
2.5 Separation of Systematic Errors

2.6 Exact-Constraint Design 

By “dusting off” the principles of kinematics and applying them to machine 

design, we arrive at the method of Exact Constraint. The method of Exact 
Constraint has been developed to the point where it comprises a body of 
knowledge which can be used to routinely create new machine designs 

which are both high in performance and low in cost. The results are so 

excellent, yet so obvious; so elegant, yet so simple; that at once they seem 
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Chapter 2 Precision Engineering Principles�

both profound and trivial! Perhaps it is this duality which has kept these 
principles so well hidden. One may ask: “Of what value could anything so 
trivial be?” And so these principles have been overlooked. They have 
become disused. 

[Blanding, 1992] 

The designers of mechanisms routinely use the principles of kinematics because 
overconstrained or underconstrained devices simply will not function. What the precision 
engineer must remember is that at some scale, everything is a mechanism. The component 
that must remain stable to nanometers will not if it is overconstrained to a structure that 
deforms by micrometers. This is often the most important motivation for exact-constraint or 
kinematic design in precision machines, that is, to isolate sensitive parts or systems such as 
a metrology frame from the influence of dimensionally changing supports and/or 
manufacturing tolerances.I Similarly, parts will fit together precisely and without backlash 
if they are exactly constrained, for example, kinematic couplings. This is why [Smith and 
Chetwynd, 1992] state that “a divergence from pure kinematic design results in increased 
manufacturing costs.”II 

The term exact constraint is very explicit and meaningful once the basic concept is 
understood. An unconstrained rigid object has six degrees of freedom usually identified as 
three translations and three rotations. A nonrigid object may have one or more degrees of 
flexibility that act as additional degrees of freedom, relatively speaking. For example, an 
open shoe box is torsionally flexible and so would have a total of seven degrees of 
freedom. The proper application of constraints would eliminate degrees of freedom in a 
one-to-one fashion. It is the objective of exact-constraint design to achieve some desired 
freedom of motion or perhaps no motion by applying the minimum number of constraints 
required. Often we conceptualize in terms of an ideal constraint, which is absolutely rigid 
against motion in one or more degrees of freedom and is absolutely free in the remaining 
degrees of freedom. A real constraint such as a small-area contact between surfaces, a link 
or a bearing, provides one or more degrees of constraint that are relatively much stiffer than 
the degrees of freedom and so approximates ideal behavior.III 

The reference by Blanding is an excellent introduction to exact-constraint design 
and rigid structures. Because it is so basic and complete, it forms the basis for this 

I The word kinematic is more often used, but exact constraint is more descriptive and thus is preferred. 
II As a practical matter, purely kinematic designs are generally difficult to achieve; whereas, so called semi-
kinematic designs (for example, Hertzian contact areas instead of frictionless point contacts) generally 
provide acceptable isolation characteristics, greater robustness and lower cost. The quotation might better 
read “a divergence from kinematic design theory may result in increased manufacturing costs.” As an 
alternative, the process of replication produces a good fit and is relatively low in cost. 
III In the case of a sliding bearing or small-area contact, the degree of freedom may be as stiff as the 
constraint until sliding occurs. Ideal behavior requires that the frictional force divided by the constraint 
stiffness be a negligible deflection. 
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introductory section. Several other references provide accounts of more specific exact-
constraint designs such as [Slocum, 1992], [Smith and Chetwynd, 1992], and [Furse, 
1981]. In addition, Chapter 6 provides a thorough treatment of exact-constraint design, and 
examples of exact-constraint designs appear in Chapter 7. In this section, however, the 
basic concepts are introduced through statements that appear in [Blanding, 1992]. Although 
these statements deal specifically with ideal constraints, they provide the essential 
understanding of kinematics required for the design of real constraint systems. Following 
each statement is an explanation to reinforce and sometimes extend its meaning. The point 
here is to understand and visualize basic kinematic techniques rather than to apply a bunch 
of rules that are easy to forget. 

Statement 1:� Points on the object along the constraint line can move only 
at right angles to the constraint line, not along it. 

A single-degree constraint prevents motion in one direction, the constraint direction, 
represented by a line in space. The only component of motion allowed by the constraint is 
perpendicular to the constraint line. If the object is rigid, then all points of the object along 
the constraint line are so constrained. The initial or so called instantaneous motion is always 
perpendicular to the constraint direction (for ideal constraints). The constraint direction may 
change as the object moves in which case the constrained path is curved and the 
instantaneous motion is tangent to the curve. For example, any point on a wheel with a 
fixed axle is constrained to a circular path. The constraint direction is radial and the 
instantaneous motion is tangent to the circle. 

Statement 2:� Any constraint along a given constraint line is functionally 
equivalent to any other constraint along the same constraint 
line (for small motions). 

By Statement 1, the instantaneous motion is always perpendicular to the constraint 
line irrespective of the actual constraint. It follows that any constraint on a given constraint 
line produces the same instantaneous motion. For small motions about an operating point, 
the curved path of motion produced by any constraint on the given line is approximately 
equal to the instantaneous motion (or tangent) at the operating point. Thus, any two 
constraints on the same constraint line are approximately equal for small motions. 

Statement 3:� Any pair of constraints whose constraint lines intersect at a 
given point, is functionally equivalent to any other pair in the 
same plane whose constraint lines intersect at the same point. 
This is true for small motions and where the two constraints 
lie on distinctly different constraint lines.I 

I The final sentence in Statement 3 was changed from “This is true for small motions and where the angle 
between constraints does not approach 0˚ (180˚)” to allow the possibility of parallel constraints that 
effectively intersect at infinity. 
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The intersection described by this statement is an instantaneous center of rotation, 
or simply an instant center. The reduction of a constraint pair (or triple) to an instant center 
is an important visual and conceptual aid in the field of kinematics. We must distinguish, 
however, between the stationary point that is on or relative to the constrained body and the 
instant center that lies momentarily at this point. The point on the body can have only 
instantaneous motion that is perpendicular to the plane formed by the two constraints. In 
this plane the point will appear stationary for small motions while the instant center will 
appear to move with the moving constraint directions. Any pair of constraints that lie in this 
plane and intersect the same point will allow the same instantaneous motion of that point on 
the body; however, the motion of the instant center may be quite different. Any other point 
on the body may have an additional, tangential component of instantaneous motion about 
the instant center, as shown in Figure 2-16 (a). 

I.C. 
path 

(a) 

I.C. at 
infinity 

(b) 

Figure 2-16  In (a), the instant center is momentarily located at the physical center of the circle (heavy 
lines). The instant center moves down (light lines) while the circle rotates approximately about its physical 
center. In (b), the instant center is off at infinity and the circle initially translates downward. 

The condition that the two constraint lines be distinctly different requires further 
explanation as it leads to a key concept. If two constraints were to lie on a single line, then 
they would not define a plane and the statement would not make sense. The physical result 
would be one overconstrained degree of freedom rather than two constrained degrees of 
freedom. An acceptable case, however, is two parallel constraints that are separate and thus 
define a plane. As Figure 2-16 (b) indicates, we may consider parallel constraint lines to 
intersect at infinity such as railroad tracks appear at a distance. An object that rotates about a 
distant center appears to translate such as a ship appears as it rotates about the center of the 
Earth. With this background, we may conceptualize three translations and three rotations as 
being equivalent to six rotational degrees of freedom where three axes are at infinity. 

Statement 4:� The axes of a body’s rotational degrees of freedom will each 
intersect all constraints applied to the body.I 

I This is true if each axis provides uncoupled rotation. An example of coupling is the rotation of a lead 
screw with its associated translation. The consequence of violating Statement 4 is more complex motion. 
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This is a very powerful and comprehensive statement that uses explicitly the 
representation of translations as rotational axes located at infinity. It is a generalization of 
the instant center and is valuable as a visual aid to understanding a mechanism or in 
synthesizing the system of constraints for a new mechanism. The proof of this statement is 
quite trivial. If there exists an axis that intersects all applied constraint lines, then no 
constraint exists that can affect a moment about that axis because the lever arm is zero. 
Hence, the body is free to rotate about that axis, as demonstrated in Figure 2-17. 

Figure 2-17 All five applied constraints intersect the only remaining degree of freedom, a rotation about 
the center of the cube. 

Statement 5:� A constraint applied to a body removes that rotational degree 
of freedom about which it exerts a moment. 

In order to constrain a rotational degree of freedom (which includes translations by 
equivalency), the constraint must react with a moment about the axis of rotation. A 
constraint will satisfy this requirement if the constraint line does not intersect the axis of 
rotation and if the constraint line is not parallel to the axis of rotation.I An exception to the 
first condition will result in a zero-length lever arm. An exception to the second condition 
will result in a moment that has no component along the axis of rotation. Figure 2-18 
shows the addition of a third constraint to prevent rotation of the circle about its center. 
Each constraint prevents rotation about the instant center formed by the other pair of 
constraints so that three degrees of freedom are exactly constrained. The axes of the 
remaining three rotational degrees of freedom will each intersect all three constraints per 
Statement 4. If the three constraints happen to lie in the plane of the figure, then so too will 
the axes of rotational freedoms. 

I Just as parallel constraints intersect at infinity, an axis of rotation and a constraint line that are parallel to 
each other also intersect at infinity. 
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I.C. 
path 

(a) 

I.C. 

I.C. 

I.C. 

(b) 

Figure 2-18  The rotational freedom of the circle about its center in (a) is constrained in (b) by the 
addition of a constraint that reacts with a moment about the center. Each constraint reacts with a moment 
about an instant center formed by the other pair of constraints. 

