Introduction to Inverse Problems

- What is an image? Attributes and Representations
- Forward vs Inverse
- Optical Imaging as Inverse Problem
- Incoherent and Coherent limits
- Dimensional mismatch: continuous vs discrete
- Singular vs ill-posed
- Ill-posedness: a 2×2 example

Intro to Inverse Problems p-1

Basic premises

- What you "see" or imprint on photographic film is a very narrow interpretation of the word image
- Image is a representation of a physical object having certain attributes
- Examples of attributes
- Optical image: absorption, emission, scatter, color wrt light
- Acoustic image: absorption, scatter wrt sound
- Thermal image: temperature (black-body radiation)
- Magnetic resonance image: oscillation in response to radiofrequency EM field
- Representation: a transformation upon a matrix of attribute values
- Digital image (e.g. on a computer file)
- Analog image (e.g. on your retina)

How are images formed

- Hardware
- elements that operate directly on the physical entity
- e.g. lenses, gratings, prisms, etc. operate on the optical field
- e.g. coils, metal shields, etc. operate on the magnetic field
- Software
- algorithms that transform representations
- e.g. a radio telescope measures the Fourier transform of the source (representation \#1); inverse Fourier transforming leads to a representation in the "native" object coordinates (representation \#2); further processing such as iterative and nonlinear algorithms lead to a "cleaner" representation (\#3).
- e.g. a stereo pair measures two aspects of a scene (representation \#1); a triangulation algorithm converts that to a binocular image with depth information (representation \#2).

Who does what

- In optics,
- standard hardware elements (lenses, mirrors, prisms) perform a limited class of operations (albeit very useful ones); these operations are
- linear in field amplitude for coherent systems
- linear in intensity for incoherent systems
- a complicated mix for partially coherent systems
- holograms and diffractive optical elements in general perform a more general class of operations, but with the same linearity constraints as above
- nonlinear, iterative, etc. operations are best done with software components (people have used hardware for these purposes but it tends to be power inefficient, expensive, bulky, unreliable - hence these systems seldom make it to real life applications)

Imaging channels

Information generators

- Wave sources
- Wave scatterers

Processing elements

Users

- Imaging
- Communication

GOAL: Maximize information flow

- Storage

MIT 2.717
Intro to Inverse Problems p-5

Generalized (cognitive) representations

"Non-imaging" or "generalized" sensor view-point

Intro to Inverse Problems p-6

Forward problem

The Forward Problem answers the following question:

- Predict the measurement given the object attributes

Intro to Inverse Problems p-7

Inverse problem

The Inverse Problem answers the following question:

- Form an object representation given the measurement

Intro to Inverse Problems p-8

Optical Inversion

Intro to Inverse Problems p-9

Optical Inversion: coherent

Nonlinear problem

$$
\begin{array}{cc}
f(x, y) & I\left(x^{\prime}, y^{\prime}\right)=\left|\int f(x, y) h_{\text {coh }}\left(x^{\prime}-x, y^{\prime}-y\right) \mathrm{d} x \mathrm{~d} y\right|^{2} \\
\text { object } \\
\text { amplitude } & \text { intensity measurement at the output plane }
\end{array}
$$

Note: I could make the problem linear if I could measure amplitudes directly (e.g. at radio frequencies)

Intro to Inverse Problems p-10

Optical Inversion: incoherent

$I_{\text {obj }}(x, y)$
object intensity
$I_{\text {meas }}\left(x^{\prime}, y^{\prime}\right)=\int I_{\text {obj }}(x, y) h_{\text {incoh }}\left(x^{\prime}-x, y^{\prime}-y\right) \mathrm{d} x \mathrm{~d} y$
intensity measurement at the output plane

Intro to Inverse Problems p-11

Dimensional mismatch

- The object is a "continuous" function (amplitude or intensity) assuming quantum mechanical effects are at sub-nanometer scales, i.e. much smaller than the scales of interest (100 nm or more)
- i.e. the object dimension is uncountably infinite
- The measurement is "discrete," therefore countable and finite
- To be able to create a " $1-1$ " object representation from the measurement, I would need to create a 1-1 map from a finite set of integers to the set of real numbers. This is of course impossible
- the inverse problem is inherently ill-posed
- We can resolve this difficulty by relaxing the 1-1 requirement
- therefore, we declare ourselves satisfied if we sample the object with sufficient density (Nyquist theorem)
- implicitly, we have assumed that the object lives in a finitedimensional space, although it "looks" like a continuous function

Singularity and ill-posedness

Under the finite-dimensional object assumption, the linear inverse problem is converted from an integral equation to a matrix equation

$$
\begin{gathered}
g\left(x^{\prime}, y^{\prime}\right)=\int f(x, y) h\left(x^{\prime}-x, y^{\prime}-y\right) \mathrm{d} x \mathrm{~d} y \\
\Leftrightarrow \bar{g}=\mathbf{H} \bar{f}
\end{gathered}
$$

- If the matrix \mathbf{H} is rectangular, the problem may be overconstrained or underconstrained
- If the matrix \mathbf{H} is square and has $\operatorname{det}(\mathbf{H})=0$, the problem is singular; it can only be solved partially by giving up on some object dimensions (i.e. leaving them indeterminate)
- If the matrix \mathbf{H} is square and $\operatorname{det}(\mathbf{H})$ is non-zero but small, the problem may be ill-posed or unstable: it is extremely sensitive to errors in the measurement f

Resolution: a toy problem

Two point-sources

Finite-NA imaging system

Classical view

Intro to Inverse Problems p-14

Cross-leaking power

MIT 2.717
Intro to Inverse Problems p-15

III-posedness in two-point inversion

$$
\begin{gathered}
\mathbf{H}=\left(\begin{array}{ll}
1 & s \\
s & 1
\end{array}\right) \\
\operatorname{det}(\mathbf{H})=1-s^{2} \\
\mathbf{H}^{-1}=\frac{1}{1-s^{2}}\left(\begin{array}{cc}
1 & -s \\
-s & 1
\end{array}\right)
\end{gathered}
$$

Intro to Inverse Problems p-16

