
MASSACHUSETTS INSTITUTE OF TECHNOLOGY 
DEPARTMENT OF MATERIALS SCIENCE AND ENGINEERING 

CAMBRIDGE, MASSACHUSETTS 02139 
 

3.22 MECHANICAL PROPERTIES OF MATERIALS 
PROBLEM SET 2 SOLUTIONS 

 
 
 
1. (Nye 2.4) Transform the following tensors to their principle axes, using the Mohr circle construction. Also, 

determine rotation and direction cosines for each transformation. 
 
 For the following problems, the following result from the Mohr’s circle construction is used, 
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 where a is the center and r is the radius of the circle representing the state in the x-y plane at various 
orientations in the x-y plane. The angle made between the orientation of the given state and the principle 
direction (counterclockwise) is given by 
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Notice that there are no cross terms on the x3-plane, indicating that the value in the x3-direction is a 
principle value. To find the other two principle values, a Mohr’s circle construction is employed. 
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From these results, the tensor oriented in the principle directions is given by 
10 0 0
0 20 0
0 0 43
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The principle state is obtained by rotating the original axes 19° about the x3-axis from the x2-axis 
toward the x1-axis. 
 
The direction cosines, , for this transformation are given by (using the notation in class that the 
first subscript refers to the old axes) 
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The convention used in Nye is opposite (the first subscript refers to the new axes) and the 
transformation matrix becomes 

cos(19 ) sin(19 ) 0
sin(19 ) cos(19 ) 0

0 0
ij

 −
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  

D D
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The details above will be omitted in the following parts. For a thorough explanation of Mohr’s 
circle construction, the student is directed to Dowling, Mechanical Behavior of Materials 
(Prentice Hall) 1999, 208-214, which is one of many texts that discuss the subject. 
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In the principle orientation 
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where the principle state is obtained by rotating the original axes 30° about the x3-axis from the x1-
axis toward the x2-axis. Direction cosines are (class convention) 
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sin(30 ) cos(30 ) 0
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where the principle state is obtained by rotating the original axes 26.57° about the x2-axis from the 
x3-axis toward the x1-axis. Direction cosines are (class convention) 

cos(26.57 ) 0 sin(26.57 )
0 1 0
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2. A copper single crystal (cubic) experiences the stress state 
10 8 4

8 20 0 (MPa)
4 0 5

ijσ
− 

 = − 
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a. Determine the compliance matrix.  ( 11 66.7GPaE = , 12 75.2GPaG = , 12 0.42ν = ) (Note 

j
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ε
ν

ε
= − .) 

 
The compliance matrix for a cubic material is defined by three independent elastic constants 

, , and .   and  are found by assuming uniaxial tension where the only stress is 11S

1

12S 44S 11S 12S
σ . 

1 11S 1ε σ=  

2 21S 1ε σ=  
From these relations and the given data, the elastic constants are calculated. 
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1 11 1 11 11

0.63 10 PaS S S S S
S S E

ε σ νν ν
ε σ
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44S is found by assuming only a shear stress is present, 4σ . 
11 -1

4 44 4 4 44 1 1.33 10 PaS G S Gε σ σ −= = → = = ×  
The compliance tensor for copper is given by 
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b. Determine the engineering strain in the sample of copper assuming that all deformation is 
linear elastic. 

 
To find strain, use the anisotropic form of Hooke’s law.  The stress tensor is given in the question 
and must be converted into matrix form. 
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Note that in the reduced notation, the strain matrix is engineering strain, and not tensor strain. To 
find the tensor strain from the matrix strain, one must divide the shear strains by two. The normal 
strains remain the same. 
 
 
c. Determine the strain energy in the sample if the deformation is done isothermally and 

reversibly. 
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d. If a hydrostatic pressure of 5 MPa is superimposed on the stressed copper sample, determine 
the resulting strain energy in the sample. 

 
`The resulting stress state, ijσ i , imposed on the copper single crystal can be found by 

superimposing the stress state, ijσ , and hydrostatic compressive stress, ijPδ− , because we are in 
the linear elastic regime. 

5 8 4
8 15 0 MPa

4 0 0
ij ij ijPσ σ δ

− 
 = − = − 
  

i  

To find the strain energy, the same calculations in (b) and (c) can be made with the stress state 
ijσ i . The resulting strain energy density in the sample after application of the hydrostatic 

compressive stress is 31.9345 kJ m . 
 
