2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303) Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Control of Manufacturing Processes

Subject 2.830/6.780/ESD.63 Spring 2008 Lecture #7

Shewhart SPC & Process Capability

February 28, 2008

1

Applying Statistics to Manufacturing: The Shewhart Approach

Text removed due to copyright restrictions. Please see the Abstract of Shewhart, W. A. "The Applications of Statistics as an Aid in Maintaining Quality of a Manufactured Product." *Journal of the American Statistical Association* 20 (December 1925): 546-548.

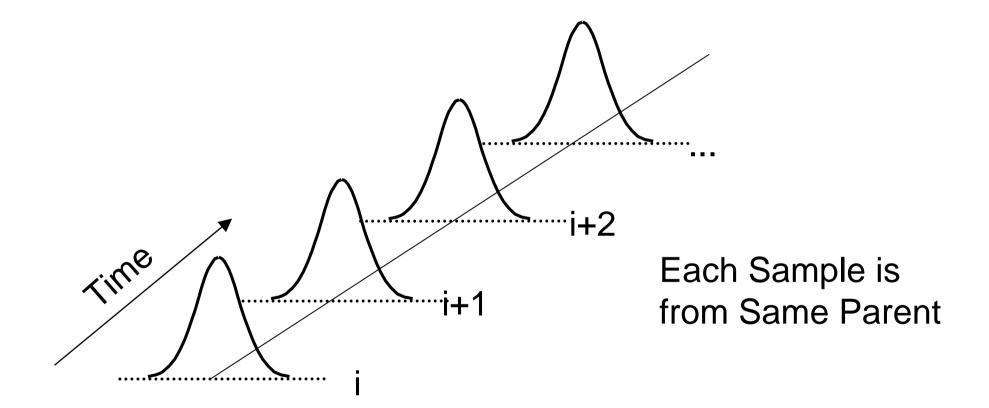
Applying Statistics to Manufacturing: The Shewhart Approach

Text removed due to copyright restrictions. Please see the Abstract of Shewhart, W. A. "The Applications of Statistics as an Aid in Maintaining Quality of a Manufactured Product." *Journal of the American Statistical Association* 20 (December 1925): 546-548.

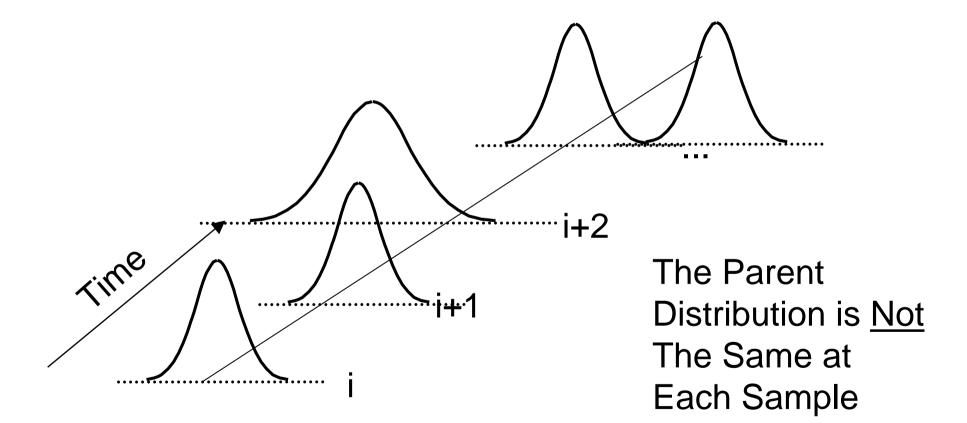
Applying Statistics to Manufacturing: The Shewhart Approach (circa 1925)*

- All Physical Processes Have a Degree of Natural Randomness
- A Manufacturing Process is a Random Process if all "Assignable Causes" (identifiable disturbances) are eliminated
- A Process is "In Statistical Control" if only "Common Causes" (Purely Random Effects) are present.