The length of the lever arm, that is, a perpendicular drawn from the constraint line 
to the constrained rotational axis, is a relative measure of the effectiveness of that 
constraint. If one is seeking a balanced design, then a sensible approach is to seek lever 
arms having nearly equal length. This leads to a simple rule of thumb for planar problems; 
arrange constraint lines to form an equilateral triangle, as shown in Figure 2-19. Of course 
there may be valid reasons to choose different angles. Many three dimensional problems 
have a planar nature, which greatly helps visualization. 

I.C.�

I.C. I.C. 

(a) 

I.C. 

I.C. I.C. 

(b) 

Figure 2-19 An equilateral arrangement of constraints often provides a better balance of stiffness. In (a) 
the center of stiffness lies at the center of the circle, and the vertical and horizontal stiffnesses are equal. The 
center of the triangular object in (b) is somewhat lower than the center of stiffness. A slightly wider angular 
spacing between the lower two constraints would lower the center of stiffness while increasing the 
horizontal stiffness and decreasing the vertical stiffness. 

Statement 6:� Any set of constraints whose constraint lines intersect a 
complete and independent set of rotational axes, is 
functionally equivalent to any other set of constraints whose 
constraint lines intersect the same or equivalent set of 
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rotational axes. This is true for small motions and when each 
set contains the same number of independent constraints.I 

This is an extension of Statement 3, the functional equivalence of any constraint 
pair having the same instant center, based on Statement 4, the generalization of the instant 
center to a rotational axis. The statement is most meaningful and useful when the 
constraints total four or more, as at least two pairs of constraints are required to uniquely 
define an axis of rotation. The examples shown in Figure 2-20 are functionally equivalent 
(for small motions) to each other and to the example in Figure 2-17. Each has five 
constraints that uniquely define the same axis of rotation. It is natural to ask if there are any 
other arrangements of five constraints that will define the same axis of rotation. Blanding 
has developed a chart of all possible orthogonal constraints involving one to six 
constraints. Re-created in Figure 2-21, the orthogonal constraint chart provides an excellent 
starting point for any exact-constraint design.II An infinite number of nonorthogonal 
configurations is possible based on these basic configurations. Categories where a 
constraint arrangement does not exist usually require a series combination of constraint 
systems. 

intersection 
at infinity

intersection 

(a) 

at infinity 

(b) 

Figure 2-20 In both (a) and (b), all the applied constraints intersect the only remaining degree of freedom, 
a rotation about the center of the cube. These two constraint cases are functionally equivalent since all the 
constraints intersect the same rotational axis. 

I Statement 6 was changed from “Each of a body’s remaining rotational degrees of freedom is intersected by 
the line(s) of any applied constraint(s)” because it provided no new information beyond Statement 4. The 
definition of “equivalent sets of rotational axes” comes later in Statements 10 and 11. 
II Blanding’s original chart numbers the cells according to constraints rather than degrees of freedom and 
does not show the centerlines and arrows to help in visualizing the degrees of freedom. 
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3T 2T 1T 0T 

3R 

2R 

1R 

0R 

Figure 2-21 A matrix of desired rotational degrees of freedom (centerlines) and translational degrees of 
freedom (arrows) shows all possible orthogonal constraint arrangements, after [Blanding, 1992]. 
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Statement 7:� An Ideal Sheet Flexure imposes absolutely rigid constraint in 
its own plane (X, Y, and Éz), but it allows three degrees of 
freedom: Z, Éx, and Éy. 

A sheet flexure, more commonly called a blade flexure, is one of the most important 
constraint devices used in precision machines. A blade flexure allows out-of-plane motion 
while resisting in-plane motion as Figure 2-22 clearly shows. The equivalent three-
constraint system superimposed on the flexure serves only as a conceptual aid. We know 
from experience that a thin blade is very compliant for out-of-plane bending. Equations 
2.19 through 2.22 give the stiffnesses for the directions that are usually most relevant.I For 
a given axial stiffness, the moment stiffness varies as the square of the blade thickness. The 
desire to minimize blade thickness will invariably require much greater width than thickness 
so there is sufficient cross sectional area to carry the load and/or to provide axial stiffness. 
Generally, the size constraint on a blade flexure will be either the maximum width or the 
minimum thickness. Blade length affects moment stiffness and axial stiffness the same way 
and so is driven by other considerations. Usually the length to thickness ratio is limited to 
10:1 for typical materials to avoid buckling. Equation 2.23 gives the condition required for 
the blade to yield before buckling. A blade sized to resist buckling usually is too short to 
have adequate translational freedom. In this case, two short blades spaced apart in the same 
plane and connected by a larger bar section will provide greater translational compliance by 
the square of the separation distance.II To the extent that the blade bends as a hinge, the 
bending stress is approximately constant over the length and given by Equation 2.24. 
Combining the stress and buckling relations leads to a bound on bending angle due only to 
material properties as expressed in Equation 2.25. An angle of 3˚ is reasonable for 
hardened steel but the resistance to buckling decreases with angle. The material parameters 
E, á and ãy represent elastic modulus, Poisson ratio and yield strength, respectively. 
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I Finite element studies of typical blade flexures reveal that plane stress better approximates axial stiffness 
while plane strain better approximates bending stiffness. As a result, these formulas lead to slighly more 
conservative designs. See Chapter 6.2 for further details and derivations. 
II See Statements 11 and 12 for further explanation. 
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Figure 2-22 A blade flexure provides constraint against forces and moments in the plane of the blade (a). 
A blade flexure provides freedom to small motions in bending modes of the blade (b, c, d). The blade is 
represented equivalently by three single-degree constraints as shown. 

Statement 8:� An Ideal Wire Flexure imposes absolutely rigid constraint 
along its axis (X), but it allows five degrees of freedom: Y, 
Z, Éx, Éy, Éz. 
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This is the ideal constraint that has become so familiar by now. Often two wires are 
used in opposition to constrain a single degree of freedom. Such a configuration resists 
buckling and doubles the axial stiffness if the wires have pretension. Pretension has the 
adverse effect of increasing lateral stiffness by the ratio of tension to length for each wire. 
A better alternative is simply to limit the length to diameter ratio to approximately 10:1, 
thereby stiffening translation to better resist buckling. To recover translational freedoms, 
two short wires spaced along the constraint line and connected by a larger section rod will 
provide greater translational compliance by the square of the separation distance. 

Statement 9:� A constraint (C ) properly applied to a body (i.e., without 
overconstraint) has the effect of removing one of the body’s 
rotational degrees of freedom (R ’s). The R  removed is the 
one about which the constraint exerts a moment. A body 
constrained by n constraints will have 6 - n rotational degrees 
of freedom, each positioned such that no constraint exerts a 
moment about it. In other words, each R  will intersect all 
C ’s.I 

This is an extension of Statements 4 and 5 that provides a way to test for 
overconstraint and underconstraint. The first test is simply to count the number of 
constraints. We can generalize to nonrigid bodes by increasing the number of free-body 
degrees of freedom by f flexural degrees of freedom. The number of independent C ’s 

required to exactly constrain a body is n = 6 + f - d, where d is the number of desired 
degrees of freedom. The second test is required to determine whether the C ’s are 
independent. The removal of a redundant C  will not affect the number of degrees of 
freedom that the remaining C ’s allow. The system is exactly constrained if the removal of 

any single constraint increases the number of degrees of freedom by one. Figure 2-23 
provides specific examples of this and the orthogonal constraint chart, Figure 2-21, 
provides further examples by observing changes between adjacent cells. 

Statement 9 as written has one small technical problem that may be discovered 
when performing the test for independent constraints. A single degree of freedom may 
consist of a coupled rotation and translation such as the motion described by the lead of a 
screw. This behavior occurs when a constraint does not intersect the axis of rotation (thus 
they are not parallel either), thereby introducing translation along the same axis. Figure 2-
25 shows an example that demonstrates this behavior. Chapter 6 presents a flexure 
coupling for ball screws that is designed to have the same lead as the screw. 

I Blanding uses the notation R , T , C  throughout his book to represent rotational freedom, translational 
freedom and constraint, respectively. It just happens to show up in Statements 9 through 11. 
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(a) (b) (c) 

Figure 2-23 To test whether the six constraints in (a) are independent, remove any single constraint and 
see if a new degree of freedom results. The constraint removed in (b) can no longer exert a moment about 
the axis shown and neither can the remaining constraints. The same applies to (c) and the remaining cases. 

Statement 10:�Any pair of intersecting rotational degrees of freedom (R ’s) 
is equivalent to any other pair intersecting at the same point 
and lying in the same plane. This holds true for small 
motions. 

Another way of stating this is that a pair of intersecting R ’s can generate 

instantaneous rotation about any axis that lies in the plane and passes through that point. As 
Figure 2-24 shows, the constraints that allow this motion must either lie in this plane or 
intersect the plane where the two R ’s intersect by Statement 4. The small motion 

requirement is necessary even for pure axes of rotation because rotation about one axis 
changes the orientation of the other. Usually this is not a problem and complicates only the 
algorithm that computes the angles. A familiar example is Hooke’s coupling (the typical 
universal joint). It transmits shaft power through a bend but its transmission ratio is 2í 

cyclic with an amplitude that increases with the square of the angle. 

(a) (b) 

Figure 2-24 The circle lies in the plane of three constraints and the fourth constraint intersects its center. 
Any distinct pair of rotational axes that lie in this plane and intersect the center will represent the 
instantaneous motions allowed by the constraints. 

Statement 10 extends to the intersection of three R ’s so long as each triple spans 
three-dimensional space. Three C ’s that intersect at the same point will allow instantaneous 

rotation about any axis that passes through that point. Figure 2-25 shows a flexure pivot 
that has three nonintersecting wire constraints. This flexure provides three R ’s that span 
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three-dimensional space, but the motion is more complicated since the R ’s do not intersect. 