 
 
 
 
 
 
 

 



3. (Hertzberg 1.18) For three BCC metals, tungsten, molybdenum, and iron, compute the elastic moduli in the 
<100> and <111> directions. Compare the anisotropy in these three metals. 

 
For the case of cubic crystals, the modulus of elasticity in any direction is given by the equation  

( 2 2 2 2 2 2
11 11 12 44 1 2 2 3 1 3

1 12 ( ) 2 )s s s s l l l l l l
E

 = − − − + +  .   (Hertzberg 1-14) 

Thus, the modulus in a certain direction for a cubic material is defined by its three stiffness coefficients and 
the particular direction, given by the direction cosine values. The stiffness coefficients for tungsten, 
molybdenum, and iron single crystals can be found in the literature. 

 
 Tungsten: s 11 1

11 0.26 10 Pa− −= × , 11 1
12 0.07 10 Pas − −= − × , 11 1

44 0.66 10 Pas − −= ×  
 Molybdenum: s 11 1

11 0.28 10 Pa− −= × , 11 1
12 0.08 10 Pas − −= − × ,  11 1

44 0.91 10 Pas − −= ×

Iron: , 11 1
11 0.80 10 Pas − −= × 11 1

12 0.28 10 Pas − −= − × , 11 1
44 0.86 10 Pas − −= ×  

 
The direction cosines for the two directions are: 

 <100>: 1l = , ,  1 2 0l = 3 0l =

 <111>: 1 1 3l = , 2 1 3l = , 3 1 3l =  
 

Now we can calculate the modulus of elasticity in the desired direction for tungsten, molybdenum and iron 
using equation (1-14). Anisotropy can be evaluated by the ratio 100 111E E< > < > . 

      100 (GPa)E< > 111 (GPa)E< > 100 111E E< > < >  
  Tungsten  384.6   384.6   1   

Molybdenum  357.1   291   1.227   
Iron   125   272.7   0.458 

 
 The maximum and minimum elastic moduli are always in the <100> and <111> directions. (This idea is 

discussed in the text in depth.) From the calculations above, molybdenum and iron are both anisotropic as 
single crystals. A single crystal of tungsten, however, is isotropic. 

 
 
 
4. (Hertzberg 1.25) A cylindrical rod of steel is deformed elastically in tension to a load of 49 kN. If the 

original rod length and diameter are 25 cm and 15 mm, respectively, determine the rod length and 
diameter under load, assuming that the material possesses the following properties: E = 205 GPa, ν = 
0.25. 

 
 First we can determine the rod length under load from Hooke’s Law. The engineering stress, a good 

approximation of the true stress within elastic deformations, is calculated to be 
3
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(49 10 N) 277.283MPa
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 We can solve for the change in length of the rod by Hooke’s Law. 
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40
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(277.283 MPa)(25 10 m) 3.38 10 m 0.0338 cm
205 10 PaE

σ −×
⇒ ∆ = = = × =

×
AA  

0 25 cm 0.0338 cm 25.0338 cm⇒ = + ∆ = + =A A A  
 
 



 The contraction of the rod diameter under load is due to the Poisson effect given by 
0

0

d d dε
ν

ε
∆

= − = −
∆A A A

 

( ) ( )0 0 (0.25) 0.0338 cm 25 cm (15 mm) 0.005 mmd dν⇒ ∆ = − ∆ = − = −A A  

0 15 mm ( 0.005 mm) 14.995 mmd d d⇒ = +∆ = + − =  
 
 
 
5. In problem set 1, the principle stresses were determined for the given stress tensor. 
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a. Find the unit normals for each principle stress. 
 
The principle values for the above tensor were determined to be (1) (2) (3)25, 16, 4λ λ λ= = =

3Pa, 4 MPa
, 

corresponding to the principle stresses 1 225 MPa, 16 Mσ σ σ= = = . In order to find 

the directions of the principle stresses, we solve the equation ( ) 0ij ij jnσ λδ− =  for each value of 

λ . For , we get the following linear equations: (1) 25λ =
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The principle direction is a unit vector, so the length must equal 1. This is expressed by 

2 2 2
1 2 3 1n n n+ + = . 

Thus, we find that for , (1) 25λ = (1)
11n x=

G . 
 