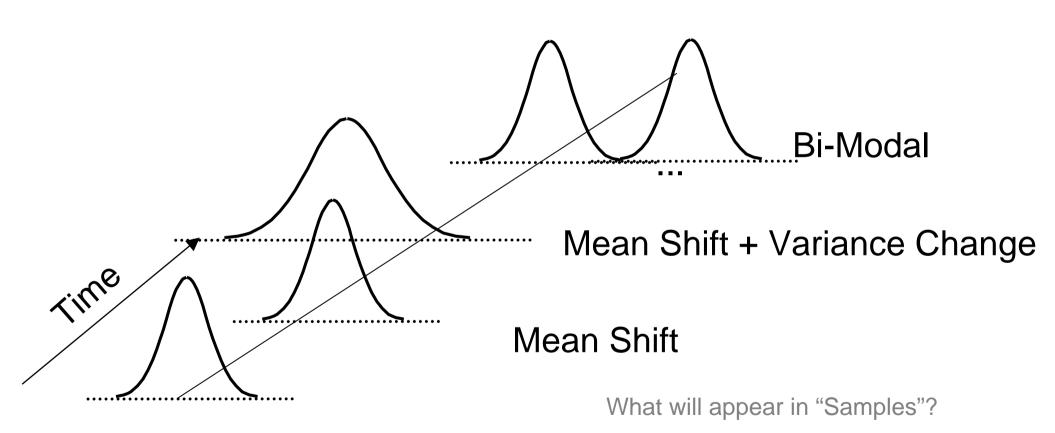
"In-Control"



"Not In-Control"



"Not In-Control"

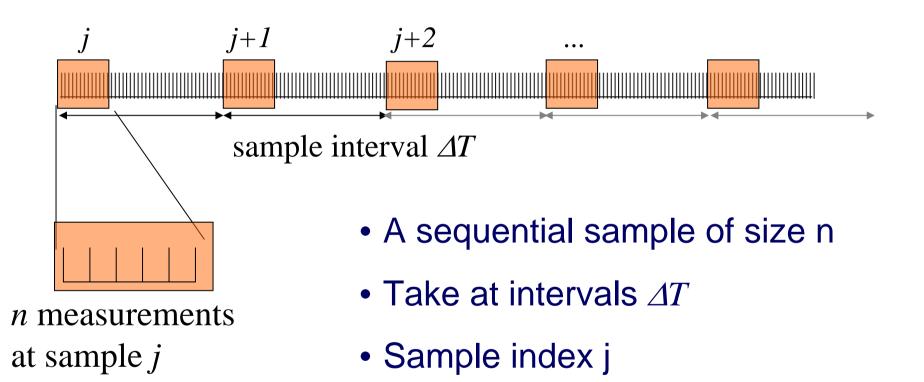


Xbar and S Charts

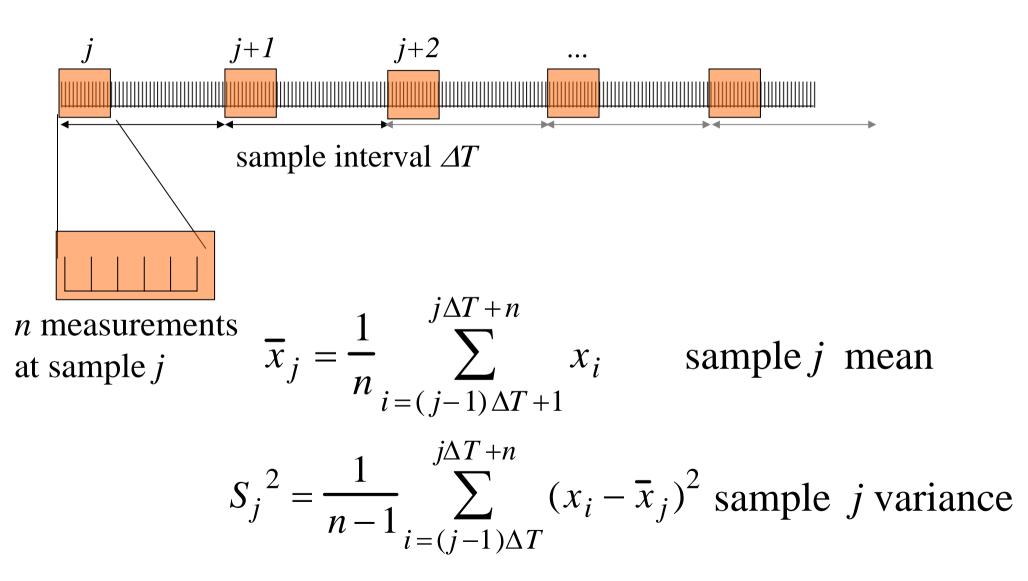
- Shewhart:
 - Plot sequential average of process
 - Xbar chart
 - Distribution?
 - Plot sequential sample standard deviation
 - S chart
 - Distribution?

