Optics Overview

Review Lecture p-1

What is light?

- Light is a form of electromagnetic energy - detected through its effects, e.g. heating of illuminated objects, conversion of light to current, mechanical pressure ("Maxwell force") etc.
- Light energy is conveyed through particles: "photons"
- ballistic behavior, e.g. shadows
- Light energy is conveyed through waves
- wave behavior, e.g. interference, diffraction
- Quantum mechanics reconciles the two points of view, through the "wave/particle duality" assertion

Particle properties of light

Photon=elementary light particle

Mass=0
Speed $\mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{sec}$
According to Special Relativity, a mass-less particle travelling at light speed can still carry momentum!

Energy $\mathrm{E}=h \nu \leadsto$ relates the dual particle \& wave nature of light;
$h=$ Planck's constant
$=6.6262 \times 10^{-34} \mathrm{~J} \mathrm{sec}$
v is the temporal oscillation frequency of the light waves

Wave properties of light

Wave/particle duality for light

Photon=elementary light particle

Mass=0
Speed $\mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{sec}$

Energy E=h ν
$h=$ Planck's constant $=6.6262 \times 10^{-34} \mathrm{~J} \mathrm{sec}$
"Dispersion relation"
(holds in vacuum only)
$v=$ frequency $\left(\mathrm{sec}^{-1}\right)$
$\lambda=$ wavelength (m)

$$
c=\lambda v
$$

Light in matter

Materials classification

- Dielectrics
- typically electrical isolators (e.g. glass, plastics)
- low absorption coefficient
- arbitrary refractive index
- Metals
- conductivity \Rightarrow large absorption coefficient
- Lots of exceptions and special cases (e.g. "artificial dielectrics")
- Absorption and refractive index are related through the KramersKronig relationship (imposed by causality)

Overview of light sources

non-Laser

Thermal: polychromatic, spatially incoherent (e.g. light bulb)

Gas discharge: monochromatic, spatially incoherent
(e.g. Na lamp)

Light emitting diodes (LEDs):

 monochromatic, spatially incoherent
Laser

Continuous wave (or cw): strictly monochromatic, spatially coherent (e.g. $\mathrm{HeNe}, \mathrm{Ar}^{+}$, laser diodes)

Pulsed: quasi-monochromatic, spatially coherent (e.g. Q-switched, mode-locked)

pulse duration

$$
\text { mono/poly-chromatic }=\text { single/multi color }
$$

Monochromatic, spatially coherent light

- nice, regular sinusoid
- λ, v well defined
- stabilized HeNe laser good approximation - most other cw lasers rough approximation - pulsed lasers \& nonlaser sources need more complicated description

Incoherent: random, irregular waveform

The concept of a monochromatic

"ray"
$\mathrm{t}=0$
(frozen)

In homogeneous media, light propagates in rectilinear paths

Review Lecture p-10

The concept of a monochromatic

"ray"

$\mathrm{t}=\Delta t$
(advanced)

energy propagation:
light ray

In homogeneous media, light propagates in rectilinear paths

Review Lecture p-11

The concept of a polychromatic "ray"

$\mathrm{t}=0$
(frozen)

In homogeneous media, light propagates in rectilinear paths

Fermat principle

$$
\int_{-} n(x, y, z) \mathrm{d} l
$$

Γ is chosen to minimize this "path" integral, compared to alternative paths
(aka minimum path principle)
Consequences: law of reflection, law of refraction

Review Lecture p-13

The law of reflection

Review Lecture p-14

The law of refraction

$n \sin \theta=n^{\prime} \sin \theta^{\prime}$ Snell's Law of Refraction

Review Lecture p-15

Optical waveguide

- Planar version: integrated optics
- Cylindrically symmetric version: fiber optics
- Permit the creation of "light chips" and "light cables," respectively, where light is guided around with few restrictions
- Materials research has yielded glasses with very low losses $(<0.25 \mathrm{~dB} / \mathrm{km})$
- Basis for optical telecommunications and some imaging (e.g. endoscopes) and sensing (e.g. pressure) systems

