2.76/2.760 Multiscale Systems Design & Manufacturing

Fall 2004

Polymer, Protein, Complexity

Nanoimprinting

Photos removed for copyright reasons.

Nanopatterning by Diblock Copolymer

Diagrams and photos removed for copyright reasons. See Park, M. et al. Science, Vol 276, 140, 1997

Di-block copolymers

$$\Delta G_{m} = \Delta H_{m} - T\Delta S_{m}$$
$$\frac{\partial^{2} \Delta \overline{G}}{\partial X^{2}} < 0$$

Spinodal decomposition

Di-block copolymer, PS-PMMA:

PS+PMMA copolymers

Diagrams removed for copyright reasons.

 PMMA
 PMMA
 PMMA

 <10%</td>
 <30%</td>
 50%

Polymers, Macromolecules

 Poly (many) + mer (structural unit) -[C₂H₄]_n- ,poly[ethylene]

spaghetti

Configurational Entropy

high

entropy

low

A singly bonded carbon chain

• N-2 angles θ, ϕ

Diffusion

- Brownian motion
- Albert Einstein: Worked out a quantitative description of Brownian motion based on the Molecular-Kinetic Theory of Heat (Nobel Prize 1921)

$$\langle R^2 \rangle^{\frac{1}{2}} = \sqrt{6Dt}$$

Random Walk-1D

Random walk -2D

Entropic Behaviour

- Size & Shape of Polymer
- Configurational Entropy
- Paul Flory (Stanford): Nobel Prize 1974
- Pierre-Gilles de Gennes (Paris): Nobel Prize (1991)

Possible Configurations

P(r); the number of possible configurations of a random polymer coil with "n" segments of size "a" with an end-to-end distance (stretch) of r

Entropy

- Stretching the coil
- Compressing the coil

- Random walk of 10000 unit polymer chain of 5 Angstroms
- Length=5 micron
- Ro=5 angstroms x 100=50 nm
- Volume at the highest entropy
- Real volume is twice bigger than that of RWM.

Self Avoiding Walk

- Polymers cannot cross its own path.
- Δ Stotal = Δ Spressure + Δ Sdeformation

Nano-scale Phase Separation

Random walk, Gaussian distribution

e-to-e distance, $R = aN^{1/2}$ $R_g = aN^{1/2}/6$ N: number of monomers

Micro-domain periodicity, L

$$L \propto R_g \propto a N^{\frac{1}{2}}$$

N=1,000 a=5 angstroms Then, L is around 15 nm.

Polymers Synthetic versus Biological

Synthetic Polymer

- Mostly chain like structure of repeated units (mers)
- Molecular weight distribution (chemical synthesis)
- Self avoiding walk model

<u>Protein</u>

- Primary structure exactly defined
- Fixed molecular weight
- Unique folding

Diagram removed for copyright reasons.

Proteins

- Proteins are polymers composed of amino acid monomers
- Proteins are characterized by a specific primary structure order of mers in the backbone and DP
- Control of primary structure leads to control of 3D structure
- Secondary structure refers to local chain conformations four types are known:
 - α helix regular helix
 - β sheet extended zig-zag
 - β turn puts fold into β sheet
 - Globular or random coil
- Tertiary structure refers to secondary structure stabilized by H bonds – defines protein folding
- The control of protein structure builds information into the molecule that translates into function

Folding Summary

Common 2ndary Structures

- α helix
- β sheet
- Collagen triple helix
- Globular or random coil

Diagrams removed for copyright reasons.

Polymers vs. Protein

- Structure formation in synthetic polymers is statistically driven.
- Structure is metastable
- Interpenetration

- Structure formation in proteins is site specific chemistry driven.
- Structure is stable
- No interpenetration
- Misfolded proteins lead to serious diseases.

What is Complexity?

Human body (circulatory

system)

DNA ~2-1/2 nm diameter

natural

Human heart

Diagrams removed for copyright reasons.

manmade

Carbon nanotube ~2 nm diameter

Nanotube transistor

Design for Manufacturing?

MIT Stata Center by Gehry

\$300 million, 5years

MIT Simmons Hall \$ 90million, 2 years

Scale Orders

Scale order, N = <u>size of the system</u> smallest characteristic length

N

•	Cars: 5 m ←→ 500 µ	104
•	Jig Machines: 5 m $\leftarrow \rightarrow$ 5 μ	106

- Lithography M/C: 30 cm $\leftarrow \rightarrow$ 30 nm 10⁷
- Human Body: 2 m $\leftarrow \rightarrow$ 2 nm 10⁹
- Length scale of the periodicity?

Micro-phase Separation

Random walk, Gaussian distribution

e-to-e distance, $R = aN^{1/2}$ $R_g = aN^{1/2}/6$ N: number of monomers

Micro-domain periodicity, L

$$L \propto R_g \propto a N^{\frac{1}{2}}$$

N=1,000 a=5 angstroms Then, L is around 15 nm.

Complex Problems

- Gaussian integrals like $\int D\phi e^{i\int dt \frac{dx}{dt}(t)^2}$
- Stock market index one year from today
- Weather one year from today

Complexity Universe

Good Design

"What" to "How" "Top" to "Bottom"

Axiomatic approach

- Independence Axiom
- Information Axiom
 - Prof. Nam Suh @MIT2.882
 - Evolution to
 - "Complexity Theory for Nano Systems"

Information Axiom

Minimize the Information Content

$$I = \log_2 \frac{1}{P} = -\log_2 P$$

P: Probability of success =common range/system range

Complexity

A system is complex when;

- A design is coupled.
- System ranges vary with time.
- The outcome is uncertain. (low probability of success)
- The scale order is very high. (over 10⁹)

Complexity can be reduced by;

• Periodic functions (temporal, spatial, etc.)

Functional Periodicity

- Time independent real and imaginary complecity.
- Time dependent combinatorial and periodic complexity.
- Time dependent combinatorial complexity can become periodic complexity by functional periodicity. [Suh, MIT]
 - Temporal
 - Geometrical
 - Biological
 - Manufacturing process
 - Chemical information
 - Circadian
 - etc.

Multi-scale system assembly by periodic building blocks?

- Periodic microdomains
- Functionally uncoupled domains
- Periodicity,
- Nano to Macro
- Biomimetic?

Figure by OCW.

MIT Simmons Hall

 $L \propto R_g \propto aN^2$

Block Assembly

Bundle CNT nanopellet CMPed and Transplanted

Photos removed for copyright reasons. See T. El-Aguizy, J-h Jeong, Y. B. Jeon, W. Z. Li, Z. F. Ren and S.G. Kim, "Transplanting Carbon Nanotubes", Applied Physics Letters, Vol 85, No. 25, P.5995, 2004

High aspect ratio nanopellets

Nanocandles

Cold cathode array, FED, Data storage, Multi-E-beam array for NGL

In-Plane Assembly of High-Aspect Ratio Nanocandle

- Mechanical in-plane assembly of nanocandle in the V-groove with a micro probe tip
- Bonding of nanocandle in the V-groove with a drop of epoxy

MIT Nanopipette

 Nanotube assembly to the tip of a micropipette

MIT

- Nanotube assembly to the tip of an in-plane AFM
 - Parallel Imaging and Pipetting
 - Multi-energy probing
 - Manufacturable
 - Arrayable

A multiscale system design...

