1. The probability of an insect laying k eggs is Poisson with expectation value \bar{k}; the probability of an egg developing is p. Assuming mutual independence of the eggs, show that the probability of a total of n survivors is given the Poisson distribution with expectation value $\bar{k} p$.
2. Goodman problem 2-6.
3. Goodman problem 2-9.
4. Goodman problem 2-10.
5. Goodman problem 2-11.
6. Let $X(t)$ be a random process describing the location X of a particle as function of time $t>0$. The $1^{\text {st }}$-order statistics of this random process are described by the function

$$
p_{X}(x ; t)=\frac{1}{\sqrt{2 \pi D t}} \exp \left\{-\frac{(x-v t)^{2}}{2 D t}\right\}
$$

where v and D are real, positive numbers.
6.a) How do the mean and variance of X behave as time evolves?
6.b) Show that p_{X} satisfies

$$
\frac{\partial p_{X}}{\partial t}=-v \frac{\partial p_{X}}{\partial x}+\frac{D}{2} \frac{\partial^{2} p_{X}}{\partial x^{2}}
$$

This is known as the Fokker-Planck equation for this random process.
6.c) Can you describe a physical system which should follow these statistics? What is the physical meaning of v and D in your system? (Hint: the FokkerPlanck equation is also known under a different name; what is then p_{X} replaced by?).