This leads to an interesting coupling between rotations and translations, or equivalently 
between forces and moments. The easiest one to visualize is the rotation about the axis of 
symmetry causing a translation along the same axis. The consequence of constraints not 
intersecting the axis of rotation is the motion described by the lead of a screw. 

Figure 2-25 This flexure was created by shifting mutually orthogonal wires off center so that they clear 
one another. The angle of each wire with respect to the center axis is 54.736˚ (the arc tangent of 2 ). The 
offset of each wire from center is the desired distance between wire centers divided by 2 . 

Statement 11:�Two parallel R ’s are equivalent to any two parallel R ’s, 
parallel to the first pair and lying in the same plane. They are 
also equivalent to a single R  parallel to the first pair and 
lying in the same plane; and a T perpendicular to that plane. 

This follows from Statement 10 where the point of intersection occurs at infinity. 
The small motion requirement has been dropped because rotation about one axis does not 
alter the orientation of a parallel axis, which is a first order effect for nonparallel axes. 
There is, however, a second order translation that depends inversely upon the distance 
between the parallel axes. Thus in the strictest sense, there is a small motion requirement. 

Statement 12:�When parts are connected in series (cascaded), add the 
degrees of freedom. When the connections occur in parallel, 
add constraints.I 

I The series addition of functionally equivalent degrees of freedom results in an indeterminacy that may or 
may not present a problem. 
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We shall use two familiar rules to explain Statement 12. Rule 1: The equivalent 
compliance of springs connected in series is the sum of their individual compliances. Rule 
2: The equivalent stiffness of springs connected in parallel is the sum of their individual 
stiffnesses.  We may recall these rules applied to single-degree-of-freedom springs, but 
they also apply to springs and structures of any dimension, where the spring constant 
becomes a symmetric matrix. We may consider a degree of freedom as being a dominant 
term in the compliance matrix whether its origin is the elasticity of a blade flexure or the 
motion of a bearing. Similarly, we may consider a constraint as being a dominant term in 
the stiffness matrix. The foundation for Statement 12 is that dominant terms in individual 
matrices remain dominant through the addition process.II Therefore, degrees of freedom 
dominate through series combinations while constraints dominate through parallel 
combinations. This exposes a subtlety that is not apparent in Statement 12, namely, how to 
deal with redundant constraints and degrees of freedom. We will work through these by 
example starting first with a series combination followed by a parallel combination. 

Figure 2-26 (a) shows a series combination of two blades that share a common 
constraint line. Someone could misinterpret Statement 12 to mean that this series of blades, 
each with three degrees of freedom, would combine to have a total of six degrees of 
freedom and no constraints. The combined axial compliance along the constraint line is still 
orders of magnitude more rigid than the other directions, thus it remains a constraint. 
Likewise, the blades share a common rotational axis that results in a redundant degree of 
freedom. The combination may have twice the compliance but functionally remains a single 
degree of freedom. In the remaining directions, Statement 12 applies without confusion as 
four degrees of freedom combine with four constraints. In practice, we usually keep the 
blades short and duplicate another set further down the constraint line to provide much 
greater translational freedom. It is functionally equivalent to a wire flexure but with much 
higher axial stiffness and load capacity. 

Figure 2-26 (b) shows a more elaborate flexure that has both series and parallel 
combinations of blades. This design has a hole down the center to prevent a short circuit in 
the desired degrees of freedom. Its symmetry leads to redundant constraints. It could 
function the same without the redundant constraints (by eliminating the symmetry) but this 
would sacrifice too much stiffness along its constraint line. 

To summarize, the proper way to interpret Statement 12 requires an awareness of 
the directions involved. For a series combination of parts, the combined degrees of 
freedom will span the union of dimensional spaces spanned by the degrees of freedom of 

I The stiffness of a spring is the load required to produce a unit displacement and the compliance is the 
inverse of stiffness.�
II The individual matrices must be of the same size (generally 6 by 6) and with respect to the same�
coordinate system, which may require multiplication by a coordinate transformation matrix.�
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the individual parts; whereas, the combined constraints will span the intersection of spaces 
spanned by the constraints of the individual parts. For a parallel combination of parts, the 
combined constraints will span the union of dimensional spaces spanned by the constraints 
of the individual parts; whereas, the combined degrees of freedom will span the intersection 
of spaces spanned by the degrees of freedom of the individual parts. Fortunately this is 
easier to understand than it is to phrase. 

(a) (b) 

Figure 2-26 In (a), a series combination of two blades provides three independent rotational degrees of 
freedom and one axial constraint. Cutting these features into each end of a longer bar provides two 
translational freedoms. In (b), the blades are effectively longer to provide two translational freedoms but a 
center hole is required to prevent a short circuit around the series of flexures. The cross section could be 
round rather than square. These monolithic flexures can be manufactured using wire EDM. 

(a) (b) (c) 

Figure 2-27 In (a), a sphere in a tetrahedral socket provides three constraints; a sphere in a vee provides 
two constraints; and a sphere on a plane provides the last constraint. In (b), three spheres in three vees each 
provide two constraints. In (c), three cylinders on three planes each provide two constraints. 

The 12 Statements by Blanding are important to understand and to refer to when the 
time comes to design a constraint system or mechanism. In many cases it is possible to start 
with a basic design such as one of the familiar kinematic couplings, but as Figure 2-27 
shows, any of these can be invented from the orthogonal constraint chart, Figure 2-21, 
along with a basic understanding of constraint devices such as spheres in vees. Be aware 
that nice orthogonal constraints and intersecting axes are artificial restrictions used to keep 
the chart simple and bounded. They should not restrict creativity as many examples in this 
thesis will demonstrate. Figure 2-28 is such an example of a two-axis gimbal where the 
rotational axes do not intersect. This design would be appropriate for supporting the 
principal load along the axis of symmetry such as required for a rocket motor. 
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Figure 2-28 Four constraints intersect (and thus allow) two rotational degrees of freedom. The constraints 
prevent rotation about a third perpendicular axis and translations of those axes. If all four constraints 
intersected at a point, the result would be an overconstrained, three-axis pivot. 

A key concept in exact constraint design is this one-to-one relationship between 
applied constraints and constrained degrees of freedom. You may choose to add redundant 
constraints to increase stiffness or to provide a nesting force for contact-type constraints; 
however, this usually will sacrifice one or more benefits of exact-constraint design. That is 
to say, the best design may not be the exactly constrained one, but you should begin there 
so that the implications of overconstraint are fully considered and expected. 

2.7 Elastic Averaging 
The term elastic averaging describes a condition where two objects are connected through 
many points of contact in a highly overconstrained manner. Elastic averaging seems so 
contrary to exact-constraint design that some people may argue one philosophy over the 
other rather than embracing their complementary virtues. Many kinematic designs rely on 
bearing systems that function by elastic averaging. A new class of machine tool based on 
the Stewart platform is a good example [Stewart, 1965-66]. These machines have become 
know as hexapods because they feature six actuators operating as a parallel-link mechanism 
to control the relationship between the tool and the workpiece. The actuators typically 
employ rolling-element bearing technology including ball screws, angular-contact thrust 
bearings and trunnion bearings. Since many balls share the load, irregularity of any 
particular ball has little influence over the net error motion. Being massively 
overconstrained, these devices require very accurate surfaces to fit and function properly, 
but once achieved, the result is further reduction of error motion due to the averaging of 
imperfections. Furthermore, the stiffness and load capacity multiply with the number of 
constraints sharing the load. Rolling-element bearings come in many types and sizes and 
are relatively inexpensive when mass produced in large quantities. 
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The basic concepts of kinematics and exact-constraint design are presented in Section 2.6 
following the 12 statements from [Blanding, 1992]. This chapter brings those concepts 
closer to reality by considering various constraint devices and the many ways that 
constraints may be arranged. Several analytical studies on flexures provide deeper 
understanding into the particulars of flexure design. A new approach for kinematic-
coupling design optimizes the ability of the coupling to overcome friction and become 
centered. The approach is most useful for unusual, nonsymmetric configurations where 
intuition is inadequate. The sometimes complex spatial relationships between constraints, 
whether for flexures or in couplings, soon become insurmountable unless systematic, 
matrix-algebra techniques are used to manage all the terms. Working through many such 
problems has culminated in generalized kinematic modeling software. Written in Mathcad÷ 

Plus 6, programs for flexure systems and kinematic couplings appear in Section 6.3. 

6.1 Useful Constraint Devices and Arrangements 
Kinematic devices serve many applications that generally require one or more of the 
following features: 1) separation and repeatable engagement as with a kinematic coupling, 
2) defined motion along or about one or more axes, and 3) minimum influence that an 
imprecise or unstable foundation has on the elastic stability of a precision component. A 
device is kinematic if it provides the proper number of constraints required for the intended 
purpose. For example, a supported object should have n = 6 + f - d independent constraints 
to exactly constrain six rigid-body degrees of freedom plus f flexural degrees of freedom 
minus d desired axes of motion. In addition to the proper number of constraints, a 
kinematic design is free of overconstraint. 

A purely kinematic design may be difficult (or expensive) to achieve in practice. 
The term semi-kinematic has been used to describe designs that are impure to some extent. 
That should not imply something is wrong; rather, there are tradeoffs to make in almost 
every design. It is important to understand the advantages and limitations of various 
constraint types so tradeoffs can be made to best satisfy the application. I strictly avoid 
classifying designs as kinematic, semi-kinematic or non-kinematic because there will 
always be ambiguity. Instead, I advocate applying kinematic design principles within the 
limits of practical constraint devices; there will almost always be some benefit in doing so. 
This approach is not limited to precision design but applies to more general machine and 
mechanism design. See, for example, [Kamm, 1990] and [Reshetov, 1982]. 

