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I Start with the expression for the anti-symmetric part of the general
equation for v derived m class. Recall that in class we used the sym-
metric part to denve the mode I fields. So we have for this problem
that

v =12 Ay sin M + Bysin(A +2)4]

Apply the same boundary conditions we used m class:

Ty = =0 for =27

These eorrespond to mposing the condition that there can be no stress
o the crack faces, These conditions are the same for mode I, mode 11
or mode I Note that no restriction 15 imposed on the stress oy, snece
1t does not contribute to the stress on the crack face, Determinimg the
stresses, we find that we must have

(424 Bz)smAr =10
Mg+ (A+2)By|cos Ar =10

From the same physical reasons discussed in class (energy must be
bounded) we must have that A = —=1/2. This condition is always true
for thus crack problem, whether 1t 15 mode I, mode I or mode 111 With
that condition, the second of the above conditions 5 automatically
satisfied (cos(—7/2) = 0) so we must have that Ay + By =0, Thus y
has the form



6 30
y = —13%4, (sin 3 + sin E)

We may now evaluate the stresses using the Airy stress function rela-
tions:
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In an analogous way to the mode I problem, we define Ay = K;/v/2m,
so that
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Unfortunately, we are not done yet. To make the formulas look nicer
(and allow us to compare with the book), we should eliminate the terms
involving cos 36/2 and sin 30/2 by replacing them with terms involving
cos /2 and sin 0/2. Using the trigonometric double angle formulas you
can show that:
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Substitute these back into above expressions for the stresses and sim-
plify (you can simplify in different ways; it helped me to take a look
at the expressions in the book to make sure I was heading in the right
direction)
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Which agrees with the expressions in the book.

. The stress intensity factor for this crack configuration is given by

1.12
K =—ov7ma
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We approximate the cylinder as a thin-walled pressure vessel (90 mm
inner diameter and a 110 mm outer diameter) so in this case the ap-
propriate stress is the hoop stress, g9 = Pr/t = 4.5P. The factor @ is
given in section A.7 as (include the plasticity correction)
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And we know that
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When the values a = 1.5 mm and ¢ = 2.25 mm are substituted in. So
the expression for K becomes:

K 1.120+/ma
\/1.830 — 0.212(c /0, )2

To find the value when the crack can grow by fast fracture, set K = K.
Plugging in the values o, = 550 MPa, K;. = 30 MPay/m and a = 1.5
mm, and performing some simplifications find that
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0.710 =
\/1.830 — 0.212(c /)2

Use the above equation to solve for o/o,. I found that /o, = 0.912
or 0 = 502 MPa and thus P = /4.5 = 111 MPa. Thus the pressure
reached a value more than double the maximum intended pressure.

4. (a)

For the test to be a valid measurement all the dimensions must
be at least 25 times larger that the size of the plastic zone, or
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These conditions come from the fact that in order for our K field
to be valid, which is an elasticity solution, the extent of plasticity
must be small compared to the in-plane dimensions of the sam-
ple, and in order for the problem to be one of plane strain the
dimension B must be significantly larger than the plastic zone.
Substitute in the given values of o, and Ky, we find that 25 xr, =
5.97 cm. Since we are given that a/W = 0.45, setting a = 5.97
cm ensures that W — a satisfies the above condition. So we have
that a = B = 5.97 cm, W = 13.27 cm.

Now calculate the volume and mass of each sample type. For
the compact specimen the volume of the sample is approximately
given by 1.2W x 1.2W x B = 1.44BW? and thus the mass (assume
the density of steel is 7.8 g/cm?) is 11.8 kg or ~ 25 Ibs. For the
bend specimen the volume is B x W x 4W, and thus the mass is
33.1 kg, or &~ 72 lbs. In both cases we neglect the weight lost due
to the starter notch, and the weight lost due to the load pin holes
for the compact specimen.

Calculate the loads from the expressions given in the appendix for
these geometries, i.e. for the compact specimen we have

P a

Ky = Wf(w)
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Where f = 834 for /W = 0.45. The load /7 at failure corre-
sponds to Ay = K. 50 we have that

P =0.12K,.BVW =301 x 10¢ N
and for the bend specimen

- PS a
Ky = Wf(ﬁ)

Where f = 2.20 for a/W = 0.45. Also, I set the span S equal to
3W. The load 7 at fallure corresponds to K; = K. s0 we have
that

P =0.145K; . BVW =473 x 10° N

Both are larger than our available test machine capacity of 200
kN.

We find that the specimen size requrements necessitate a very
large sample, and the load requirements are larger than the avail-
able test machine, This is generally the case for ductile mate-
rials wlach have large plastic zones. Even by cleverly changing
the specimen dimensions (Le a/1) the load requirements are too
high.

In practice, what 1s generally done for these types of materials
(low strength, high-toughness) is to use fracture testing techniques
based on what 1s called Jantegral testing. The specimen size re-
quirements are much less severe, so that reasonably sized spec-
mens can be used. Those interested mayv refer to Chapter 9 in the
book bv D, Broek, Elementary Engineering Fracture Mechandes,
for more details.
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