Data Sampling and Sequential Averages

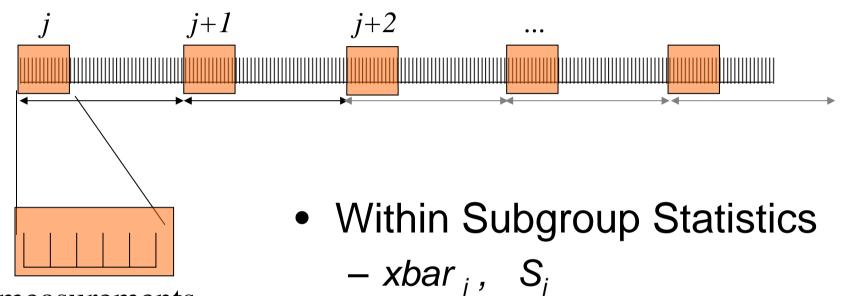
• Given a sequence of process outputs x_i:



Data Sampling



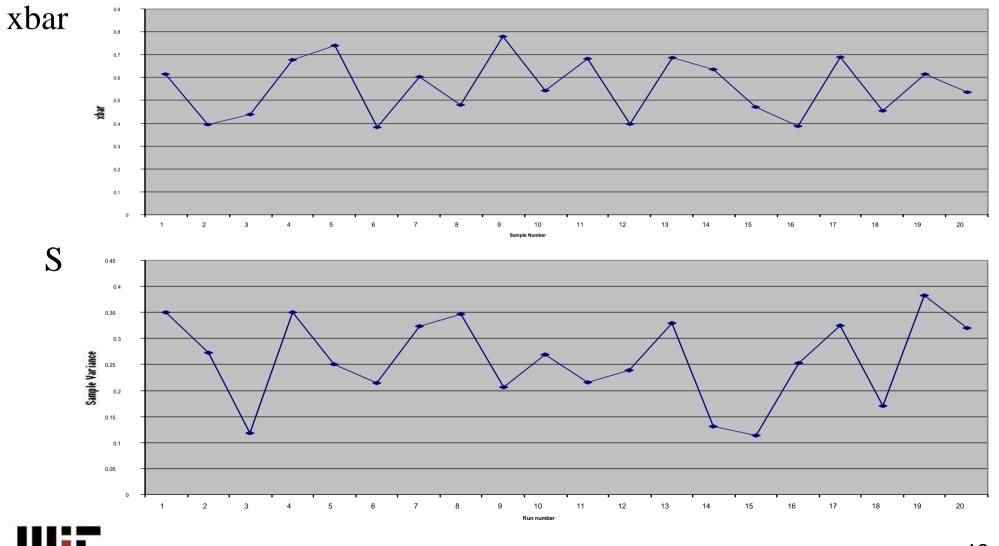
Subgroups



n measurements at sample *j*

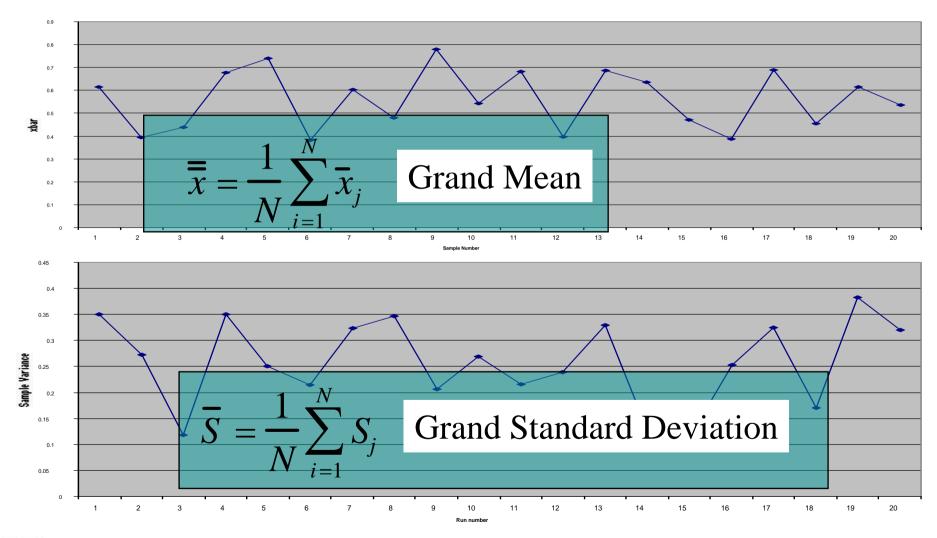
- Between Subgroup Statistics
 - Average of xbar_i
 - Variance of xbar(j)