The constraint devices common to precision applications tend to fall into three 
categories: 1) relatively short-travel flexural bearings (e.g., blade flexures), 2) relatively 
long-travel bearing components, and 3) repeatable connect-disconnect couplings (e.g., 

Hale, Layton C. "Principles and techniques for desiging precision machines." PhD Thesis, 1999. 
174  



6.1 Useful Constraint Devices and Arrangements

kinematic couplings). This chapter focuses on blade flexures and kinematic couplings. 
Chapter 8, Anti-Backlash Transmission Design, presents several common bearing 
components. See [Slocum, 1992] for more extensive treatment of bearing components. 

6.1.1 Basic Blade Flexures 

This section presents several common arrangements of blade flexures that provide one axis 
of motion over a short range of travel. These arrangements: parallel blades, cross blades, 
and axial blades, are well documented in the literature perhaps with slightly varying names. 
See, for example, [Jones, 1951, 1962], [Weinstein, 1965], [Siddall, 1970], 
[Vukobratovich and Richard, 1988] and [Smith, 1998]. A key concept to learn from this 
section is summarized in the following statement. Several blades connected together as 
parallel constraints (as opposed to serial constraints) will retain the degrees of freedom that 
the individual blades have in common. This concept will become clearer after examining the 
arrangements in this section. 

Two parallel blades, connected as shown in Figure 6-1, share a common 
translational degree of freedom. The rotational degrees of freedom of the individual blades 
occur about axes that are not in common, thus the combination of two blades constrains 
those degrees of freedom. Both blades redundantly constrain rotation about the translational 
axis. A displacement Äz in the direction of freedom has an associated second-order 
displacement Äx given by Equation 6.1. This behavior is a general concern for all flexure 

designs. All other constraint directions have nominally zero error, although geometric 
tolerances lead to very small errors that are first order with Äz. 

z 

x 

a 

Ä 

Ä 

Figure 6-1  Two parallel blades allow one translational degree of freedom and constrain all others. This 
example shows bolted construction but monolithic designs are also common. 

175�



Chapter 6 Practical Exact-Constraint Design�

1 
2 2Δ�a a 23Ä�d 1 d√

ƒ�
√
ƒ�

z z¡
¬�

¡
¬�1

…
« 
…»

…
ÀÄ zd x ü� d�x�8� (6.1)�8� Y� Y�M� M�x d 2 d 5x x aÃ…0 0 

Two cross blades, connected as shown in Figure 6-2, share one rotational degree of 
freedom. One blade constrains the degrees of freedom of the other that are not in common. 
Both blades redundantly constrain translation along the rotational axis. For a given rotation 
É, each blade contributes a second-order radial displacement Är given by Equation 6.2. The 

first term inside the braces is the chord across a deflected blade while the second term is the 
comparable dimension produced by an ideal hinge. The net result is an extension rather 
than foreshortening as in parallel blades. The total error is the vector sum from both blades. 
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Figure 6-2  Two cross blades allow one rotational degree of freedom and constrain all others. This 
example shows bolted construction but brazed connections are common in commercial products. 

Blades arranged axially, as shown in Figure 6-3, share one rotational degree of 
freedom. Two blades in different planes are sufficient to constrain the remaining degrees of 
freedom, but a symmetrical design with four blades is more common. This arrangement 
has nominally zero radial error motion in contrast to the cross-blade flexure. However, 
foreshortening of the blades in the axial direction presents an interesting compromise. 
Equation 6.3 shows the condition required to maintain equal foreshortening across the 
width of the blades. This condition is satisfied by joining the blades to parabolic-shaped 
flanges as Figure 6-3 (a) shows. Equation 6.4 shows the condition required to maintain 
equal bending stress across the width of the blades. The usual compromise solution is to 
join the blades to conical end caps as Figure 6-3 (b) shows. Making the blades relatively 
narrow improves this compromise but reduces the stiffness and load capacity of the 
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flexure. In addition, these equations suggest making the ratio a/r large, but they soon 
become invalid as the geometry diverges from normal beam theory. Finite element analysis 
is helpful in computing the bending stresses, but a linear code will not represent 
foreshortening in the blades and the axial stress that may result. 
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Figure 6-3 Axial blades allow one rotational degree of freedom and constrain all others. The shape of the 
flanges is important to the behavior of the flexure. In (a), two paraboloids that share a common vertex 
satisfy equal axial displacement across the blades. In (b), two cones that share a common vertex provide a 
reasonable compromise between equal axial displacement and equal bending stress across the blades. 

6.1.2 Basic Kinematic Couplings 

A kinematic coupling provides rigid and repeatable connection between two objects through 
usually six local contact areas. This is the case for the two traditional configurations shown 
in Figure 6-4: (a) the three-vee coupling and (b) the tetrahedron-vee-flat coupling (also 
known as the Kelvin clamp). The weight of the object being supported or some other 
consistent nesting force holds the surfaces in contact. A spring or compliant actuator may 
apply the nesting force, but ideally it should allow all surfaces to engage freely with 
minimum friction and wear. Otherwise, the coupling will not become centered as precisely 
as it should or perhaps not at all. Friction between the contacting surfaces acting on the 
compliance of the coupling is a main contributor to nonrepeatability as experimentally 
determined by [Slocum and Donmez, 1988]. 

The symmetry of three vees offers several advantages: better distribution of contact 
forces, better centering ability, thermal expansion about a central point and reduced 
manufacturing costs due to identical features. Conversely, the tetrahedral socket offers a 
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natural pivot point for angular adjustments. Many tip-tilt mirror mounts operate in this 
fashion. The three-vee coupling is the natural choice for adjustments in six degrees of 
freedom or when there is no need for adjustment. 

(a) (b) 

Figure 6-4 In (a), the three-vee coupling has six constraints arranged in three pairs. In (b), the tetrahedron-
vee-flat coupling has six constraints arranged in a 3-2-1 configuration. Often for manufacturing reasons, the 
tetrahedron is replaced with a conical socket, hence the more familiar name cone-vee-flat. 

The local contact areas of the traditional kinematic couplings are quite small and 
require a Hertzian analysis to ensure a robust design for the chosen material pair (see 
Appendix C, Contact Analysis). Greater durability is achieved by better curvature matching 
between contacting surfaces. Rather than use a full sphere against a flat surface, a partial 
sphere of much larger radius may be used instead. The same applies to cylindrical surfaces 
contacting with crossed axes. Another approach is to use a full sphere against a concave 
spherical or cylindrical surface. Figure 6-5 compares these two approaches for a vee 
constraint. Both constraints have the same relative (or effective) radius but the sphere in a 
gothic arch has less capture range. 

SR 1.225R .6capture capture 

SR .5 

Figure 6-5 A vee constraint showing two ways to increase the area of contact. Capture is the maximum 
distance off center that the constraint will engage with tangency. 
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Designs based on line contact rather than point contact offer a significant increase in 
load capability and stiffness. For example, line contact forms between a precisely made, 
heavily loaded sphere and conical socket. The kinematic equivalent to three vees is a set of 
three sphere-cone constraints with either the spheres or the cones supported on radial-
motion flexures. The upper member in Figure 6-6 (a) has six rigid-body plus three flexural 
degrees of freedom that three cones exactly constrain. Alternatively in (b), the three-tooth 
coupling forms three theoretical lines of contact between cylindrical teeth on one member 
and flat teeth on the other member. Each line constrains two degrees of freedom giving a 
total of six constraints. Manufactured with three identical cuts directly into each member, 
the teeth must be straight along the lines of contact but other tolerances may be relatively 
loose. Both of these kinematic couplings are being used on the EUVL project to overcome 
the limited hardness of super invar. 

(a) (b) 

Figure 6-6 In (a), flexure cuts in the upper member allow each sphere limited radial freedom to seat in the 
conical sockets of the lower member. In (b), the three-tooth coupling forms three theoretical line contacts 
between cylindrical teeth on one member and flat teeth on the other member. 

6.1.3 Extensions of Basic Types 

Arranging constraints is a design process that requires a basic understanding of kinematics 
and the mechanics of constraint devices. The blade flexures and kinematic couplings 
presented thus far are good examples from which to learn and start new designs. This 
section presents several interesting and useful extensions based on three vee constraints. 
The examples range from fairly direct implementation on a touch trigger probe to a less 
obvious flexure stage with three degrees of freedom. In my experience, thinking of six 
constraints as three pairs has been a valuable and simplifying conceptual construct. 
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6 .1 .3 .1  Touch Trigger Probe 

Touch trigger probes are commonly used on coordinate measuring machines to indicate 
precisely where in the travel of the machine axes that contact is made with the workpiece. It 
is sufficient if the probe signal occurs with a known position lag as this is easy to correct in 
software. A common design studied by [Estler, et al., 1996, 1997] employs a three-vee 
kinematic coupling that acts as the electrical switch and the mechanical registration. The 
problem that Estler addresses through modeling and compensation is the variation in 
position lag depending upon the direction of travel, the orientation of the surface and other 
effects. A dominant error term, referred to as probe lobing, results from a three-fold 
variation in the trigger force acting on the compliance of the probe shaft. 

