Aspects of Design Optimization

Based in part on 2.002 tutorial by D. Parks, 2006
Courtesy of Prof. David Parks. Used with permission.

Setting a stent to re-open plaque-clogged vessels and restore normal blood flow

Graphic removed due to copyright restrictions.

What is the best material for a stent?

Identify the design parameters

- Design visualization = Function (what does it do?) + Objective (what level of function?) + Constraints (how far can you go?)
- Express "best" design in terns of maximization of a performance parameter ("objective function"), p.
- In many cases, p is a product of functional requirements, f_{F}, geometric parameters, f_{G}, and material parameters, f_{M}.

$$
p=f_{F} \cdot f_{G} \cdot f_{M}
$$

Case 1. Design of compression rod (solid mechanics approach; no biology)

- Design a "strut" of solid circular cross section of length I capable of supporting a compressive force F without exceeding a specified fraction of its buckling load. Apply safety factor $\mathbf{S F}=2$.

$$
\mathrm{F}_{\mathrm{c}} \leq \mathrm{P}_{\mathrm{crit}} / \mathrm{SF}
$$

- Select material and cross section diameter, d.

Related application

Figure by MIT OCW.

Calculate the objective function

- Objective function (e.g., for some aerospace and biomedical applications): least mass, m.

$$
m=\rho V=\rho A L=\rho\left(\pi d^{2} / 4\right) L
$$

- Constraint: Euler column buckling load:

$$
P_{\text {crit }}=C_{1} E I / L^{2}=C_{1} E\left(\pi d^{4} / 64\right) / L^{2}
$$

- Solve for the cross section:

$$
\begin{aligned}
& d^{2} \geq\left[S F \cdot F_{c} \cdot 64 L^{2} / C_{1} \cdot \pi \cdot E\right]^{1 / 2} \\
& m \geq 2\left[\pi \cdot S F \cdot F_{c} / C 1\right]^{1 / 2} \cdot L_{3} \cdot\left(E^{1 / 2} / r\right)^{-1} \\
& m=\text { function } X \text { geometry } X \text { material }
\end{aligned}
$$

- For least mass, maximize Material Index, M = E ${ }^{1 / 2 / 2}$

Search for maximum $\mathbf{E}^{1 / 2 / \rho}$

Material	E, GPa	$\mathbf{\rho}, \mathbf{M g} / \mathbf{m}^{\mathbf{3}}$	$\mathbf{E}^{\mathbf{1 / 2} / \mathbf{\rho},}$ $\mathbf{(G P a) ^ { 1 / 2 } \mathbf { m } ^ { 3 }}$ $\mathbf{M g}$
1020 low- carbon steel	210	7.83	1.85
$2024-\mathrm{T4}$ AI	72	2.79	3.04
Titanium	116	4.54	2.37
Oak (parallel)	12	0.6	5.77
CFRP (lam.)	40	1.4	4.52

Chart removed due to copyright restrictions.
Ashby diagram of Young's modulus vs. Density.

Case 2. Light-weight tension member (solid mechanics approach; no biology)

- The "tie-rod" has specified length, \mathbf{L}, and supports a tensile force, F_{t}, while maintaining a safety factor, $S F>1$, on tensile stress, $\boldsymbol{\sigma}$, in comparison to a material-dependent failure stress, $\boldsymbol{\sigma}_{\mathbf{f}}$:

$$
\sigma \leq \sigma_{f} / \mathrm{SF}
$$

- Select design with least mass, m :

$$
m=\rho V=\rho A L=\rho\left(F_{t} / \sigma\right) L
$$

Eventually:

$$
m \geq\left(S F \cdot F_{t}\right) L\left(\sigma_{f} / \rho\right)
$$

where, the material index ("specific strength") that needs to be maximized is:

$$
M=\sigma_{f} / \rho
$$

Identify materials having large values of M using the appropriate Ashby map.

Chart removed due to copyright restrictions.
Ashby diagram of Strength vs. Density.

Introductory example from implant design

- Objective function: quality of regeneration of organ X (Notice neglect of alternative objective functions, e.g., benefit/risk, cost).
- $\mathbf{R}_{100}=$ describes "perfect" quality of regeneration, identical to that achieved during early fetal healing.
- $R / R_{100}=\boldsymbol{\varphi}=$ fractional quality of regeneration achieved. Needs to be maximized.

Optimize scaffold design

- Regeneration achieved following use of scaffold with appropriate geometrical and biological properties that need to be optimized. Express $\boldsymbol{\varphi}$ in terms of scaffold properties:
$\varphi=\varphi$ (geometry, chemical composition, pore size, pore volume fraction, duration)
- Need to develop quantitative relations between $\boldsymbol{\varphi}$ and scaffold properties. Apply constraints. Identify scaffold.
- Continue design using other objective functions.

