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Abstract
 
A scanning tunneling microscope is used to demonstrate the principle of quantum
mechanical tunneling between the microscope tip and the surface of a conducting sample.
Measurements are made on a gold-coated holographic grating and a pyrolytic graphite
sample. Since the apparatus is capable of atomic resolution, atomic features of the
graphite surface can be directly observed. Mathematical filter algorithms are used to
process the sample images and reduce the image noise. The bond angles and bond
lengths of the graphite sample are determined.
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1 OPERATING PRINCIPLES OF STM

1.1. How the STM Works

There are five scientific and technical processes or ideas that the STM integrates to make
atomic resolution images of a surface possible. Each of these processes was used in other
areas of science before the invention of the STM.

• The principle of quantum mechanical tunneling.

• Achievement of controlled motion over small distances using  piezoelectrics.

• The principle of negative feedback.

• Vibration isolation.

• Electronic data collection.

This Chapter discusses each of these five concepts. The most detail is provided on the
process of quantum mechanical tunneling, since this is the fundamental concept that
allows the microscope to work. At the end of the discussion of all these concepts, one can
see how they integrate to make an STM.

1.2. Ouantum Mechanical Tunneling

Quantum mechanical tunneling is not some obscure process that only occurs under
extreme conditions in a crowded basement laboratory of a research university. Quantum
mechanical tunneling explains some of the most basic phenomena we observe in nature.
One example is the radioactive decay of plutonium. If quantum mechanical tunneling did
not occur, plutonium would remain plutonium instead of changing into elements lower on
the periodic chart. Plutonium converts to other elements when 2 neutrons and 2 protons
are ejected from the nucleus because of tunneling. Even the fundamental force that binds
atoms into molecules can be thought of as a manifestation of quantum mechanical
tunneling. In this lab, we will look at how tunneling manifests itself in another way. We
will attempt to understand how a single electron starts out in one metal and then
reappears in another metal, even though they are not touching.
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To begin, let's examine what electron tunneling means in the real world. Consider two
pieces of metal. Metals are good conductors of electricity, i.e. electrons can move very
easily and quickly from one end of the metal to the other. Imagine connecting one of the
pieces of metal to the negative terminal of a battery and the other piece of metal to the
positive terminal, as shown in Figure 2.1. If the metals are not touching, no current will
flow through the battery. The electrons are free to move around the metal but cannot
leave it. The electrons are analogous to water in a reservoir that is blocked by a dam.
They can move about the reservoir but have no access to the river below. If the metals are
brought together so that they touch, current will flow freely through the contacting area.
The electrons have a free path from the negative terminal to the positive terminal of the
battery. This current flow is analogous to opening up the gates of the dam and allowing
the water to flow down the river into the ocean.

Figure 1.1. Two pieces of metal, each connected to a battery terminal. While the
metals are well separated no current flows through the battery.
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The unusual experimental feature of tunneling is this: when the metals are brought
together, but are not quite touching, a small electric current can be measured. The current
gets larger the closer the metals are brought together, until it reaches its maximum value
when the metals are touching. The concept is analogous to making the dam thinner and
thinner by removing cement and noticing that more and more water is leaking through the
walls. However, there is a difference between the two analogies. The water physically
moves through the pores between the cement, while the electrons do not move in the
space between the metals: they just suddenly appear in the other side. The metals must be
only 10 angstroms apart to produce detectable tunneling current. Figure 2.2. shows
current as a function of the separation between metals [a]. Also plotted in this graph is the
measured tunneling current if quantum mechanical tunneling did not occur [b]. The
distances involved are so small that special tools are needed to adjust the distances or the
small electric currents will not be detected. We will describe these tools in the section on
piezoelectrics (see Section 2.4.).
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To understand why these small currents occur, the energies involved as the electron
moves between the metals must be considered. An electron's energy can be split into two
contributions: kinetic energy and potential energy. Kinetic energy (the energy of motion)
is large for electrons moving fast and small for electrons moving slowly. Potential energy
is the energy available for an electron to convert to kinetic energy if it moves along an
electric field. Figure 2.3 plots the potential energy of the electron as it travels from one
metal to the other metal. The potential energy shown neglects the complicated aspects of
metals, including extra charges from atoms and other electrons on the metals, but does
include the general concepts. The potential energy is lower in Metal 2 because this side is
connected to the positive terminal of the battery (the terminal to which the electrons are
attracted). There is also a large potential energy between the two metals. This is what
tends to keep electrons inside their respective metal.
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This picture shows that electrons are free to move around in their respective metals but
cannot leave them. No electron in a metal has sufficient kinetic energy to go over the
barrier. One of the basic tenets of quantum mechanics is that electrons have both a
particle and a wave nature. So we should picture the electron not as a hard ball impinging
on the barrier, but as a cloud. The size of the cloud is related to the wavelength of the
electron (a few angstroms). When the cloud collides with the barrier, part of the cloud
may penetrate it. For thick barriers, the cloud will be reflected like a hard particle (see
Figure 2.4). For thin barriers, however, part of the cloud may penetrate the barriers and
appear on the other side. This process is called tunneling because the electron does not
have enough kinetic energy to travel over the barrier, but is able to exist on the other side
(see Figure 2.5). It is as if the electron found a way to dig a tunnel through the barrier.
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In the scanning tunneling microscope, one of the metals is the sample being imaged
(sample) and the other metal is the probe (tip). The sample is usually flatter than the
probe, as shown in Figure 2.6. If the probe is sharpened into a tip it will most likely have
one atom at the end. All of the tunneling electrons will pass through this atom. As we will
discuss later, this feature leads to the atomic resolution capabilities of the microscope.
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1.3. Ouantifying the Tunneling Process