The heart of the problem is the orientation of the vee constraints. Figure 6-7 shows 
the probe mechanism studied by Estler (a) and a new design (b) that solves probe lobing, at 
least in theory. In (a), the probe side of the coupling is preloaded down by a compression 
spring into three vee constraints represented by angled cylinders. The probe will not trigger 
until there is sufficient moment imparted to the coupling for any of the constraints to 
become unloaded, thus breaking electrical continuity. Although the preload is constant, the 
lever arm may vary up to a factor of two depending whether the coupling pivots about one 
vee or two. In (b), the new vee orientation requires a torsional preload to seat the coupling. 
In addition, the spring would be set to off-load the weight of the probe coupling. In this 
configuration, any applied moment (orthogonal to the preload) equally unloads one side of 
each vee; there is no directional preference. The downside will be a greater influence of 
friction since any pin must now slide up or down a vee rather than simply lifting out. 

Preload Force 

(a) 

Preload Torque 

(b) 

Figure 6-7 In (a), the moment required to unseat one vee while pivoting about the other two vees is a 
factor of two less than the moment required to unseat two vees while pivoting about the third vee. In (b), a 
moment applied about any axis in the plane of the vees produces equal reaction at all vees. 
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6 .1 .3 .2  The NIF Diagnostic Inserter 

The NIF requires a number of diagnostic instruments near the center of the 10 m diameter 
target chamber. Each instrument is transported approximately 6 m into the chamber by a 
telescoping diagnostic inserter. Since only the end position of travel requires submillimeter 
positioning, a kinematic coupling is being considered to provide repeatable registration at 
the end of a rather imprecise telescoping stage. However, the long, skinny geometry of the 
inserter presents an unfavorable aspect ratio for a traditional kinematic coupling. The 
configuration shown in Figure 6-8 was proposed to work within the geometric constraints 
yet provide acceptable moment stiffness and capacity. It was conceived by splitting the vees 
of a three-vee coupling and axially separating the odd-numbered constraints from the even-
numbered constraints. The odd-numbered constraints act like a right-hand screw while the 
even-numbered constraints act like a left-hand screw. An applied axial preload force 
translates the cylinder until all constraints are engaged and an axial torque is established 
between the two sets of three constraints. 
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Figure 6-8  The end view looks much like a three-vee coupling with constraint pairs 2-3, 4-5 and 6-1 
apparently forming three vees. The side view shows the significant separation between odd- and even-
numbered constraints. As in Figure 6-7, the angled cylinders are constraints fixed to an unseen structure. 
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6.1 .3 .3  The NIF optics assembly

The NIF requires many hundreds of kinematic couplings to support large, replaceable
optics assemblies. There are several types of kinematic couplings used throughout the
system, but one in particular demonstrates a simple evolution from a basic three-vee
coupling to a more novel configuration well suited for tall assemblies. Figure 6-9 shows
the evolution in three simple steps. The horizontal configuration is convenient because
gravity provides the preload. Rotating the coupling to the vertical configuration has obvious
consequences, which motivates the next step to rotate the lower vees to carry the gravity
load. It is important that the centroid of the supported object be offset from the lower vees
in a direction that preloads the upper vee. The next step of spreading the upper vee has a
particular advantage for NIF optics assemblies. The widely spaced vee provides frictional
constraint that stiffens the torsional vibration mode of the optics assembly. This example
appears again in Section 6.3.3 and Chapter 7.

Spread the upper vee

Rotate the coupling
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Figure 6-9 The evolution from a horizontal three-vee coupling to the configuration used for many NIF
optics assemblies. The spheres in each configuration attach to the object being supported.
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6 .1 .3 .4  EUVL Mirror Mount 

Friction between the contacting surfaces of a kinematic coupling is a disadvantage when it 
causes significant distortion in the precision component being supported. A common 
approach for mounting super-precision optics is an arrangement of three vee-flexures that 
[Vukobratovich and Richard, 1988] refer to as bipods. Figure 6-10 shows the bipod design 
used for EUVL mirror mounts. Each leg consists of four blades in series to provide one 
constraint and five degrees of freedom. One bipod provides the same constraint as a sphere 
and vee but without friction. Three bipods fully constrain the supported object with six 
constraints connected in parallel. Notice too that the top of the bipod has the features for a 
three-tooth coupling. There are mating features on the optic to provide the connect-
disconnect function. The kinematic repeatability of the couplings ensure repeatable forces 
imposed by the bipod flexures on the optic, leading to a repeatable distortion between optic 
manufacturing and final use. This example appears again in Chapter 7 in greater detail. 

Figure 6-10 A single bipod flexure constrains two degrees of freedom in the plane of the vee. Usually the 
center section connects to the precision component and the ends connect to the support. At times it may be 
advantageous to reverse this role for better weight distribution provide by six supports. 

6.1 .3 .5  X-Y-Éz Flexure Stage 

A flexure stage that provides pure planar motion (X-Y-Éz) satisfies a number of 

applications found particularly in microelectronics and opto-mechanical systems. One 
approach to this problem is to serially connect single-axis flexure stages, for example, two 
sets of parallel blades and one set of cross blades. Besides being an awkward design, good 
stiffness in each constraint direction is difficult to obtain. When possible, it is better to 
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arrange constraints in parallel. An obvious example is a set of three single-constraint 
flexures arranged physically parallel to each other. This arrangement is rigid and simple, 
but has second-order, out-of-plane error motion that can only be reduced with longer 
constraints. A better arrangement appears in Figure 6-11. It consists of three folded-hinge 
flexures arranged as parallel constraints. This arrangement provides pure planar motion 
except for errors arising from geometric tolerances. 

Actuation Point 
(3) Places 

Support (3) Places 

y 

x 

z 

Figure 6-11 Three folded hinge flexures constrain motion within a plane and provide convenient points 
with which to actuate the stage. 

The folded hinge provides one constraint although it appears compliant in all 
directions. Rather, the two blades have one degree of freedom in common so only five of 
the six (2 x 3 DOF) are independent. One nice feature of the folded hinge is the convenient 
point to apply actuation, for example, with a micropositioner. This was the approach used 
for an EUVL X-Y stage that appears in Chapter 7. [Ryu, Gweon and Moon, 1997] 
designed an X-Y-Éz wafer stage that uses piezoelectric actuators driving folded hinges. 

6.2 Analytical Design of Flexures 
Much has been written about the analysis of flexures, so much so that the papers are 
seemingly saturated with the same information. There has been little new understanding 
presented in resent years. The emphasis in this section is in providing new information and 
understanding. This is accomplished using both beam theory and finite element analysis. A 
fundamental contribution is a matrix-algebra technique for modeling flexure systems. The 
equations for a blade flexure are contained in a compliance matrix and a stress matrix, both 
of which consider column effects. This is a sophistication not found in the formulas of 
Section 2.6. Computer software written for specific configurations such as the bipod 
flexure has proved very valuable in the case studies for this thesis. A general-configuration 
program for flexure systems, written in Mathcad÷ Plus 6, appears in Section 6.3. 

184�



6.2 Analytical Design of Flexures

6.2.1 Comparison of Flexure Profiles 

The blade flexures presented thus far have had constant thickness except perhaps near the 
ends where small fillets are typical. Another common flexure profile is the circular hinge, 
which typically is manufactured by drilling two adjacent holes to form the flexure and then 
by relieving other material as necessary to allow freedom of motion. The primary reference 
for the circular hinge is [Paros and Weisbord, 1965]. More recently, the elliptical hinge 
was studied by [Xu and King, 1996] and [Smith et al., 1997]. When the thickness of the 
flexure is small compared to the circle or ellipse, both of these profiles are well 
approximated by a parabola. A parabolic profile leads to simpler equations and better 
understanding. Since these three profiles have effectively the same performance, the 
circular hinge is the obvious choice for ease of manufacturing (whether by drilling holes or 
using circular interpolation). The interesting comparison is between the (circular, elliptical 
or parabolic) hinge flexure and the blade flexure because each has particular advantages. 

To remain the most general, the presentation uses the elliptical profile described by 
the major and minor diameters a and b, respectively. For a circular profile, simply replace 
both a and b with the diameter d. Equation 6.5 gives the thickness profile for the ellipse and 
its approximate parabolic profile. Figure 6-12 compares these two profiles for an example 
that is near the limit for a good approximation. The approximation is better for a circular 
profile and of course when the minimum thickness t0 is thinner. The straight lines in the 

figure have to do with the comparison to the equivalent blade flexure discussed later. 
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Figure 6-12 The solid line indicates the profile for one side of an elliptical hinge flexure. The horizontal 
axis is a plane of symmetry. The parabola (dash line) provides a good approximation in the thin region of 
the flexure that governs both the axial and moment compliance. The equivalent blade flexure is bounded by 
straight lines indicated by ab and tb. 