Refraction at a spherical surface

MIT 2.71/2.710
Review Lecture p-17

Imaging a point source

MIT 2.71/2.710
Review Lecture p-18

Model for a thin lens

Model for a thin lens

Review Lecture p-20

Huygens principle

Each point on the wavefront acts as a secondary light source emitting a spherical wave

The wavefront after a short propagation distance is the result of superimposing all these spherical wavelets

Why imaging systems are needed

- Each point in an object scatters the incident illumination into a spherical wave, according to the Huygens principle.
- A few microns away from the object surface, the rays emanating from all object points become entangled, delocalizing object details.
- To relocalize object details, a method must be found to reassign ("focus") all the rays that emanated from a single point object into another point in space (the "image.")
- The latter function is the topic of the discipline of Optical Imaging.

Imaging condition: ray-tracing

- Image point is located at the common intersection of all rays which emanate from the corresponding object point
- The two rays passing through the two focal points and the chief ray can be ray-traced directly
- The real image is inverted and can be magnified or demagnified

Imaging condition: ray-tracing

Imaging condition: ray-tracing

- The ray bundle emanating from the system is divergent; the virtual image is located at the intersection of the backwards-extended rays - The virtual image is erect and is magnified
- When using a negative lens, the image is always virtual, erect, and demagnified

Tilted object: the Scheimpflug condition

The object plane and the image plane intersect at the plane of the thin lens.

Lens-based imaging

- Human eye
- Photographic camera
- Magnifier
- Microscope
- Telescope

The human eye

Remote object (unaccommodated eye)

Near object (accommodated eye)

The photographic camera

Review Lecture p-31

The pinhole camera

- The pinhole camera blocks all but one ray per object point from reaching the image space \Rightarrow an image is formed (i.e., each point in image space corresponds to a single point from the object space).
- Unfortunately, most of the light is wasted in this instrument.
- Besides, light diffracts if it has to go through small pinholes as we will see later; diffraction introduces undesirable artifacts in the image.

Field of View (FoV)

FoV=angle that the chief ray from an object can subtend towards the imaging system

Review Lecture p-36

Numerical Aperture

θ : half-angle subtended by the imaging system from an axial object

Numerical Aperture
$(\mathrm{NA})=n \sin \theta$
Speed (f/\#)=1/2(NA) pronounced f-number, e.g.
$\mathrm{f} / 8$ means $(\mathrm{f} / \#)=8$.

Resolution

How far can two distinct point objects be before their images cease to be distinguishable?

Review Lecture p-38

Factors limiting resolution in an imaging system

- Diffraction
- Aberrations
- Noise

$\} \leadsto$| Intricately related; assessment of image
 quality depends on the degree that the "inverse
 problem" is solvable (i.e. its condition)
 2.717 sp02 for details |
| :---: |

- electronic noise (thermal, Poisson) in cameras
- multiplicative noise in photographic film
- stray light
- speckle noise (coherent imaging systems only)
- Sampling at the image plane
- camera pixel size
- photographic film grain size

Point-Spread Function

The finite extent of the PSF causes blur in the image

Review Lecture p-40

Diffraction limited resolution

Point objects "just
resolvable" when $\quad \delta x \approx \frac{1.22 \lambda}{(\mathrm{NA})} \quad \begin{gathered}\text { Rayleigh resolution } \\ \text { criterion }\end{gathered}$

Review Lecture p-41

Wave nature of light

- Diffraction
broadening of point images
- Inteference

Michelson interferometer

diffraction grating

- Polarization: polaroids, dichroics, liquid crystals, ...

Review Lecture p-42

Diffraction grating

Grating dispersion

Review Lecture p-44

Fresnel diffraction formulae

$$
g_{\text {out }}\left(x^{\prime}, y^{\prime} ; z\right)=\frac{1}{i \lambda z} \exp \left\{i 2 \pi \frac{z}{\lambda}\right\} \int g_{\text {in }}(x, y) \exp \left\{i \pi \frac{\left(x^{\prime}-x\right)^{2}+\left(y^{\prime}-y\right)^{2}}{\lambda z}\right\} \mathrm{d} x \mathrm{~d} y
$$

MIT 2.71/2.710
Review Lecture p-45

Fresnel diffraction
 as a linear, shift-invariant system