 
 
 
 



For , we get the following linear equations: (2) 16λ =
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The principle direction is a unit vector, so the length must equal 1. This is expressed by 
2 2 2
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Thus, we find that for , (2) 16λ = (2)
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For , we get the following linear equations: (2) 4λ =
 

( )

1 2 3

1 2 3

1 2 3

4 0

(25 4) 0 0 0

0 (7 4) 3 3

0 3 3 (13 4)

ij ij jn

n n n

n n n

n n n

σ δ− =

− + + =

0

0

+ − + − =

+ − + − =

 

 
1 2 3

1 2 3

1 2 3

21 0 0 0

0 (3) 3 3

0 3 3 (9)

n n n

n n n

n n n

0

0

+ + =

+ + − =

+ − + =

 

 



1

2 3

2 3

2 3

0

3 3
3
9

3 3

3

n

n n

n n

n n

=

=

=

=

 

 
The principle direction is a unit vector, so the length must equal 1. This is expressed by 
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Thus, we find that for , (3) 4λ = (3)
2 3

3 1
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G x . 

 
 

b. Use the unit normals to find the direction cosine matrix for the transformation from the 
original axes to the principle axes. 

 
To find the cosine of the angle between two axes, we can use the definition of the dot product of 
two unit vectors. 

cos( , ) , unit vectorsa b a b a b⋅ = ∀(  
Let us call the original axes (1) (2) (3)

1 21 , 1 , 1 3x x x x x x= = =
3)n

and the new axes (defined by the 
normals above) . The components of the direction cosines are defined as (class 
convention) 

(1) (2) (, ,n n

( ) ( ) ( ) ( )
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1 30
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c. Perform the tensor transformation using the direction cosines on the stress state in the 
problem? Explain the significance of the transformed tensor. 

 
The tensor transformation rule for a second order tensor is 

ij ki lj klσ σ′ = A A  
From the stress tensor given and the direction cosines defined in part (b), we obtain the nine tensor 
components of the stress tensor in the axes aligned with the principle directions. Note that we have 



previously determined that the stress tensor is symmetric, so we actually only have to solve for six 
of the stresses. (Terms with direction cosine values of zero have been omitted. 
 

11 1 1 11 11 11

22 2 2 22 22 22 32 22 32 22 32 23 32 32 33

33 3
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25 0 0
0 16 0 MPa
0 0 4

ijσ
 
 ′ =  
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The transformed tensor after transformation consists of only the principle stresses (only normal stresses). 
This is expected because the transformation was designed to transform the axes to the principle directions. 
(When the tensor is oriented with the principle directions as the axes, only the principle stresses remain.) 

 
 
 
 
 
 
 
 
 
 
 
 



6. For an isotropic material, the compliance matrix constants are related by the expression 66 11 122( )s s s= − . 
Derive this result using Mohr’s circle and Hooke’s Law. 

 

 
 From Mohr’s circle, a state of pure shear ( 6σ σ= ) is equally expressed by an equi-biaxial stress 

( 1 2σ σ= − = σ ) state for an isotropic material in any orientation. Using matrix notation, the strains for each 
of these stress states are represented by 

6 66 6 66S Sε σ σ= =  (pure shear) 

1 11 1 12 2 11 12(S S S S )ε σ σ= + = − σ (equi-biaxial stress) 
 The Mohr’s circle for strain can be expressed in the same manner as stress with the stress tensor 

components represented by strain tensor components. From the Mohr’s circle construction for strain, the 
11ε  component is equal to the 12ε  component. For engineering strains, we find the relationship 

6
1 11 12 2

ε
ε ε ε≡ = ≡ . 

Combining this equation with the equations above, we find 
6

1

66
11 12

66 11 12

2

( )
2

2( )

SS S

S S S

ε
ε

σ
σ

=

− =

∴ = −

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



7. A single crystal titanium carbide component is aligned such that the loading direction is parallel to the 
<100> direction. The component design requires that the modulus be at least 470 GPa in the loading 
direction. The modulus in the <100> direction is 476.2 GPa, which satisfies the requirement. However, 
careful inspection reveals that the single crystal is misaligned 10° toward the <010> direction about the 
axis parallel to the <001> direction. Because realignment of the component is expensive, determine if the 
misaligned component can be used and still meet the design requirement. 

 
 From the literature, the compliance in matrix notation for titanium carbide single crystals is 

11 1

0.21 0.036 0.036 0 0 0
0.036 0.21 0.036 0 0 0
0.036 0.036 0.21 0 0 0

[ ] 10 Pa
0 0 0 0.561 0 0
0 0 0 0 0.561 0
0 0 0 0 0 0.561

S − −

− − 
 − − 
 − −

= × 
 
 
 
  

. 