Plot of xbar and S Random Data n=5



Manufacturing

Overall Statistics



Setting Chart Limits

- Expected Ranges
 - Grand mean and Variance
 - (based on what data and how many data points?)
- Confidence Intervals
 - Intervals of <u>+</u> n Standard Deviations
 - Most Typical is <u>+</u> 3σ (US) or 0.1% (Europe)

Chart Limits - Xbar

• If we knew σ_x then:

$$\sigma_{\overline{x}} = \sqrt{\frac{1}{n}}\sigma_x$$

• But Since we *Estimate* the Sample Standard Deviation, then

E(S_j) = C₄
$$\sigma_{\overline{x}}$$
 (S_j is a biased estimator)
where $C_4 = \left(\frac{2}{n-1}\right)^{1/2} \frac{\Gamma(n/2)}{\Gamma((n-1)/2)}$

Chart Limits xbar chart

With this "correction" we can set limit at $\pm 3\sigma_{xbar}$ Or set a confidence interval of 99.7% Or a test significance of 0.3%

$$UCL = \overline{\overline{x}} + 3\frac{\overline{S}}{C_4\sqrt{n}} \qquad LCL = \overline{\overline{x}} - 3\frac{\overline{S}}{C_4\sqrt{n}}$$

For the example *n*=5

$$C_4 = (0.5)^{1/2} \frac{\Gamma(2.5)}{\Gamma(2)} = 0.707 \frac{1.33}{1} = 0.94$$

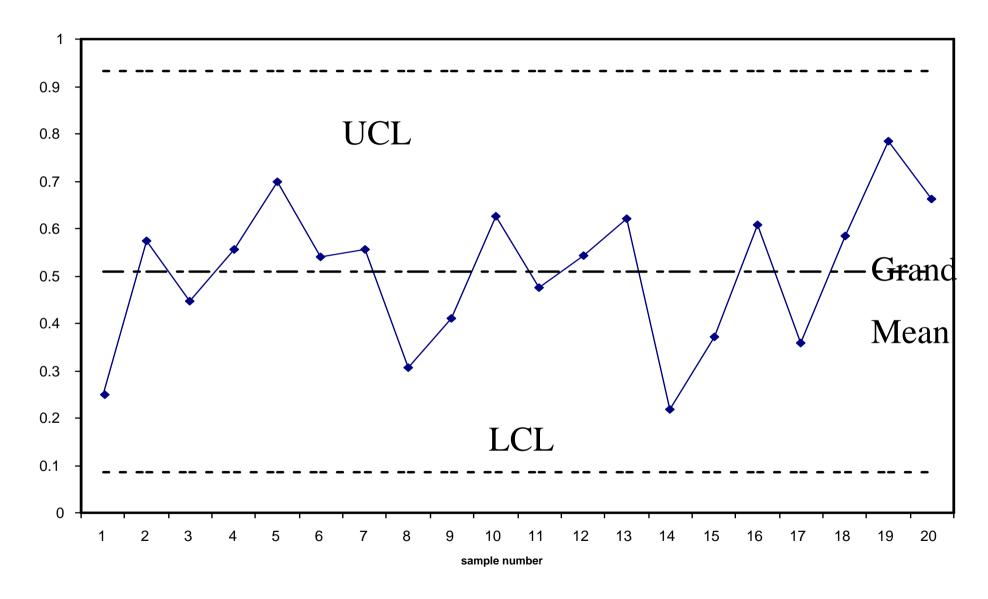
Chart Limits S

The variance of the estimate of S can be shown to be: $\sigma_{\rm S} = \sigma \sqrt{1 - C_4^2}$