Using Schrödinger's equation of quantum mechanics, we can actually predict how
tunneling current increases as separation between two metals decreases. However, the
final results of your tunneling experiments can be understood without knowing quantum
mechanics. This more complete description is not necessary for understanding how the
STM works; it therefore may be thought of as supplemental.

The Drude model of a metal states that the potential energy of a metal is given by the
solid line in Figure 2.3. The energy of all the electrons in the metal is lower than the
height of the wall. The difference in energy between the most energetic electron and the
vacuum energy is called the workfunction and is denoted by the symbol Φ.

The wave nature of an electron, illustrated in Figures 2.4 and 2.5, is critical to explaining
tunneling. The movement and shape of the electron wave is governed by Schroedinger's
equation, which might be thought of as the quantum mechanical analog of Newton's
equation of motion,  F = ma.  

In the STM, tunneling takes place between the tip and the sample. A complete description
of the tunneling process requires a solution of the three-dimensional form of
Schroedinger's equation, which has the general form:
                                                       [ ] [ ]H EΨ = Ψ                                             (1.1)
where [H] and [E] are the Hamiltonian and total energy operators. The
operators are expressed as:

                                      ( ) ( ) ( )2
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For our purpose it is sufficient to use a one-dimensional analysis, which for the
Schroedinger
equation above is given by:
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where the equation:

                                             ( ) ( ) ( )- - -, i kx t i k x tx t Ae Beω ωΨ = +                                   (1.4)

is the plane wave representation for an electron wavefunction of wavenumber
k = 2π/λ and angular frequency ω.

In addition, we assume a steady-state (time-independent) situation in which electrons of
energy E(x, t) = E encountering a uniform potential barrier of height U(x, t) = U(x) are
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continuously flowing from one metal to the other. It is then necessary to solve only the
one-dimensional steady-state Schroedinger equation, given by:

                                          ( ) ( ) ( ) ( )
22

22m
x

U x x E x
x

∂ Ψ
+ Ψ = Ψ

∂
h                           (1.5)

where E is the kinetic energy of the electron. Note that U(x) is the potential energy of the
electron as a function of position, as shown in Figure 2.3. U(x) is smaller than the
electron energy in the metals and larger than the electron energy in the barrier. For
simplicity we can assume U(x) = U0  a constant in the barrier.