Equations 6.6 and 6.7 give simplified expressions for axial compliance and moment 
compliance, respectively, for the parabolic profile. For this example, the axial compliance 
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of the ellipse is underestimated by 3% and the moment compliance is overestimated by 5% 
compared to exact solutions using the elliptical profile. However, the use of beam theory in 
the derivation is itself an approximation. These solutions are similar to those for the blade 
flexure. If the blade were taken to be of length a and thickness t0, then the term in square 

brackets would represent the factor by which the hinge flexure was different. 
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It is instructive to consider the length and thickness of a blade that is equivalent to 
the hinge flexure in terms of axial and bending compliance. The solution to two equations 
with two unknowns appears in Equation 6.8, where the subscript b indicates the equivalent 
blade parameters. This explains the straight lines in the figure marked with either ab or tb. 
The line marked t0 indicates the part of the parabola that has the greatest slenderness ratio 

for buckling. The usual definition for slenderness ratio is the length divided by the 
minimum radius of gyration. Here it is more convenient to use the length divided by the 
thickness. It is obvious from the figure that the equivalent blade being both longer and 
thinner is more likely to buckle under a compressive load. Equation 6.9 gives the condition 
required for the hinge flexure to yield before buckling and the factor by which the 
equivalent blade flexure is more likely to buckle. For this example the factor is 1.88. 
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The hinge flexure clearly has the advantage over the blade flexure for buckling 
resistance. The bending stress appears to be slightly higher for the thinner hinge flexure, 
since both equivalently require the same bending moment for a given rotation, but stress 
concentrations in the fillets of the blades can be just as high. The main advantage for the 
blade flexure comes when there is need for rotational flexibility about the axis of the blade, 
so as to twist. Of course the hinge flexure is better if the application calls for resisting twist. 
This is also true if the flexure is to be used as a secondary constraint in shear. 
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6.2.2 A Study on Fillets for Blade Flexures 

Beam theory works well for blade flexures except at each end where there is a transition to 
some larger cross section. Monolithic blade flexures are usually manufactured with small 
corner radii know as fillets. Clamped blades, on the other hand, usually have very abrupt 
transitions that are difficult to model with any certainty. The edges of the clamping surfaces 
may have partial radii to transition the clamping force, but it is assumed that microslip will 
relieve the theoretically high stress concentration for axial and moment loads. Naturally the 
subject of this study is the behavior of fillets as a function of radius size. This is 
accomplished through a parameterized finite element model for one end of the blade.I In the 
study, the radius varies from one-half blade thickness to twice the blade thickness, and the 
model is subject to either axial or moment loading. Curve fits to the finite-element results 
are useful to supplement the limitations of beam theory. 

An assumption is made in beam theory that either the out-of-plane stress or the out-
of-plane strain is zero. The same is true for 2D FEA. The two choices bracket the range of 
a 3D model, plane stress for zero width and plane strain for infinite width. Both types were 
compared to a 3D model of varying widths. Consistent with the general practice in flexure 
design, plane stress is most appropriate in the calculation of axial stiffness and stress due to 
axial and moment loads. However, the results indicate that plane strain is more appropriate 
for moment stiffness, contrary to general practice. The effect is rather small, only 5 to 10 
percent but in the nonconservative direction. Hence, the equations found in this thesis for 
bending of flexures have a factor (1 - á2) to account for stiffening due to the Poisson 
effect.II The same is true for the finite-element results that appear later in this section. 

The shape of the transition region and the range of fillet radii are apparent in Figure 
6-13. In this case, an axial load is applied to the left end of the 20 x 20 block, and the right 
end of the 2 x 10 blade is constrained. In Figure 6-14, opposite forces on the top and 
bottom of the block generate a moment load. Both figures show the deflected shape of the 
model and contours of von Mises stress. Although difficult to see, the maximum stress for 
axial loading occurs approximately at the quarter point of the fillet closest to the blade and 
occurs very near the start of the fillet for moment loading. The node on the lower right 
corner of the block is the displacement location used for the compliance calculations. All the 
results presented are normalized to the blade thickness t and calculations from beam theory. 

I Pro/MECHANICA by Parametric Technology Corp. is the finite element software used in this study. 
II The bending stress across the thickness of the flexure changes from tension to compression over a very 
short distance. The blade would bow if not connected on each end to a stiff structure. The plane-strain 
assumption does not allow any bowing so the calculation underestimates the desired quantity, bending 
compliance. The blade has some opportunity to bulge in width when axially loaded. The plane-stress 
assumption freely allows bulging so the calculation underestimates the desired quantity, axial stiffness. The 
maximum stress due to axial and moment loads occurs on the sides where the plane-stress assumption is 
valid. 
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Figure 6-13 The fillet radii shown here are one-half, one, three-halves and two times the blade thickness. 
The deflected shape and the contours of von Mises stress result from an axial load. 

Figure 6-14 The fillet radii shown here are one-half, one, three-halves and two times the blade thickness. 
The deflected shape and the contours of von Mises stress result from a moment load. 

The maximum stress from the 2D plane-stress model divided by the stress 
calculated from beam theory is the stress concentration factor plotted in Figure 6-15 for 
axial loading and Figure 6-16 for moment loading. In each graph, the solid line is a fitted 
curve to discrete results from the finite element model. The equation at the top of each 
graph may be used to calculate the stress concentration factor for any radius-to-thickness 
ratio between one-half and two. The knee in the curve appears to be at a ratio near one. 
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Axial Load 
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Figure 6-15  The stress concentration factor for axial loading is closely approximated by a cubic 
polynomial, where r/t is the ratio of fillet radius to blade thickness. 

Moment Load 
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Figure 6-16 The stress concentration factor for moment loading is closely approximated by a fourth-order 
polynomial, where r/t is the ratio of fillet radius to blade thickness. 

The size of the fillet radius also has an effect on the amount of deflection under 
load. A larger fillet shortens the effective length of the blade assuming that the end 
structures remain separated by a constant distance a. This effect on blade length is apparent 
in Figure 6-17 for axial loading and Figure 6-18 for moment loading. The curves give the 
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additional length of blade required to make beam theory match the displacement predicted 
from the finite element model. As might be expected, the compliance due to the elasticity of 
the end structures is significant for axial loading. For moment loading, beam theory 
matches the finite element model for a ratio r/t = 0.62. 
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Figure 6-17 The length modifier for axial loading is closely approximated by a linear curve, where r/t is 
the ratio of fillet radius to blade thickness. 
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Figure 6-18 The length modifier for moment loading is closely approximated by a linear curve, where r/t 
is the ratio of fillet radius to blade thickness. 
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6.2.3 The Compact Pivot Flexure 

An axial arrangement of two blades in series is a useful single-constraint device that 
provides angular freedom about three axes. Since the two translational degrees of freedom 
are rather stiff for short blades, it is common to duplicate another set of two blades some 
distance along the axial constraint direction. See, for example, the bipod flexure in Figure 
6-16. The same cuts used to make the bipod flexure appear more clearly in Figure 6-19 (a). 
This basic design is being used on the NIF and EUVL projects. An advantage of this 
design becomes apparent when compared to the more common design in (b), where the 
axial compliance introduced at the junction between blades is significant. It clearly shows 
the compromise between axial stiffness and how closely spaced the blades can be. The 
design shown in (a), with much deeper end sections, greatly relieves this compromise. 
Even so, it starts to become an issue again when the blade is wider than four times its 
length. This three-dimensional behavior is best studied with 3D finite element analysis. As 
before, finite-element results are displayed so as to extend the usefulness of simple theory. 

(a) (b) 

Figure 6-19 The design in (a) allows the minimum spacing of blades and maintains good axial stiffness. 
In addition, the gaps may be controlled to provide over-flexion protection. In order for the design in (b) to 
have good axial stiffness, the junction between blades would have to be lengthened. 

Since only axial displacement is of interest in this study, the use of symmetry 
boundary conditions at two midplanes simplifies the model to just one-quarter the physical 
pivot flexure. This model, shown in Figure 6-20, also aids in viewing contours of von 
Mises stress through the blades. The variable parameter in this study is the blade width w , 
which varies from one to four times the length a. The blade length is ten times the thickness 
and the fillet radius is one-half the blade thickness. 

Although the blades become stiffer with increasing width, the aspect ratio of the 
junction becomes less favorable and contributes a larger proportion to the total compliance. 
This is the reason in Figure 6-21 that the axial displacement when normalized to theory 
increases with blade width. This behavior is also apparent in von Mises stress as gradients 
that increase with blade width. Figure 6-22 shows how stress varies across the half-width 
taken through the center of the blade (length and thickness). Figure 6-23 shows how stress 
varies along the axis of symmetry. Notice that these stresses are away from the stress 
concentrations caused by fillets. A practical maximum for blade width is two times the 
length partly because the torsional stiffness increases rapidly with the ratio w/a. 

191�



Chapter 6 Practical Exact-Constraint Design�

1:1 2:1 

3:1 4:1 

Figure 6-20 Contours of von Mises stress for blade widths from one to four times the blade length.�

Axial Displacement (along the axis of symmetry) 

- 1 . 5  

- 1 .0  

- 0 .5  

0.0 

0.5 

1.0 

1.5 

- 2 .0  - 1 .5  - 1 .0  - 0 .5  
Axial Position (rel. to blade length) 

A
xi

al
 

D
is

p
l.

 (
re

l. 
to

 t
he

or
et

ic
al

) w/a = 1 

w/a = 1.5 

w/a = 2 

w/a = 2.5 

w/a = 3 

w/a = 3.5 

w/a = 4 

0  .  0  0  .  5  1  .  0  1  .  5  2  .  0  

Figure 6-21 Axial displacement versus axial position along the axis of symmetry. 
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Von Mises Stress (across blade) 
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Figure 6-22 Von Mises stress versus position across the half width of the blade (taken at the mid length).�
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Figure 6-23 Von Mises stress versus position along the axis of symmetry. 
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6.2.4 Helical Blades for a Ball-Screw Isolation Flexure 

The rather specialized application of a ball-screw (or leadscrew) isolation flexure motivated 
the development of an analytical model for a mildly helical blade flexure. Isolation flexures 
or bearing systems are commonly used on ultra-precision machines to couple only the 
desirable degrees of freedom between a ball screw and the carriage it drives [Slocum, 
1992]. For different reasons, a recent paper demonstrated a clever way to improve the 
resolution of a leadscrew by effectively placing a flexural leadscrew in series with the 
mechanical leadscrew [Fukada, 1996], although no words to this effect are mentioned. 
While the screw-nut interface requires some level of torque before sliding takes place, the 
flexural leadscrew responds to arbitrarily small torque to give arbitrarily small resolution. 
Both of these valuable functions, exact constraint and smaller resolution, can be achieved in 
one simple device using a set of helical blade flexures. This idea is being used on the NIF 
precision linear actuator (see Chapter 8.5). 

