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1. (Hertzberg 6.2) If it takes 300 seconds for the relaxation modulus to decay to a particular value at Tg, to 
what temperature must the material have been raised to effect the same decay in 10 seconds? 

 
Using the time-temperature equivalence relationship for amorphous polymers, 
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2. (Hertzberg 6.3) Calculate the relaxation time for glass and comment on its propensity for stress 

relaxation at room temperature. and . 70GPaE ≈ 121 10 GPa-sη ≈ ×
 

Relaxation time is defined as the ratio of viscosity to modulus. 
12

1010 GPa-s 1.4 10 sec
70 GPa

T
E
η

= = = ×  

The relaxation time is a measure of the time it takes for viscous behavior to play a significant role in 
deformation. The relaxation time calculated for glass is over 400 years, indicating that there is limited 
stress relaxation. Thus, glass behaves essentially completely elastically. 
 
 

 
3. Your Irish post doc asked you to determine the time for the relaxation modulus to decay to a particular 

value at 75°C by testing the polymer at its glass transition temperature, 0°C. She said a simple 
calculation using the empirical time-temperature relationship for amorphous polymers would give you 
the desired result. You find experimentally that the relaxation time is 217.2 seconds for the relaxation 
modulus to decay to the particular value. However, the refrigeration unit that was supposed to keep the 
temperature at 0°C (glass transition temperature) was not functioning and the test was carried out at 
20°C, the ambient temperature in the laboratory. Can you use the data from this test to determine the 
relaxation time to decay to the specified value at 75°C? If so, what is the value? 

 
It is possible to determine the relaxation time to decay at 75°C.  The relaxation time is 0.0007527 sec.  
To find the relaxation time at some arbitrary temperature, we need to find the relaxation time at the glass 
transition temperature or the glass transition temperature plus 50 K. We are given the glass transition 
temperature, Tg = 0 K. We find the time to the particular relaxation modulus at Tg by the empirical time-
temperature relation for amorphous polymers. 
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Now we can use the time to the relaxation modulus at Tg to compute the time to a particular relaxation 
modulus at a given temperature. We do this at 75°C. 
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4. (Hertzberg 6.5) The deformation response of a certain polymer can be described by the Voigt model. If E 

= 400 MPa and , compute the relaxation time. Compute 122 10 MPa-sη = × ( )tε  for times to 5τ  when 
the steady state stress is 10 MPa. How much creep strain takes place when t = τ   and when t = ∞ ?  

 
The relaxation time can be calculated by 

12 92 10 MPa sec 400MPa 5 10 secEτ η= = × − = × . 
The strain experienced by a Voigt element can be expressed by the expression 
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(Hertzberg 6.6) Compare the fractional amount of the total deformation that would occur if t = τ when 
 and , respectively. 122 10 MPa-sη = × 128 10 MPa-sη = ×

 
The relaxation time, τ , by definition is the time to reach a particular strain. Therefore, for each material, 
at t =τ , the strains will be the same. 
 
However, if one uses a time of   for the material, we can calculate the strain. 95 10 sec× 128 10 MPa-sη = ×

12 98 10 MPa sec 400MPa 2 10 secEτ η= = × − = ×  
0.25t τ =  

9 3( 5 10 sec) 5.53 10tε −= × = ×  
This makes intuitive sense, as the strain at a given time for a more viscous material is lower than the low 
viscosity material. 

 
 
  



5. To improve the description of polymer behavior, Maxwell and Voigt models can be combined in series. 
For the four-element viscoelastic model shown below, derive an expression for the strain as a function of 
time for a given applied stress. Discuss the advantages of the four-element viscoelastic model over the 
Maxwell and Voigt models. 

 
 

To find the total strain as a function of time, we can sum the elastic, viscoelastic, and viscous strain 
components. 

( ) ( ) ( ) ( )spring Voigt dashpott t t tε ε ε ε= + +  
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V VT Eη≡ is defined as the relaxation time for the Voigt element. 
 
The four-element viscoelastic model accounts for instantaneous strain and creep strain. Upon unloading, 
the Voigt element accounts for creep recovery and the single dashpot accounts for permanent 
deformation that is irrecoverable. Thus, this simplistic model is much more accurate than the Maxwell or 
Voigt elements alone. The Maxwell element is unable to account for creep recovery and the Voigt 
element does not account for instantaneous strain or permanent deformation. 

 
 
 
6. Sketch a log-log plot of relaxation modulus versus temperature for an amorphous polymer with cross-

links.  
a. Identify the various regions and characteristic relaxation modulus values on the plot. 

 

. 
CORRECTION: There is no viscous portion in a cross-linked 

polymer. The rubbery regime should extend to the right. 
 
 
 

 



b. Explain the trends in relaxation modulus in the various regions in terms of the bonding in 
polymers. 

 
For low temperatures times, the relaxation approaches a maximum limiting value where the 
material exhibits glassy behavior associated with negligible molecule segmental motions. In this 
region, the primary carbon-carbon bonds are stretched. At intermediate temperatures, the material 
transitions to a region of leathery behavior associated with short-range molecule segmental 
motion. At this elevated temperature, enough thermal energy is present to break weak secondary 
bonds between the polymer chains that permits segmental motion. At still higher temperatures, 
thermal energy is great enough to permit complete molecule movements in the rubbery region. 
Note that as the temperature is increased into the rubbery region, the modulus increases due to 
entropic effects. 
 
 
c. How would each regime change if the polymer had no cross-linking? 