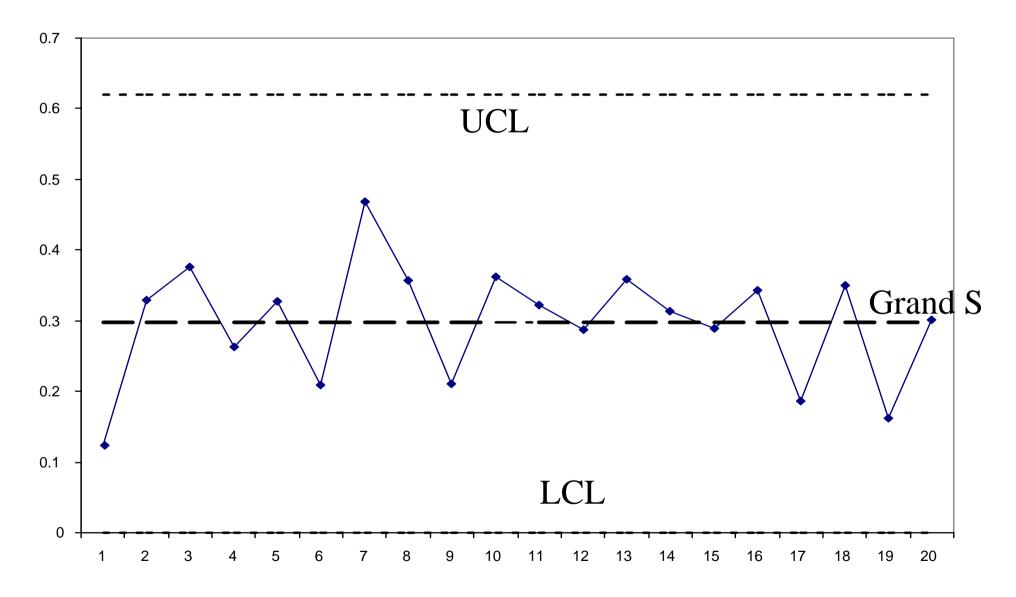
So we get the chart limits:

$$UCL = \bar{S} + 3\frac{\bar{S}}{C_4}\sqrt{1 - C_4^2}$$
$$LCL = \bar{S} - 3\frac{\bar{S}}{C_4}\sqrt{1 - C_4^2}$$

Example xbar



Example S



Detecting Problems from Running Data

Appearance of data

Confidence Intervals

– Frequency of extremes

- Trends

The 8 rules from Devor et al

(Based on Confidence Intervals)

- Prob. of data in a band
- Based on Periodicity
- Based on Linear Trends
- Based on Mean Shift

Test for "Out of Control"

- Extreme Points
 - Outside $\pm 3\sigma$
- Improbable Points
 - 2 of 3 >±2σ
 - 4 of 5 > \pm 1 σ
 - All points inside $\pm 1\sigma$

Tests for "Out of Control"

- Consistently above or below centerline
 Runs of 8 or more
- Linear Trends
 - 6 or more points in consistent direction
- Bi-Modal Data
 - 8 successive points outside $\pm 1\sigma$

Applying Shewhart Charting

- Find a run of 25-50 points that are "in-control"
- Compute chart centerlines and limits
- Begin Plotting subsequent $xbar_i$ and S_i
- Apply the 8 rules, or look for trends, improbable events or extremes.
- If these occur, process is "out of control"

Out of Control

Data is not Stationary

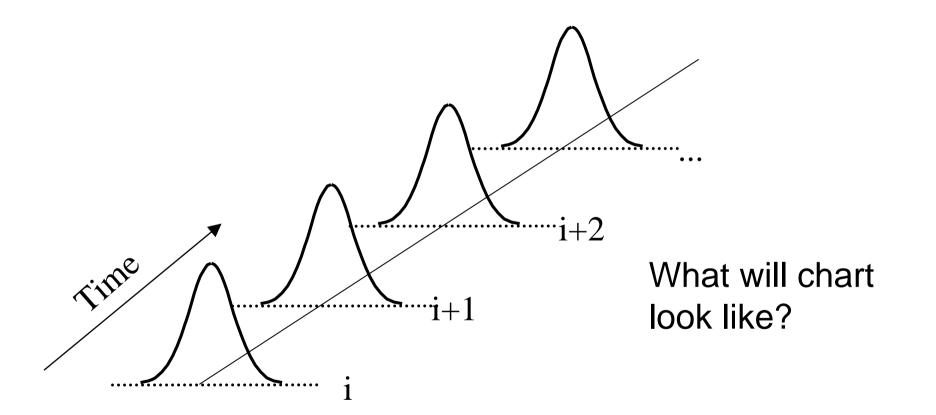
(μ or σ are not constant)

