Image Quality Metrics

- Image quality metrics
 - Mutual information (cross-entropy) metric
 - Intuitive definition
 - Rigorous definition using entropy
 - Example: two-point resolution problem
 - Example: confocal microscopy
 - Square error metric
 - Receiver Operator Characteristic (ROC)
- Heterodyne detection

Linear inversion model

Mutual information (cross-entropy)

object

MIT 2.717 Image quality metrics p-3

MIT 2.717 Image quality metrics p-4

Precision of measurement

Formal definition of cross-entropy (1)

Entropy in thermodynamics (discrete systems):log₂[how many are the possible states of the system?]

E.g. two-state system: fair coin, outcome=heads (H) or tails (T) Entropy= $\log_2 2=1$

Unfair coin: seems more reasonable to "weigh" the two states according to their frequencies of occurence (*i.e.*, probabilities)

Entropy =
$$-\sum_{\text{states}} p(\text{state}) \log_2 p(\text{state})$$

Formal definition of cross-entropy (2)

• Fair coin: p(H)=1/2; p(T)=1/2

Entropy =
$$-\frac{1}{2}\log_2 \frac{1}{2} - \frac{1}{2}\log_2 \frac{1}{2} = 1$$
 bit

• Unfair coin: p(H)=1/4; p(T)=3/4 Entropy = $-\frac{1}{4}\log_2\frac{1}{4} - \frac{3}{4}\log_2\frac{3}{4} = 0.81$ bits

Maximum entropy ⇔ Maximum uncertainty

Formal definition of cross-entropy (3)

Joint Entropy

log₂[how many are the possible states of a combined variable obtained from the Cartesian product of two variables?]

Joint Entropy
$$(X, Y) = -\sum \sum p(x, y) \log_2 p(x, y)$$

states states $x \in X$ $y \in Y$

Formal definition of cross-entropy (4)

Conditional Entropy

log₂[how many are the possible states of a combined variable given the actual state of one of the two variables?]

Cond. Entropy
$$(Y | X) = -\sum_{\text{states}} \sum_{y \in Y} p(x, y) \log_2 p(y | x)$$

states states $x \in X$ $y \in Y$

Formal definition of cross-entropy (5) object

Noise adds uncertainty to the measurement *wrt* the object \Leftrightarrow eliminates information from the measurement *wrt* object

Formal definition of cross-entropy (6)

uncertainty added due to noise

MIT 2.717 Image quality metrics p-12

Formal definition of cross-entropy (8)

 $C(\overline{F}, \overline{G}) = \text{Entropy}(\overline{F}) - \text{Cond. Entropy}(\overline{F} | \overline{G})$ = Entropy(\overline{G}) - Cond. Entropy(\overline{G} | \overline{F}) = Entropy(\overline{F}) + Entropy(\overline{G}) - Joint Entropy(\overline{F}, \overline{G})

Entropy & Differential Entropy

- Discrete objects (can take values among a discrete set of states)
 - definition of entropy

Entropy =
$$-\sum_{k} p(x_k) \log_2 p(x_k)$$

- unit: 1 bit (=entropy value of a YES/NO question with 50% uncertainty)
- Continuous objects (can take values from among a continuum)
 - definition of differential entropy

Diff. Entropy =
$$-\int_{\Omega(X)} p(x) \ln p(x) dx$$

unit: 1 nat (=diff. entropy value of a significant digit in the representation of a random number, divided by ln10)

Image Mutual Information (IMI) object

Assumptions:

C

(a) *F* has Gaussian statistics (b) white additive Gaussian noise (waGn) *i.e.* $g=\mathbf{H}f+w$ where *W* is a Gaussian random vector with diagonal correlation matrix

Then

$$(\overline{F},\overline{G}) = \frac{1}{2} \sum_{k=1}^{n} \ln\left(1 + \frac{\mu_k^2}{\sigma^2}\right) \quad \mu_k : \text{eigenvalues of } \mathbf{H}$$

Example: two-point resolution

Finite-NA imaging system, unit magnification

Cross-leaking power

MIT 2.717 Image quality metrics p-18

IMI for two-point resolution problem

$$\mathbf{H} = \begin{pmatrix} 1 & s \\ s & 1 \end{pmatrix} \quad \det(\mathbf{H}) = 1 - s^2 \qquad \begin{array}{l} \mu_1 = 1 + s \\ \mu_2 = 1 - s \end{array}$$
$$\mathbf{H}^{-1} = \frac{1}{1 - s^2} \begin{pmatrix} 1 & -s \\ -s & 1 \end{pmatrix}$$

$$C(\overline{F},\overline{G}) = \frac{1}{2} \ln\left(1 + \frac{(1-s)^2}{\sigma^2}\right) + \frac{1}{2} \ln\left(1 + \frac{(1+s)^2}{\sigma^2}\right)$$

MIT 2.717 Image quality metrics p-19

IMI for rectangular matrices (1)

underdetermined (more unknowns than measurements) overdetermined (more measurements than unknowns)

eigenvalues cannot be computed, but instead we compute the singular values of the rectangular matrix

IMI for rectangular matrices (2)

IMI for rectangular matrices (3) object

Confocal microscope

Depth "resolution" vs. noise

Depth "resolution" vs. noise & pinhole size

MIT 2.717 Image quality metrics p-26

IMI summary

- It quantifies the number of possible states of the object that the imaging system can successfully discern; this includes
 - the rank of the system, i.e. the number of object dimensions that the system can map
 - the precision available at each rank, i.e. how many significant digits can be reliably measured at each available dimension
- An alternative interpretation of IMI is the game of "20 questions:" how many questions about the object can be answered reliably based on the image information?
- IMI is intricately linked to image exploitation for applications, e.g. medical diagnosis, target detection & identification, etc.
- Unfortunately, it can be computed in closed form only for additive Gaussian statistics of both object and image; other more realistic models are usually intractable

Other image quality metrics

• Mean Square Error (MSQ) between object and image

$$E = \sum_{\substack{\text{object}\\\text{samples}}} \left(f_k - \hat{f}_k \right)^2 \qquad \qquad \hat{f}_k = \begin{pmatrix} \text{result of}\\ \text{inversion} \end{pmatrix}$$

- e.g. pseudoinverse minimizes MSQ in an overdetermined problem
- obvious problem: most of the time, we don't know what f is!
- more when we deal with Wiener filters and regularization
- Receiver Operator Characteristic
 - measures the performance of a cognitive system (human or computer program) in a detection or estimation task based on the image data

Receiver Operator Characteristic

Target detection task

Example: medical diagnosis,
H0 (null hypothesis) = no tumor
H1 = tumor

TP = true positive (*i.e.* correct identification of tumor) FP = false positive (*aka* false alarm)