 We can verify that the modulus in the <100> direction is 

100 11 1
11

1 1 476.2 GPa
0.21 10 Pa

E
S< > − −= = =

×
. 

 To evaluate the modulus of the misaligned component in the loading direction, an instructive approach is to 
find the S11 component of the compliance tensor for the rotation of 10° and use the equation above to 
determine the modulus in this new direction. 

 
 The transformation rule for fourth order tensors is (class convention) 

ijkl mi nj ok pl mnopS S′ = A A A A . 
 Note that tensor transformations are valid for tensors only; reduced tensor notation matrices do not 

transform by tensor transformation rules. In our case, we are only interested in the compliance in one 
direction, so we can write 

1111 1 1 1 1m n o p mnopS S′ = A A A A . 
At this point we must find the direction cosines (class convention) for the misalignment so that the loading 
direction is parallel to the new x1-axis, 

cos(10 ) sin(10 ) 0
sin(10 ) cos(10 ) 0

0 0
ij

1

 −
 =  
  

D D

D DA . 

Although the tensor transformation has 81 terms, and  are the only nonzero direction cosine terms 
that appear in .  The resulting expanded form is  

11A 21A

1111 1 1 1 1m n o p mnopS ′ = A A A A S
 

1111 11 11 11 11 1111

11 11 11 21 1112 11 11 21 11 1121 11 21 11 11 1211 21 11 11 11 2111

11 11 21 21 1122 11 21 21 11 1221 11 21 11 21 1212 21 11 11 21 2112 21 11 21 11 2121 21 21 11 1

S S
S S S S
S S S S S

′ = +
+ + + +
+ + + + +

A A A A "
A A A A A A A A A A A A A A A A "
A A A A A A A A A A A A A A A A A A A A A A A A 1 2211

21 21 21 11 2221 21 21 11 21 2212 21 11 21 21 2122 11 21 21 21 1222

21 21 21 21 2222

S
S S S S
S

+
+ + + +

"
A A A A A A A A A A A A A A A A "
A A A A  

 
From the symmetry of the strain tensor and stress tensors that are related by the compliance tensor, we can 
simplify the expression. (Note that  and  are zero) 16S 26S
 

4 3
1111 11 1111 11 21 1112( ) 4( ) ( )S S S′ = +A A A 2 2 2 2 3

11 21 1122 11 21 1212 21 11 22212( ) ( ) 4( ) ( ) 4( ) ( )S S S+ + +A A A A A A 4
21 2222( ) S+ A . 

 
 
 



In reduced tensor notation, the expression becomes 
 

4 2 2 2 2 4
11 11 11 11 21 12 11 21 66 21 22

4 2 2 2 2 4

12 1

( ) 2( ) ( ) 4( ) ( ) 4 ( )

[(0.9848) (0.21) 2(0.9848) (0.1736) ( 0.036) 4(0.9848) (0.1736) (0.561) 4 (0.1736) (0.21)] 10 Pa
2.12 10 Pa

S S S S S
11 1− −

− −

′ = + + +

= + − + + ×

= ×

A A A A A A

 
The modulus in the direction of loading considering the misalignment is given by 

12 1
11

1 1 471.7 GPa
2.12 10 PamisalignedE

S − −
′ = = =

′ ×
. 

We conclude that the component will satisfy the design requirement despite the misalignment, obviating 
the need for expensive realignment. 
 
 
This result could have also been obtained by using equation (1-14) in Hertzberg because titanium carbide is 
cubic. The unit normal in the misaligned direction is 1 2ˆ ˆ(cos10) (sin10) 0 3ˆx x= + x+

G
A . Thus, from 

equation (1-14) we obtain the modulus in the misaligned direction. 
2 2 2 2 2 2

11 11 12 44 1 2 2 3 1 3

11

11 11 11 2 2

1 12 ( ) ( )2

(0.21 10 Pa)
12 (0.21 10 Pa ( 0.036 10 Pa)) (0.561 10 Pa) (cos (10)sin (10))2

471.1 GPa

misaligned

misaligned

s s s s
E

E

−

− − −

 = − − − + + 

= ×

 − × − − × − × 
⇒ =

A A A A A A

"

 


