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1.For each of the following expressions, identify the free indices and the dummy index pairs, and determine 

the number of expanded equations represented and how many terms each expanded equation will have. 
a. i ijj E jσ=  
Free indices are repeated in each term in the equation. i is the only free index. Dummy index pairs 
occur as a pair of indices in the same term. j is the only dummy index. If there are n free indices in 
an indicial notation equation, there are  corresponding expanded equations. Trivially, the 
number of equations represented by this expression is 3. A term in an indicial notation equation 
with n dummy index pairs expands to  terms. The number of terms in each expanded equation 
is 3. 

3n

3n

 
  b. P di ijk jkσ=  

The free index is i. The dummy indexes are j and k. There are 3 equations represented with 9 terms 
in each equation. 

 
  c. T a  ij ik jl kla T′ =

The free indices are i and j. The dummy indices are k and l. There are 9 equations represented with 
9 terms in each equation. 

 
  d. 2ij ij kk ijσ µε λε δ= +  

The free indices are i and j. The dummy index is k. There are 9 equations represented with 4 terms 
in each equation. 
 

  e. p  5i =
The free index is i. There are 3 equations represented with 1 term in each equation. 

 
 
 
 
2. Evaluate the following expressions involving the Kronecker delta ijδ , the alternating tensor  and an 

arbitrary second rank tensor T . 
ijke

ij

  a. iiδ  

11 22 33 3iiδ δ δ δ= + + =  
 

  b. ij ik jkδ δ δ  
  1 1 2 2 3 3 3ij ik jk j k jk j k jk j k jkδ δ δ δ δ δ δ δ δ δ δ δ= + + =  
   



c. ik kjδ δ  
  1 1 2 2 3 3ik kj i j i j i j ijδ δ δ δ δ δ δ δ δ= + + =  

(Only dummy index pairs are expanded.) 
 

 d. jik kTδ  
  1 1 2 2 3 3ik kj i j i j i j ijT T T T Tδ δ δ δ= + + =  
 

e. jk ijkeδ  
  0jk ijk ijje eδ = =  
 
 
 
3. Write the expanded form of the following expressions. 
  a. T  ii

    (a scalar) 11 22 33iiT T T T= + +
 
  b. ijε  
  11 12 13 21 22 23 31 32 33, , , , , , , ,ijε ε ε ε ε ε ε ε ε ε=   (9 components of ijε ) 
 
  c. ij , jσ  

  

11 12 13
1 ,

1 2 3

21 22 23
, 2 ,

1 2 3

31 32 33
3 ,

1 2 3

j j

ij j j j

j j

x x x

x x x

x x x

σ σ σσ

σ σ σσ σ

σ σ σσ

 ∂ ∂ ∂
= + + ∂ ∂ ∂

 ∂ ∂ ∂= = + + ∂ ∂ ∂
 ∂ ∂ ∂

= + +
∂ ∂ ∂

 

 
 
 
4. Define matter tensors and field tensors and explain how they each depend on crystal structure. Give one 

example of each type of tensor. 
 

Matter tensors measure physical crystal properties. Physical properties in a given crystal must also have 
any extra symmetry elements that are possessed by the crystal (Neumann’s Principle). Therefore, matter 
tensors are connected to crystal structure by symmetry. Examples of matter tensors are 
compliance/stiffness, permittivity, and magnetic susceptibility tensors. 
 
Field tensors measure a state imposed on a material, such as an applied field or a generalized displacement. 
Because these states can be applied in any arbitrary orientation with respect to a crystal, there is no relation 
between field tensors and crystal structure. Examples of field tensors are stresses, strains, electric fields, 
and magnetic fields. 

 
 
 
 
 
 
 
 
 



5. Show that the stress tensor is symmetric ( ij jiσ σ= ) in the absence of body forces and accelerations.  
Consider a three-dimensional infinitesimally small material element and assume that stress can vary 
linearly along the element. (This is sometimes referred to as the theorem of conjugate shear stresses.) 

