Problem Set \#2 Posted Feb. 13, 2002 — Due Wednesday Feb. 20, 2002

1. How to emulate a perfect coin. Given a biased coin such that the probability of heads (H) is α, we emulate a perfect coin as follows: Throw the biased coin twice; interpret $H T$ ($T=$ tails) as success and $T H$ as failure; if neither event occurs repeat the throws until a decision is reached.
1.a) Show that this model leads to Bernoulli trials with $p=1 / 2$.
1.b) Find the distribution and the expectation value of the number of throws required to reach a decision.
2. Birthdays. For a group of n people find the expected number of days of the year which are birthdays of exactly k people. Assume the year is 365 days long and that all the arrangements are equally probable. What is the result for $n=23$ (the number of players in two opposing soccer teams plus the referee) and $k=2$? Do you find that surprising?
3. Misprints. A book of n pages contains on average λ misprints per page. Estimate the probability that at least one page will contain more than k misprints.
4. Detection threshold. We seek to determine if a tumor is present in tissue from the voltage U measured between two strategically placed electrodes. In the absence of tumor, U is Gaussian with mean V_{1} and variance σ^{2}; i.e., the "prior" distribution is

$$
p_{U}(u \mid \text { no tumor })=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left\{-\frac{\left(u-V_{1}\right)^{2}}{2 \sigma^{2}}\right\}
$$

In the presence of a tumor, U is Gaussian with mean $V_{2}>V_{1}$ and same variance σ^{2}; i.e.

$$
p_{U}(u \mid \text { tumor })=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left\{-\frac{\left(u-V_{2}\right)^{2}}{2 \sigma^{2}}\right\}
$$

We seek a "detection threshold" V_{0} such that if $U>V_{0}$ we conclude that a tumor is present; whereas if $U<V_{0}$ we conclude that there is no tumor. Clearly, our decision is in error if (i) we concluded that there is no tumor whereas in actuality a tumor is present, i.e. a "miss;" (ii) we concluded that there is a tumor whereas in actuality there is no tumor present, i.e. a "false alarm." We define the probability of error (PE) as the sum of the probability of a miss and the probability of a false alarm.
4.a) Show that the PE is minimized if we select

$$
V_{0}=\frac{V_{1}+V_{2}}{2}
$$

4.b) Using the optimum threshold, calculate the PE in terms of the "error function"

$$
\operatorname{erf}(z)=\frac{2}{\sqrt{\pi}} \int_{0}^{z} \mathrm{e}^{-t^{2}} \mathrm{~d} t
$$

Notes: (1) The above-described process of selecting a detection threshold is known as "Bayes decision." (2) The erf definition above is after Abramowitz \& Stegun, Handbook of Mathematical Functions, Dover 1972 (p. 297). The constants and integral limits are sometimes defined differently in the literature.
5. Normalization. Let $\left\{X_{k}\right\}$ be a sequence of mutually independent random variables with a common distribution. Suppose that the X_{k} assume only positive values and that $\operatorname{EV}\left\{X_{k}\right\}=\bar{x}_{k}=a$ and $\operatorname{EV}\left\{X_{k}^{-1}\right\}=b$ exist. Let

$$
S_{n}=X_{1}+\ldots+X_{n} .
$$

Prove that EV $\left\{S_{n}^{-1}\right\}$ is finite and that

$$
\operatorname{EV}\left\{\frac{X_{k}}{S_{n}}\right\}=\frac{1}{n} \quad \text { for } k=1, \ldots, n
$$

6. Unbiased estimator. Let X_{1}, \ldots, X_{n} be mutually independent random variables with a common distribution; let its mean be μ, its variance σ^{2}. Let

$$
\bar{X}=\frac{X_{1}+\ldots+X_{n}}{n} .
$$

Prove that

$$
\sigma^{2}=\frac{1}{n-1} \mathrm{EV}\left\{\sum_{k=1}^{n}\left(X_{k}-\bar{X}\right)^{2}\right\}
$$

(Note: In statistics, \bar{X} is called an unbiased estimator of $\bar{x}=\mathrm{EV}\{X\}$, and $\sum\left(X_{k}-\bar{X}\right)^{2} /(n-1)$ is an unbiased estimator of σ^{2}.

