Aspects of Design Optimization

Based in part on 2.002 tutorial by D. Parks, 2006

Courtesy of Prof. David Parks. Used with permission.

Setting a stent to re-open plaque-clogged vessels and restore normal blood flow

Graphic removed due to copyright restrictions.

What is the best material for a stent?

Identify the design parameters

- Design visualization = Function (what does it do?) + Objective (what level of function?) + Constraints (how far can you go?)
- Express "best" design in terns of maximization of a performance parameter ("objective function"), p.
- In many cases, p is a product of functional requirements, f_F, geometric parameters, f_G, and material parameters, f_M.

$$\mathbf{p} = \mathbf{f}_{\mathsf{F}} \cdot \mathbf{f}_{\mathsf{G}} \cdot \mathbf{f}_{\mathsf{M}}$$

Case 1. Design of compression rod (solid mechanics approach; no biology)

 Design a "strut" of solid circular cross section of length I capable of supporting a compressive force F without exceeding a specified fraction of its buckling load. Apply safety factor SF = 2.

$F_{c} \leq P_{crit}/SF$

 Select material and cross section diameter, d.

Related application

Figure by MIT OCW.

Calculate the objective function

• Objective function (e.g., for some aerospace and biomedical applications): least mass, **m**.

$$m = \rho V = \rho A L = \rho (\pi d^2/4) L$$

• Constraint: Euler column buckling load:

$$P_{crit} = C_1 E I/L^2 = C_1 E (\pi d^4/64)/L^2$$

• Solve for the cross section:

• For least mass, maximize Material Index, $M = E^{1/2}/\rho$

Search for maximum $E^{1/2}/\rho$

Material	E, GPa	ρ, Mg/m³	E ^{1/2} /ρ, (GPa) ^{1/2} m ³ / Mg
1020 low- carbon steel	210	7.83	1.85
2024-T4 AI	72	2.79	3.04
Titanium	116	4.54	2.37
Oak (parallel)	12	0.6	5.77
CFRP (lam.)	40	1.4	4.52

Chart removed due to copyright restrictions. Ashby diagram of Young's modulus vs. Density.

Case 2. Light-weight tension member (solid mechanics approach; no biology)

 The "tie-rod" has specified length, L, and supports a tensile force, F_t, while maintaining a safety factor, SF > 1, on tensile stress, σ, in comparison to a material-dependent failure stress, σ_f:

$\sigma \leq \sigma_{\rm f}/{\rm SF}$

• Select design with least mass, m: $\mathbf{m} = \rho \mathbf{V} = \rho \mathbf{A} \mathbf{L} = \rho (\mathbf{F}_{t} / \sigma) \mathbf{L}$ Eventually:

$m \ge (SF \cdot F_t)L(\sigma_f/\rho)$

where, the material index ("specific strength") that needs to be maximized is:

$M = \sigma_f / \rho$

Identify materials having large values of M using the appropriate Ashby map.

Chart removed due to copyright restrictions. Ashby diagram of Strength vs. Density.

Introductory example from implant design

- Objective function: quality of regeneration of organ X (Notice neglect of alternative objective functions, e.g., benefit/risk, cost).
- R₁₀₀ = describes "perfect" quality of regeneration, identical to that achieved during early fetal healing.
- $R/R_{100} = \varphi$ = fractional quality of regeneration achieved. Needs to be maximized.

Optimize scaffold design

 Regeneration achieved following use of scaffold with appropriate geometrical and biological properties that need to be optimized. Express φ in terms of scaffold properties:

$\varphi = \varphi$ (geometry, chemical composition, pore size, pore volume fraction, duration)

- Need to develop quantitative relations between φ and scaffold properties. Apply constraints. Identify scaffold.
- Continue design using other objective functions.