 
Static equilibrium requires that no net forces and no body-torques act of an infinitesimal volume element. 
No net forces on an element leads to the result , 0ij jσ = . To show that the stress tensor is symmetric, the 
net moments on an element must be equal to zero. Consider an infinitesimal volume element with sides of 
equal length 1xδ , 2xδ , 3xδ . If we take the moment parallel to the 3x direction through the center of the 
volume element, point , the only forces that contribute to the moment are a result of the four shear 
stresses shown in the figure. All other stresses will not induce a moment about the chosen axis through 
point O . The shear stresses are shown to vary linearly across the element. 

O

 
Using the convention that a force inducing a counterclockwise rotation is positive, the following expression 
is obtained. 

3

21 1 1 12 2 2
21 1 2 3 21 2 3 12 2 1 3 12 1 3

1 2

0
2 2 2x

x x xM x x x x x x x x x x
x x
σ δ δ σ δ δ

σ δ δ δ σ δ δ σ δ δ δ σ δ δ
   ∂ ∂

= + + − + − =   ∂ ∂   
∑ 2

x

 
Divide through by the volume of the element. 

21 12
21 1 21 12 2 12

1 2

0x x
x x
σ σ

σ δ σ σ δ σ
   ∂ ∂

+ + − + −   ∂ ∂   
=  

In the limit of an infinitesimal limit, 1 0xδ → , 2 0xδ → , 3 0xδ → , the derivatives become small compared 
to the shear terms. 

21 21 12 12 0σ σ σ σ+ − − =  

12 21σ σ=  
 

By similar derivations taking the moment parallel to the x1 and x2 directions through point O , it is found in 
general that 

ij jiσ σ= . 

 
 
 
 
 
 
 
 



6. Given the stress tensor below, answer the following questions. 

  

25 0 0

0 7 3 3 MP

0 3 3 13
ijσ

 
 

= − 
 − 

a  

 
a. Calculate the normal traction on the plane defined by the normal 1 2ˆ ˆ1 2 1 2in x= + x . 

11 1 1 12 2 1 13 3 1 21 1 2 22 2 2 23 3 2 31 1 3 32 2 3 33 3 3

(25MPa)(1 2) (1 2) 0 0 0 (7 MPa)(1 2) (1 2) 0 0 0 0

16MPa

normal ij j iT n n

n n n n n n n n n n n n n n n n n n

σ

σ σ σ σ σ σ σ σ σ

=

= + + + + + + + +

= + + + + + + + +

=

 

 
b. Calculate the three invariants of stress ( 1 2 3, ,I I I ). 

( )
( )

( )

1 11 22 33

2 2 2
2 11 22 22 33 33 11 23 31 12

2

3 11 22 33 23 32

25 7 13 45

1 2 ( )

25 7 7 13 13 25 ( 3 3) 0 0 564

det( ) ( ) 0 0 25 7 13 3 3 3 3 1600

ii

ii jj ij ij

ij

I

I

I

σ σ σ σ

σ σ σ σ σ σ σ σ σ σ σ σ σ

σ σ σ σ σ σ

= = + + = + + =

= − − = − + + + + +

= − ⋅ + ⋅ + ⋅ + − + + = −

= = − + + = ⋅ − ⋅ =

 

 
c. Calculate the principle stresses ( 1 2, , 3σ σ σ ). Show work. 
For a given stress tensor ijσ , the principle stresses are given by the λ  (eigenvalues) that satisfy 
the equation 

( ) 0ij ij jnσ λδ− = . 

The vectors jn (eigenvectors) define the direction in which the principle stresses act. For the 
equation to have a nontrivial solution ( 0)jn ≠ , the determinant of the matrix ij ijσ λδ−  must have 
a determinant equal to zero. Solving the cubic equation 

( )det 0ij ijσ λδ− =  
yields three values for λ . 
 