- Process Output is being "caused" by a disturbance (common cause)
- This disturbance can be identified and eliminated
 - Trends indicate certain types
 - Correlation with know events
 - shift changes
 - material changes

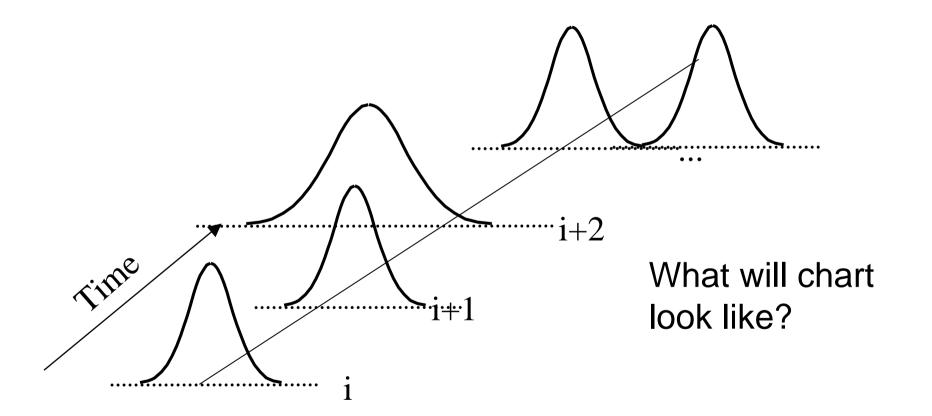
Western Electric Rules (See Table 4-1)

- Points outside limits
- 2-3 consecutive points outside 2 sigma
- Four of five consecutive points beyond 1 sigma
- Run of 8 consecutive points on one side of center

"In-Control"

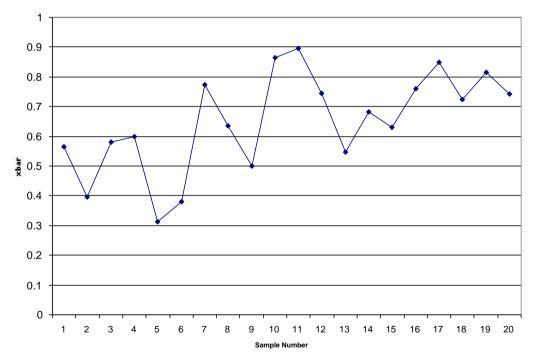


"Not In-Control"



Detecting Mean Shifts: Chart Sensitivity

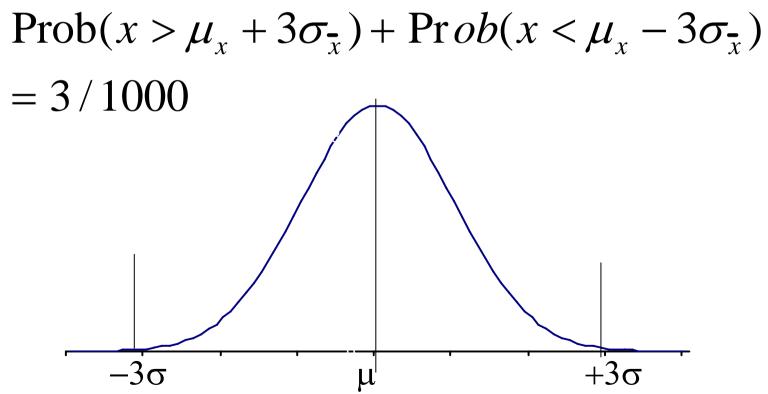
• Consider a real shift of $\Delta \mu_x$:



 How many samples before we can expect to detect the shift on the xbar chart?

Average Run Length

• How often will the data exceed the $\pm 3\sigma$ limits if $\Delta \mu_x = 0$?

