

z
y

i
t x



   
  





     . (1.9) 

 The effect of the paraxial approximation on common functions: 

Truncation of the Taylor series to a second-order approximation. 
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Propagation of light through any paraxial optical system can be rigorously derived using the Fresnel 
diffraction formula. 
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4. Fraunhofer Approximation is a scaled Fourier Transform  

Fraunhofer diffraction goes one more step from Fresnel diffraction: the quadratic phase factor 
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2 2

0 0
0

00
( )

)0
,Fraunhofer

0

2(( ) e,
(

, e
)

yyy
ik z z

xxx

z z
ik

poin

z z

t

E

i z
x y z

z
E



   
      

    


.  (1.10) 

This omission is justified when 2 2
0 0 0) / 2 z z( maxk x y   is satisfied. The Fraunhofer diffraction pattern 

of a transmission function ( , )t x y  illuminated by ( , ;z 0)E x y  , propagated through z  and measured at 
;( , )x y z   can be expressed as: 
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When the Fraunhofer approximation is valid, the resulting field can be simply expressed as a scaled 
Fourier Transform of the source field, multiplied by the transmission function at the object plane. 

 2 ( )[ ( , )] ( , )e x yi xf yf
FT f x y f x y dxdy

 
   . (1.12) 

The Fresnel approximation is also used when transmission through an optical component inside the 
optical path cancels out the quadratic phase term- for example, from the FFP to the BFP of a spherical 
lens. Reference for lens derivation can be found in Goodman 5.2. 
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Interference, interferometer:  

HW3.2, 3.3 Interference 

HW4.1 Mach-Zehnder Interferometer 

HW4.2 Fabry-Perot Interferometer 

HW5.3 Newton’s rings 

HW6.5 4F system with Biprism 

2012 Quiz II. Lloyd Mirror Interferometer 

4F system as spatial filter: 

HW4.4 FT of an MIT seal with spatial filters: this is a visual example of how a transmission 
element placed at the Fourier plane of a 4F system can function as a low-pass or high-pass filter, 
although a 4F system was not mentioned in the problem itself. 

HW6.4 4F system with T-shaped filter 

HW6.5 4F system with Biprism 

 Grating

HW5.4 Triangular Grating 

HW6.1 Grating Spectrometer 

https://stellar.mit.edu/S/course/2/sp14/2.71/courseMaterial/topics/topic6/studyMaterial/Supplemental_6--Spatial_Filters/Supplemental_6--Spatial_Filters.pdf
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