Optics Overview

What is light?

- Light is a form of **electromagnetic energy** detected through its effects, e.g. heating of illuminated objects, conversion of light to current, mechanical pressure ("Maxwell force") etc.
- Light energy is conveyed through particles: "photons"
 - ballistic behavior, e.g. shadows
- Light energy is conveyed through waves
 - wave behavior, e.g. interference, diffraction
- Quantum mechanics reconciles the two points of view, through the "wave/particle duality" assertion

Particle properties of light

Photon=elementary light particle

Mass=0 Speed c=3×10⁸ m/sec

According to Special Relativity, a mass-less particle travelling at light speed can still carry momentum!

Energy E = hv relate

relates the dual particle & wave nature of light;

h=Planck's constant =6.6262×10⁻³⁴ J sec

MIT 2.71/2.710 Review Lecture p-3 v is the temporal oscillation frequency of the light waves

Wave properties of light

Wave/particle duality for light

Photon=elementary light particle

Mass=0 Speed c=3×10⁸ m/sec

Energy E = hv

h=Planck's constant = 6.6262×10^{-34} J sec

 ν =frequency (sec⁻¹) λ =wavelength (m)

MIT 2.71/2.710 Review Lecture p-5

$$c=\lambda v$$

"Dispersion relation"

(holds in vacuum only)

Light in matter

Materials classification

- Dielectrics
 - typically electrical isolators (e.g. glass, plastics)
 - low absorption coefficient
 - arbitrary refractive index
- Metals
 - conductivity \Rightarrow large absorption coefficient
- Lots of exceptions and special cases (e.g. "artificial dielectrics")
- Absorption and refractive index are related through the Kramers– Kronig relationship (imposed by *causality*)

Overview of light sources

non-Laser

Thermal: polychromatic, spatially incoherent (e.g. light bulb)

Gas discharge: monochromatic, spatially incoherent (e.g. Na lamp)

Light emitting diodes (LEDs): monochromatic, spatially incoherent Laser

Continuous wave (or cw): strictly monochromatic, spatially coherent (e.g. HeNe, Ar⁺, laser diodes)

Pulsed: quasi-monochromatic, spatially coherent (e.g. Q-switched, mode-locked) / ~nsec ~psec to few fsec pulse duration

mono/poly-chromatic = single/multi color

Monochromatic, spatially coherent light

- nice, regular sinusoid
- λ , v well defined
- stabilized HeNe laser good approximation
- most other cw lasers rough approximation
- pulsed lasers & nonlaser sources need more complicated description

Incoherent: random, irregular waveform

The concept of a monochromatic "ray"

In homogeneous media, light propagates in rectilinear paths

The concept of a monochromatic "ray"

In homogeneous media, light propagates in rectilinear paths

The concept of a polychromatic "ray"

In homogeneous media, light propagates in rectilinear paths

Fermat principle

$$\int n(x, y, z) \, \mathrm{d}l$$

Γ is chosen to minimize this"path" integral, compared to alternative paths

(aka **minimum path** principle) Consequences: law of reflection, law of refraction

The law of reflection

a) Consider virtual source P"instead of Pb) Alternative path P"O"P' islonger than P"OP'

c) Therefore, light follows the symmetric path POP'.

MIT 2.71/2.710 Review Lecture p-14

The law of refraction

Optical waveguide

- Planar version: integrated optics
- Cylindrically symmetric version: *fiber optics*
- Permit the creation of "light chips" and "light cables," respectively, where light is guided around with few restrictions
- Materials research has yielded glasses with very low losses (<0.25dB/km)
- Basis for optical telecommunications and some imaging (e.g. endoscopes) and sensing (e.g. pressure) systems

Refraction at a spherical surface

Imaging a point source

Model for a thin lens

Model for a thin lens

Huygens principle

Each point on the wavefront acts as a secondary light source emitting a spherical wave

The wavefront after a short propagation distance is the result of superimposing all these spherical wavelets

Review Lecture p-22

Why imaging systems are needed

- Each point in an object scatters the incident illumination into a spherical wave, according to the Huygens principle.
- A few microns away from the object surface, the rays emanating from all object points become entangled, delocalizing object details.
- To relocalize object details, a method must be found to reassign ("focus") all the rays that emanated from a single point object into another point in space (the "image.")
- The latter function is the topic of the discipline of Optical Imaging.

Imaging condition: ray-tracing

- Image point is located at the common intersection of *all* rays which emanate from the corresponding object point
- The two rays passing through the two focal points and the chief ray can be ray-traced directly
- The real image is **inverted** and can be **magnified** or **demagnified**

Imaging condition: ray-tracing

Imaging condition: ray-tracing

• The ray bundle emanating from the system is divergent; the virtual image is located at the intersection of the backwards-extended rays

- The virtual image is **erect** and is **magnified**
- When using a <u>negative</u> lens, the image is always virtual, erect, and demagnified

Tilted object: the Scheimpflug condition

The object plane and the image plane intersect at the plane of the thin lens.

Lens-based imaging

- Human eye
- Photographic camera
- Magnifier
- Microscope
- Telescope

The human eye

Remote object (unaccommodated eye)

Near object (accommodated eye)

The photographic camera

The pinhole camera

• The pinhole camera blocks all but one ray per object point from reaching the image space \Rightarrow an image is formed (*i.e.*, each point in image space corresponds to a single point from the object space).

- Unfortunately, most of the light is wasted in this instrument.
- Besides, light diffracts if it has to go through small pinholes as we will see later; diffraction introduces undesirable artifacts in the image.

Field of View (FoV)

FoV=angle that the *chief ray* from an object can subtend towards the imaging system

Numerical Aperture

 θ : half-angle subtended by the imaging system from an *axial* object **Numerical Aperture** (NA) = $n \sin \theta$

Speed (f/#)=1/2(NA)

pronounced f-number, e.g. f/8 means (f/#)=8.

Resolution

How far can two distinct point objects be before their images cease to be distinguishable?

Factors limiting resolution in an imaging system

- Diffraction
- Aberrations
- Noise

- Intricately related; assessment of image quality depends on the degree that the "inverse problem" is solvable (i.e. its *condition*) 2.717 sp02 for details
- electronic noise (thermal, Poisson) in cameras
- multiplicative noise in photographic film
- stray light
- speckle noise (coherent imaging systems only)
- Sampling at the image plane
 - camera pixel size
 - photographic film grain size

Point-Spread Function

The finite extent of the PSF causes blur in the image

Diffraction limited resolution

Wave nature of light

• Polarization: polaroids, dichroics, liquid crystals, ...

Diffraction grating

Review Lecture p-43

Grating dispersion

Fresnel diffraction formulae

Review Lecture p-45

Fresnel diffraction as a linear, shift-invariant system

Review Lecture p-46