In the metal, the general solution to the above equation is given by:

            (Metal 1)                    ( ) ( )0
2

2
,  ikx ikx m E U

x Ae Be k− + −
Ψ = + = h             (1.6)

            (Metal 2)                       ( ) ikx ikxx Ee Fe− +Ψ = +                                          (1.7)

 and in the barrier (the classically forbidden region) the solution is:
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(barrier)                 ( ) ( )0
2

2
,  x x m U E

x Ce Deµ µ µ− + −
Ψ = + = h                      (1.8)

Equations 1.6 and 1.7 show that the phase of the electron wavefunction varies uniformly
in the metals. The wavelength is λ = 1/k. Higher energy electrons have a smaller
wavelength. When a high energy electron wave encounters the boundary of the metal, it
"leaks out" a small amount, as discussed in the previous section. The "intensity" of the
electron wave decays as a function of distance from the boundary. Mathematically, the
argument of the exponential function becomes real and the electron wavefunction decays.
(For imaginary arguments, the wave function would have oscillatory behavior.)

To gain a quantitative insight into the electron tunneling phenomena, it is necessary to
derive an expression for the transmission coefficient, i.e. the transmitted flux from the
sample to the tip through the barrier of width L. The barrier is considered wide but finite,
such that the electron wavefunction exponential decay in the barrier is significant.
Furthermore, the electron wavefunction and its first derivative must be continuous (join
smoothly) at the sample-barrier and tip-barrier boundaries to conserve energy and mass.
If we set up a coordinate system in which the surface of the sample (Metal 1) is at x = 0
and the tip (Metal 2) is at x = L, and apply the boundary conditions for continuity:

                                                       
( )

A B C

ik A B Cµ

+ ≈

− ≈ −
                                        (1.9)

(at the sample surface, x = 0) where D, the amplitude of the reflected wavefunction at the
tip-barrier boundary, is neglected, since D << A, B, C. However, D is not insignificant at
the tip-barrier boundary. At the tip-barrier boundary, x = L, continuity would require:
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L L ikL
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−
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(1.10)
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Solving for B/A at x = 0, by solving for C and substituting for it, we get:

                                                                ( )
( )

1
1

ikB
A ik

δ
δ

− +
≈

−
(1.11)

where δ is 1/µ, A is the amplitude of the electron wavefunction in the sample surface
incident on the barrier, and B represents the amplitude of the reflected wavefunction. The
reflection coefficient (R) for the wavefunction is then defined as:

                                                                      
2B

R
A

≈

(1.12)

where 2  represents the product of a complex number and its conjugate. In this case, it
represents the relative intensities of the incident and reflected wavefunctions.

An electron incident at the barrier will either be reflected or transmitted through the
barrier. In terms of probability or frequency of occurrence, R+T = 1, where R and T are
the reflection and transmission coefficients. Thus:

                                                        
( )

( )

2 1
1

1
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A ik

δ
δ

− +
≈ = ≈

−
(1.13)
and, therefore:

               1 0T R= − ≈                       
(1.14)

which indicates that, for an infinitely wide barrier, no electrons would be found in the
barrier region. Nevertheless, dividing the first of the sample vacuum-barrier boundary
conditions by A results in:

                                                                    1 B C
A A

+ ≈

(1.15)



13

The probability of finding an electron in the barrier region at x = 0, due to quantum
tunneling, is
given by:

                                                                  ( )
( )
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+
(1.16)

To find the effective tunneling transmission coefficient, 
2F

A
i.e.  the relative

probability or frequency of occurrence of an electron tunneling out of the sample surface,
across the sample-tip-barrier region, and into the tip, combine the tip-barrier boundary
equations (at x  L) and Equation 1.16 to get:
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which produces the desired quantitative result:
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where:
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Substituting typical numbers of  -195x10Φ =  joules, -319.11x10m =  kilograms,  and
-341.05x10=h  joule-seconds, results in:

                                             2( ) , L in AngstromsLT E e−= .

This formula shows that for each angstrom change in separation, the probability that an
electron tunnels decreases by an order of magnitude. This demonstrates mathematically
that tunneling current is indeed a sensitive measure of the distance between the tip and
sample.

In the STM, one of the metals is the sample being looked at and the other metal is the
probe. The sample is usually flatter than the probe, as shown in Figure 2.6. Because the
probe is formed of atoms, if it is sharpened into a tip, it will most likely have one atom at
the end of the tip. The spacing between atoms is about 3 angstroms. Therefore, any
tunneling through atoms that are one atom back from the closest atom is a fraction

( )( )2 3 0.002e− =   of tunneling through the atom at the tip, as shown in Figure 2.6.
Virtually all of the tunneling electrons will pass through the single atom closest to the
surface. This feature produces the atomic resolution capabilities of the microscope.