Figure 6-24  The ball-screw flexure for the NIF precision actuator requires two rotational degrees of 
freedom, a primary constraint against translation along the screw, and secondary constraints for the 
remaining degrees of freedom. Note, some hidden lines were removed to better show the main features. 

Figure 6-24 shows the basic flexure design used for the NIF actuator. It resembles 
the compact pivot flexure of the last section except that it is hollow to allow the ball screw 
to pass through. In addition, the two hinge axes intersect to maximally condense the overall 
length, but this is not required in general. On the NIF actuator, there is another pivot some 
distance beyond the end of the screw so that the pivot pair provides free translation. 
Ordinarily the ball-screw flexure would have two pivots to provide free translation. 
Although it is not apparent from the figure, the blades are manufactured with a slight helix 
angle. Conceptually, if the blades were concentrated at the pitch diameter of the screw, then 
the proper helix angle would be perpendicular to the helix of the screw. Since the blades 
must lie outside the screw, then the actual helix angle must be somewhat smaller. This 
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condition does two things simultaneously: it aligns the blades to the reaction force; and it 
aligns out-of-plane motion of the blades to an insensitive direction of the screw. Effectively 
this creates a flexural screw with the same lead as the mechanical screw. Either one or both 
can be active since they appear the same to the system. 

Before getting into the nature of helical blades, it is instructive to look over the 
finite-element results in Figure 6-25 for the one-quarter model. The von Mises stress plot in 
(a) highlights the blades but the point to notice is the gradient across the width. This is an 
indication of the relative flexibility of the annular junction between the two blades. The 
axial displacement plot in (b) shows a gradient along the length of each blade and nearly as 
significant a change in shading through the annular junction. Again this points to the 
annular junction as being a challenge to make much stiffer than the blades. There is some 
advantage to using a square cross section rather than an annulus if space permits. 

(a) (b) 

Figure 6-25 Contours of von Mises stress (a) and axial displacement (b) show the basic behavior. 

Usually a blade flexure is initially straight so that a small out-of-plane displacement 
gives only a second-order axial displacement. The helical blade flexure is deliberately 
inclined with respect to the axis so that a small component of the out-of-plane displacement 
is along the axis. The angle of inclination varies with radius approximately as r É/a using 
the parameters in Figure 6-26. The out-of-plane displacement also varies with radius in a 
way that compounds with the inclination. Using similar triangles, it is simple to relate the 
differential motion at any radius to the parameters of the flexure. This relation is then 
applied to the one particular radius r  that has no net strain along the blade. The result is the 
effective lead of the flexure given by Equation 6.10. 

d x 2 ÉL [ 2 L 8 2 L r (6.10)
d É a 
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É 

r w 
w2 

1 

a 

Figure 6-26 The effective lead of a helical blade flexure is governed by the parameters a, w1, w2, and É. 

To go further requires an assumption that the ends are constrained to remain 
parallel. Again using similar triangles, it is simple to determine the axial strain at any 
radius. Since the flexure is in equilibrium, the axial strain integrated over the cross section 
must be zero as indicated in Equation 6.11. Upon solving, Equation 6.12 gives the radius 
for zero strain, which then may be substituted back into Equation 6.10. 
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The axial strain that results from the helical shape also acts to stiffen the flexure in 
torsion beyond that for a flat blade. The approach used in Equation 6.13 to compute this 
effect is essentially a strain energy method (Castigliano’s first theorem). The additional 
torsional stiffness due solely to the helix correctly goes to zero as the lead of the screw goes 
to zero. 

2r2 2 r2Δ… 
«�

É�Iø� %�r�2 Y� &�2 2 
r √

“
ƒ 

¡
– 
¬ 

…
À�2E t a � d�r�ü�2E t a � d�r�8Ék M� M�22IÉhelix Ér' % & Ã…a�…»�r1 r1 (6.13) 

23 Y2 2%E t  w2 w1&Y 4 7� 4 Δ
«
» 

√
“
ƒ 

2 L'� '� L¡ w1 w w1 2  w2 r�
ü� '�' À

Ã2 r –
¬� 2 212 5 5� 5 L'� '�a w1 w w1 2  w2 

196 

L 



6.2 Analytical Design of Flexures

6.2.5 A General Approach for Analyzing Flexure Systems 

The most general approach for analyzing a flexure system is finite element analysis. 
Arbitrarily large, complex systems to very simple systems are readily modeled with 
commercial FEA software. For example, blade flexures typically modeled with shell 
elements are connected as necessary to other shell and/or solid elements to represent the 
whole system. It is hard to imagine a more flexible way to accurately analyze deflections 
and stresses in some spatially complex arrangement of flexures. Yet in several respects the 
approach presented here is more flexible than FEA especially early in the design cycle. The 
model is completely parametric and represents only the elements of interest, usually the 
flexures. It reports the stiffness and compliance matrices for the constrained system, and it 
includes column effects that a linear FEA code cannot. The main drawback is that the user 
must understand the basics of matrix algebra and transformation matrices, which is 
transparent to the user of an FEA code. 

The basic assumption is that the flexure system can be modeled as parallel and 
series combinations of springs and that an equivalent spring for the system represents 
useful information, for example, the stiffness matrix. If desired, that information can be 
propagated back to individual springs, for example, to obtain local forces and moments. 
The key formalism in this approach is the six-dimensional vector used to succinctly 
represent three linear degrees of freedom and three angular degrees of freedom. We will 
deal strictly with force-moment vectors and differential displacement-rotation vectors. 
These vectors are related through the stiffness matrix or the compliance matrix of the 
spring. The concept of a three-dimensional stiffness matrix as expressed in Equation 6.14 
may be more familiar. The six-dimensional stiffness matrix is assembled as blocks of three-
dimensional matrices as Equation 6.15 shows. At times it may be easier to start by building 
the compliance matrix as in Equation 6.16. Converting from one to the other requires 
inverting the whole matrix rather than inverting separate blocks. 

≥ fx µ ≥kxx kxy kxz µ ≥d Äx µ 
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Once the stiffness matrix or the compliance matrix is formed in one coordinate 
system (CS), it is a simple matter using the [6 x 6] transformation matrix to reflect it to any 
another (CS). Once expressed in the same CS, stiffness matrices are added to represent 
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parallel combinations, and compliance matrices are added to represent series combinations. 
This process is expressed in Equations 6.17 and 6.18 (also A.35 and A.36). Mixed 
combinations of parallel and series springs require like groups to be combined first then 
inverted as necessary to complete the combination. See Appendix A for a complete 
discussion of transformation matrices and parallel and series combinations. 

K0 8 JT0 / i ì Ki ì T0 / i 
T (6.17) 

i 

C0 8 JT0 / i 
Y T ì Ci ì T0 / i 

Y1 (6.18) 
i 

The remainder of this section focuses on the details that make this approach truly 
useful. The first task is to derive the compliance matrix for the blade flexure. The solution 
depends on the CS so naturally we will choose the simplest one. Similarly, the stress 
matrix is derived so that maximum stresses in the blade are easy to calculate. Finally the 
details of constructing parallel-series spring models are presented. 

6.2 .5 .1  The Compliance Matrix for a Blade Flexure 
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x 

Figure 6-27  Imagining the CS’s as rigid links to the ends of the blade, the application of forces and 
moments at these CS’s results in respective displacements and rotations with no coupling between axes. 

The flexion of a blade may be represented as movement between two CS’s that attach to 
opposite ends of the blade. It would be more common to place a CS at each end but it is 
more convenient to place them initially coincident with the principal axes of the blade. Then 
a blade undergoing flexion appears as slightly displaced CS’s in Figure 6-27. In similar 
fashion, the forces and moments may be represented about these CS’s rather than at the 
ends where they are physically applied. This choice of CS’s diagonalizes the compliance 
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matrix. Four of the six diagonal elements appear already in Chapter 2.6 as stiffnesses but 
without derivation or explanation. Here we go through each element with due care and add 
more generality with column effects and side-by-side blades. As in Figure 6-26, w2 is the 
outside dimension of blades and w1 is the inside dimension. In addition, it is necessary to 

represent the width of the individual blades or of a single blade as w. 

We begin with the in-plane constraint directions. Axial compliance is the first 
diagonal element in the compliance matrix (6.19) and is so familiar that it needs no 
explanation. It is linear in all the key parameters and therefore is convenient for normalizing 
the other compliances. The second diagonal element (6.20) corresponds to a y-direction 
force, which produces combined bending and shear in the blade. It comes from the familiar 
fixed-guided beam equation and has an added term for the shear deformation. The section 
properties have been simplified for the side-by-side blade geometry. The last constraint 
direction is also the last element in the compliance matrix (6.21). Here the blade is in pure 
bending due to a moment about the z axis. 
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The remaining diagonal elements are out-of-plane directions usually considered as 
degrees of freedom. The elements corresponding to z and Éy directions are similar to y and 
Éz directions from before and differ mainly in a factor t 2 in the denominator rather than w 2. 

However, there are two subtle distinctions. As noted earlier in Section 6.2.2, the equations 
for bending compliance should include a factor (1 - á2) to account for the Poisson effect. 
The other factor is the effect of an axial force, either compressive or tensile. The solutions 
for fixed-guided and cantilever boundary conditions are available from numerous sources, 
for example, [Vukobratovich and Richard, 1988], [Young, 1989] and [Smith, 1998]. 
Unfortunately the equations are not particularly convenient or intuitive, involving 
trigonometric functions for compression and hyperbolic functions for tension. Upon 
substituting power series approximations, the two types of functions become the same 
when expressed with a positive or negative axial force. The number of terms required in the 
power series depends upon how closely the flexure operates to the critical buckling load. 
We will keep enough terms to have good accuracy through one-half the critical load. 