( )det 0ij ijσ λδ− =  

25 0 0

0 7 3 3

0 3 3 13

λ

λ

λ

−

0− − =

− −

 

( )(25 ) (7 )(13 ) ( 3 3)( 3 3) 0λ λ λ− − − − − − =  

( )2(25 ) 20 64 0λ λ λ− − + =  
25, 16, 4λ⇒ =  

 Thus, the principle stresses are 1 2 325 MPa , 16 MPa , 4 MPaσ σ σ= = = . 
 
 
 
 
 



d. Write a new stress tensor ijσ ′ from the principle stresses (part b) in the form given below, using 
the convention that 1 2 3σ σ> >σ . Calculate the invariants of stress tensor ijσ ′ . 

 

 
25 0 0
0 16 0 MPa
0 0 4

ijσ
 
 ′ =  
  

( )
( )

( )

1 11 22 33

2 2
2 11 22 22 33 33 11

3 11 22 33 23 32

25 16 4 45

1 2 ( )

25 16 16 4 4 25 0 0 0 564

det( ) ( ) 0 0 25 16 4 0 0 1600

ii

ii jj ij ij

ij

I

I

I

σ σ σ σ
2

23 31 12σ σ σ σ σ σ σ σ σ σ σ σ σ

σ σ σ σ σ σ

= = + + = + + =

= − − = − + + + + +

= − ⋅ + ⋅ + ⋅ + + + = −

= = − + + = ⋅ − ⋅ =

 

 
This example illustrates that the invariants do not change for a given stress state for different 
orientations of axes. 
 
 

 
7. Define the terms homogeneous and isotropic in a continuous medium at the continuum level. Does one 

necessarily imply the other? Explain. 
  
 Homogeneous means that properties are identical at all points in the material (with respect to one 

orientation). Isotropic means that properties do not vary with direction or orientation. Thus, all isotropic 
materials are necessarily homogeneous. However, the reverse is not true, as in anisotropic materials that 
are homogeneous. 

 
 
 
8. Use the given deformed element to answer the questions. 

a. Write an expression for displacement (u1(x1,x2) and u2 (x1,x2)) in both directions, x1 and x2. 
 
 

 



 

From the deformed element, we can measure the components of deformation, 1

1

∂
∂
u
x

, 2

1

u
x
∂
∂

, 1

2

u
x
∂
∂

, and 

2

2

u
x
∂
∂

. 

1
1

1 1

1 1

0 4 0 105263
3 8

∂
∂ ∂

= ≈ ≈
∂

. .

.

u dx
u x
x dx

 The ratio of the two lengths is important; the scale is arbitrary. 

(Strain is a dimensionless quantity.) 
2

1

0 250∂
≈

∂
.u

x
 

1

2

0 157895∂
≈

∂
.u

x
 

2

2

0 0∂
≈

∂
.u

x
 

 From these values we can find expressions for displacement. 

 

1 1
1 1 2 1 2 1 2

1 2

2 2
2 1 2 1 2 1 2 1

1 2

0 105263 0 157895

0 250 0 0 0 250

∂ ∂
= + = +
∂ ∂
∂ ∂

= + = + =
∂ ∂

,

,

( ) . .

( ) . . .

u uu x x x x x x
x x
u uu x x x x x x x
x x

 

 
 

b. Determine the strain matrix for this 2D example. 
11 12

21 22

ε ε
ε ε
 
 
 

 

 

 The strain tensor is defined as 1
2

ji
ij

j i

uu
x x

ε
 ∂∂

= + ∂ ∂ 
 . From the above values for the derivatives of 

displacement, we get 
0.105263 0.2039475

0.2039475 0ijε
 

=  
 

. 

 
c. Determine the rotational part of the deformation matrix. 

12

21

0
0
ϖ

ϖ
 
 
 

 

 

 The rotation is defined by 1
2

ji
ij

j i

uu
x x

ϖ
 ∂∂

= − ∂ ∂ 
 . From the above values for the derivatives of 

displacement, we get 
0 0.0460525

0.0460525 0ijϖ
− 

=  
 

. 

 
 
 