 
A polymer without cross-linking would have a limited rubbery region and experience visous flow 
as a liquid. Physical entanglement of polymer chains causes networks to form and restrict 
molecular flow. The restriction is responsible for rubbers (heavily cross-linked) having a stable 
rubbery region. See sketch in part (a). 

 
 
7. Creep compliance values for polyethylene are given. 

 
T (hours)  J(t) (psi-1 × 10-4) 
0 0.600 
100 0.700 
200 0.720 
300 0.730 
400 0.740 
500  0.770 

 
Consider a sample of polyethylene (cross-section 0.5 in. × 0.1 in.) for the given load history at the same test 
conditions as the data above. 

Load (lbs.) Duration (hours) 
20  100 
5  200 
50 100 
0  100 

 
a. Calculate the strain at 200 and 500 hours. 

 
20lbs(0hours) 400psi

0.5in 0.1in
σ∆ = =

⋅
 

-15lbs(100hours) 300psi
0.5in 0.1in

σ∆ = = −
⋅

 

45lbs(300hours) 900psi
0.5in 0.1in

σ∆ = =
⋅

 

-50lbs(400hours) 1000psi
0.5in 0.1in

σ∆ = = −
⋅

 

 
Using the Boltzmann superposition principle, we calculate the strains. 
 

( 200 ) (0hours) ( 0hours) (100 hours) ( 100hours)t hours J t J tε σ σ= = ∆ ⋅ − + ∆ ⋅ −  
( 200 ) (0hours) (200hours) (100 hours) (100hours)t hours J Jε σ σ= = ∆ ⋅ + ∆ ⋅

4 1 4 1− − − −

 
( 200 ) (400psi)(0.72 10 psi ) ( 300psi)(0.70 10 psi )t hoursε = = × + − ×  

 ( 200 ) 0.0078t hoursε = =



 
( 500 ) (0hours) ( 0hours) (100hours) ( 100hours)

(300hours) ( 300 hours) (400hours) ( 400hours)
t hours J t J t

J t J t
ε σ σ

σ σ
= = ∆ ⋅ − + ∆ ⋅ −
⋅⋅⋅ ∆ ⋅ − + ∆ ⋅ −

+ ⋅⋅ ⋅
 

( 500 ) (0hours) (500hours) (100hours) (400hours)
(300hours) (200hours) (400hours) (100hours)

t hours J J
J J

ε σ σ
σ σ
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⋅⋅ ⋅ ∆ ⋅ + ∆ ⋅
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4 1 4 1

4 1 4 1

( 500 ) (400psi)(0.77 10 psi ) ( 300 psi)(0.74 10 psi )
(900psi)(0.72 10 psi ) ( 1000psi)(0.70 10 psi )

t hoursε − − − −

− − − −

= = × + − ×

⋅⋅ ⋅ × + − ×
 

 ( 500 ) 0.0034t hoursε = =
 
 

b. Sketch a qualitative strain-time plot. 
 

 
 
 

8. Derive the constitutive relation for the viscoelastic model shown below. 
 

 
 

Based on the configuration, we know that the strain in the spring k1 is equal to the combined strain in the 
spring k 2 and the dashpot η, and that the total stress is equal to the sum of the stress in the spring k 1 and 
the spring k 2.  Because the spring k 2 is in series with the dashpot η, they bear the same stress. 

1 2k k ηε ε ε ε= = +  

1 2 1k k k ησ σ σ σ σ= + = +  
Looking at the elastic response of the spring k 1 gives 

1 1 1 1 1 2 2 1or k k k kk k k kσ ε ε σ ε σ σ σ= = → = + = − ε . 
Taking the time derivative of the first equation yields 

2 2 2k k kkη 2ε ε ε σ σ η= + = + . 
Combining the last two equations leads to the desired result. 

2 2 2k kkε σ σ η= +  



( ) ( )1 2 1k k kε σ ε σ ε= − + − η  
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9. Evaluate the viscosity of the simple glass shown below by the following approximate procedure. Assume 

that half of the atoms pairs in the glass are in a position permitting an activated shear to the left (state A) 
and that the remaining half of the atom pairs are in the complementary position (state B). In the absence 
of a stress, states A and B have the same energy, F, and are separated by an activation energy of 
magnitude, *F∆ . The stress sσ  raises the energy of atoms in state A, and lowers that of atoms in state B. 
The difference in energy between the two states is 

2 sF σ γ∆ = Ω , 
where γ  is the shear strain that occurs when an atom pair stretch from A to B, (which you may take to 
be unity) and  is the volume of two atoms. The vibration frequency (attempt frequency) of atom pairs 
is 

2Ω
ν . Calculate the rate of shear, γ , of the unit volume of the liquid, subjected to a shear stress, sσ , by 

calculating the nu,ber of atom pairs jumping, per second, from A to B and from B to A. 
 
Assume that s kTσ Ω  (this means that exp( ) 1 )s skT kTσ σΩ ≈ + Ω  where k, is Boltzmann’s constant 
and T is the absolute temperature and derive an equation for the viscosity of the liquid. (You may assume 
that a switching event, although it converts a pair of atoms in the state A into a pair in state B, also 
creates with the atoms surrounding it new pairs in state A, so that the fraction of atoms in state A 
remains constant and equal to one half.)  
 

 
 

State A                      State B 
 
 
 
 
 
 
 



 

 



 