The third diagonal element for the z-direction force (6.22) follows from the series 
approximation of the axially loaded, fixed-guided beam. The effect of the axial force is 
contained within the square brackets. As expected, the compliance decreases for a positive 
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tensile force and increases for a negative compressive force. The approximation differs 
from the exact solution by only 6.6% at one-half the critical load. Usually we would not 
venture this close to buckling unless the intent is a zero-stiffness condition. Then it is 
necessary to use the exact solution from the references. 
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The fifth diagonal element corresponds to a moment load applied about the y-axis. 
When an axial force also exists, we must be careful to apply it through the CS rather than at 
the end of a cantilever beam as in the published solution. Figure 6-28 shows the subtle 
difference in the way the axial force is applied to the end in (a) and through the CS in (b). 
The differential equation for the model in (b) has one additional term, f É  (a - x). The 
solution proceeds in a similar way and simplifies for compression to a single sine function 
rather than a tangent function or the equivalent hyperbolic function for tension. Applying 
the series approximation results in the fifth diagonal element (6.23). In this case the 
compliance increases under tension and decreases under compression. 
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Figure 6-28 The tensile force stiffens the beam in (a) while making it more compliant in (b). 
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The fourth diagonal element (6.24) corresponds to twisting of the blade. This 
relation comes from the parallel combination of two effects. The first term within the braces 
is simple twist with no end effects. This solution is given in several references, for 
example, [Timoshenko and Goodier, 1951] and [Young, 1989]. The second term brings in 
the end effects by considering the blade as a series of thin fixed-guided beams distributed 
across the width. The deflection varies as the radius from the twist axis, and an integration 
provides the cumulative effect. Since cz appear in this relationship, it accounts for the 

Poisson and axial-force effects. This relation agrees well with a parameterized finite-
element study. 
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6.2 .5 .2  The Stress Matrix for a Blade Flexure 

The distribution of stress through a blade varies greatly depending on the direction of the 
applied force or moment. For purposes of sizing the blade, however, it is sufficient to 
consider only the maximum absolute value of stress resulting from applied forces and 
moments. This information may be represented in a diagonal matrix similar to the 
compliance matrix. The judicious choice of the CS causes symmetric distributions of stress 
due to individual components of the force-moment vector. Each distribution will have the 
maximum absolute value of stress always extending to the eight corners of the blade. There 
is one worse-case corner where all the stresses are in general alignment (perfectly aligned if 
not for shear stresses). Then a somewhat conservative estimate of the combined maximum 
absolute principle stress is the simple sum of the individual maximum’s as calculated from 
the stress matrix multiplied by the applied force-moment vector. 

In keeping with the order presented for the compliance matrix, the three terms that 
correspond to constraint directions are considered first for the stress matrix. The first 
diagonal element for axial loading (6.25) is simply the inverse of the cross sectional area. It 
is convenient to use for scaling the other terms. For the second diagonal element (6.26), the 
y-direction force produces combined bending and shear in the blade. A somewhat 
conservative approach treats the maximum absolute value of principle stress as if aligned 
with the x-axis. This simplifies the final step of combining all the stress components but 
yields a slightly higher combined stress than a more rigorous analysis. The last constraint 
direction and also the last element in the stress matrix (6.27) is much simpler because the 
blade is in pure bending from a z moment. 
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The stresses due to the remaining three elements usually result due to required 
motions of the flexure but they will be written for applied loads. The third diagonal element 
(6.28) corresponds to a z-direction force. Although the blade experiences combined 
bending and shear loading, the shear stress is usually not significant given normal blade 
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proportions. It is excluded in preference of keeping a simple expression for the column 
effect from an axial force. As expected the bending stress increases with a negative 
compressive force and decreases with a positive tensile force. The fifth diagonal element 
corresponds to a y-moment (6.29) and exhibits slightly more complicated behavior. The 
axial force causes the bending moment to be nonsymmetric along the length of the blade.I 

The bending moment is maximum at the fixed end for tension and minimum for 
compression. The use of the singularity function in the equation turns off the effect of a 
compressive force when ~ is negative, leaving just the applied moment as the maximum. 
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As described in the previous section, there are two effects to consider when a blade 
twists on axis. The first is simple twist with no end effects. The shear stress produced is 
maximum far away from the corners and therefore may be safely ignored. The other effect 
is bending of the blade as a fixed-guided beam with the maximum stress occuring at the 
corners. The fourth diagonal element (6.30) represents this effect by using sz as the 
reference rather than sx. As a result it also represents column effects. 

6 w2 
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The stress matrix multiplied by the force-moment vector gives a vector of stress 
components that may be positive or negative depending on the loading. It is useful to look 
at each component to understand which loads are most significant. The worse-case stress is 
conservatively estimated by summing the absolute values of the stress components. 

6.2 .5 .3  Parallel-Series Spring Models 

The use of parallel and series combinations of springs is fairly common in engineering 
analysis. Working in 6-D is certainly less common but the basic concept of parallel-series 
combinations is no different. Most of the gritty details are in the matrix algebra carried out 
by the computer. The most challenging aspect usually is in setting up the transformation 
matrices. Perhaps the best way to understand the modeling aspect is to work through an 
example step by step. The X-Y-Éz flexure stage, shown in Figure 6-11 on page 184, is a 

good example to represent several levels of parallel and series combinations of springs. 

I The asymmetry of the bending moment is a consequence of the way the blade is loaded along the x axis of 
one CS. A symmetric bending moment would result if the axial force bisected the x axes of both CS’s. 
This symmetric case is more appropriate for the cross blade flexure but not for more general arrangements. 
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6.2 Analytical Design of Flexures

Figure 6-29 shows the spring model of the same flexure stage with three actuators. The 
steps required to set up and analyze the model are enumerated below. 
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Figure 6-29 The X-Y-Éz flexure stage appearing in Figure 6-11 is modeled with nine springs in parallel 

and series combinations as shown. 

j)� Identify the main member (the thing being moved or supported) and attach the base 
coordinate system CS0 at a convenient location. It is simple to reflect the results to a 

different CS if desired. 

k) Identify all the separate paths from the main member to ground. There are six in the 
example, three flexure supports and three actuators. 

l)� Identify and number each spring in each path. There are nine in the example, six blades 
and three actuators. 

m) Assign a unique CS to each spring. Number these CS1 to CSn. Then create [6 x 6] 

transformation matrices to represent the spatial relationships between the local CS’s and 
the base CS0. 

n) Create as many compliance matrices as required to represent all the springs with respect 
to their own local CS’s. There are only two for the example, one matrix for six identical 
blades and one matrix for three identical actuators. 

o) Reflect the compliance matrix for each spring to the base CS0 using the transformation 
matrices, thus creating n unique compliance matrices. Number these C1 to Cn. 

p) Identify the springs that form either series or parallel combinations. When reflected to 
the same CS, series springs experience the same load while parallel springs experience 
the same deflection. The example has three sets of parallel springs, 2-3, 5-6 and 8-9. 
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Chapter 6 Practical Exact-Constraint Design 

q)�Add the stiffness matrices of springs in parallel and add the compliance matrices of 
springs in series. Indicate these new equivalent springs by the spring numbers they 
represent. The equivalent springs for the example are K2-3, K5-6, and K8-9. 

r)�Repeat steps 7 and 8 using the equivalent springs in place of the ones they represent. 
Stop when there is only one equivalent spring remaining. The example requires a total 
of three combination steps before reaching the equivalent spring for the system. The 
second step is a series combination resulting in C1-2-3, C4-5-6, and C7-8-9. The last step 
is a parallel combination resulting in K0, the equivalent spring for the system. 

There are a number of uses for the system stiffness and compliance matrices. 
Presumably there is some requirement that drives the design to have a certain level of 
stiffness in the constraint directions and certain freedoms in other directions. Specific load 
cases may be applied to ascertain deflections or certain motions may be specified to 
determine resulting reaction forces. The sizes and locations of blades are easily modified to 
evaluate design changes. Details about individual blades such as stresses or reaction forces 
require the applied load or specified motion to be propagated back through the combination 
process, being careful to apply loads to springs in series or motions to springs in parallel. 
A clearly labeled sketch of the model for each step in the combination process will help 
avoid confusion and mistakes. 

The fine details of these analysis steps appear in the flexure system analysis 
program in Section 6.3. The program documents the example of the X-Y-Éz flexure stage 

discussed here. In particular it shows how to set up the [6 x 6] transformation matrices and 
reflect compliance matrices to the base CS0. It also shows how easily a fairly complex 

system of blades is modeled with parallel and series combinations of springs. 

A slightly more advanced topic is the modeling of column effects in a system of 
flexures. It was not an important effect in the X-Y-Éz flexure stage so it was not introduced 

then. The compliance matrix and the stress matrix for individual blades account for local 
column effects, but it is necessary to include the system effects at the system level. 
Fortunately this is straightforward to do with additional springs that represent the column 
behavior. This behavior may occur when a series combination carries a significant axial 
force, for example, when two blades lie in the same plane so as to act like one much longer 
blade. The effect of the axial force is modeled with a new spring placed in parallel with the 
series combination. The stiffness of the new spring depends only on the axial force and the 
distance between the two CS’s of the series combination, as in Equation 6.31. It may be 
positive or negative for a tensile or compressive force, respectively. When reflecting this 
stiffness to the base CS0, the transformation matrix should be the same as the most mobile 

blade in the series combination. Then it may be combined as any of the other springs. 

8 
fx� (6.31)K3 3,  L  
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