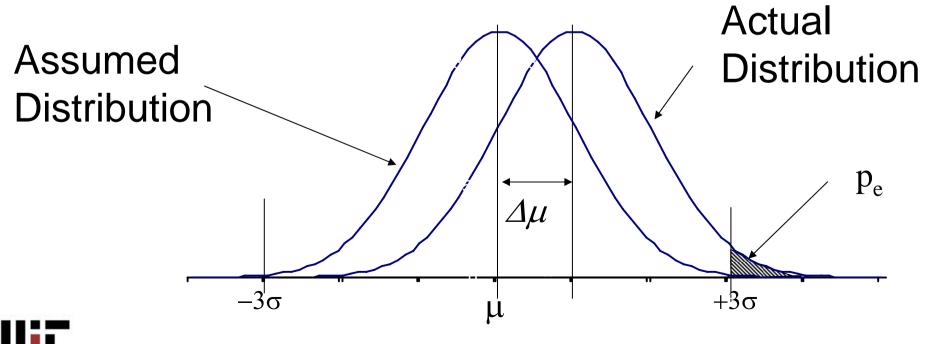


Average Run Length

• How often will the data exceed the $\pm 3\sigma$ limits if $\Delta \mu_x = \pm 1\sigma$?

$$Prob(x > \mu_x + 2\sigma_{\bar{x}}) + Prob(x < \mu_x - 4\sigma_{\bar{x}})$$

= 0.023 + 0.001 = 24 / 1000



Manufacturing

Definition

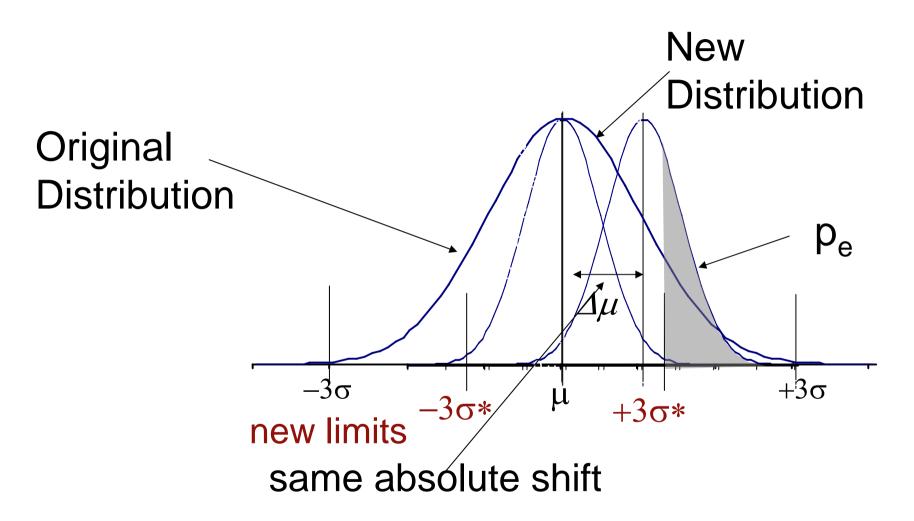
- Average Run Length (arl): Number of runs (or samples) before we can expect a limit to be exceeded = $1/p_e$
 - for $\Delta \mu = 0$ arl = 3/1000 = 333 samples
 - for $\Delta \mu = 1\sigma$ arl = 24/1000 = 42 samples

Even with a mean shift as large as 1σ , it could take **42** samples before we know it!!!

Effect of Sample Size n on ARL

- Assume the same $\Delta \mu = 1\sigma$ - Note that $\Delta \mu$ is an absolute value
- If we increase n, the Variance of xbar decreases: $\sigma_{\bar{x}} = \frac{\sigma_x}{\sqrt{n}}$
- So our $\pm 3\sigma$ limits move closer together

ARL Example

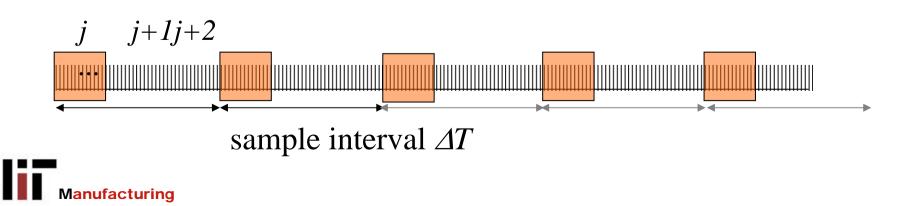


As $n \text{ increases } p_e$ increases so ARL decreases

Design of the Chart

- Sample size n
 - Central Limit theorem
 - ARL effects?
- Selection of Reference Data
 - Is S at a minimum ?
- Sample time ΔT
 - Cost of sampling
 - production without data
 - Rapid phenomena

Sample size and "filtering" versus response time to changes



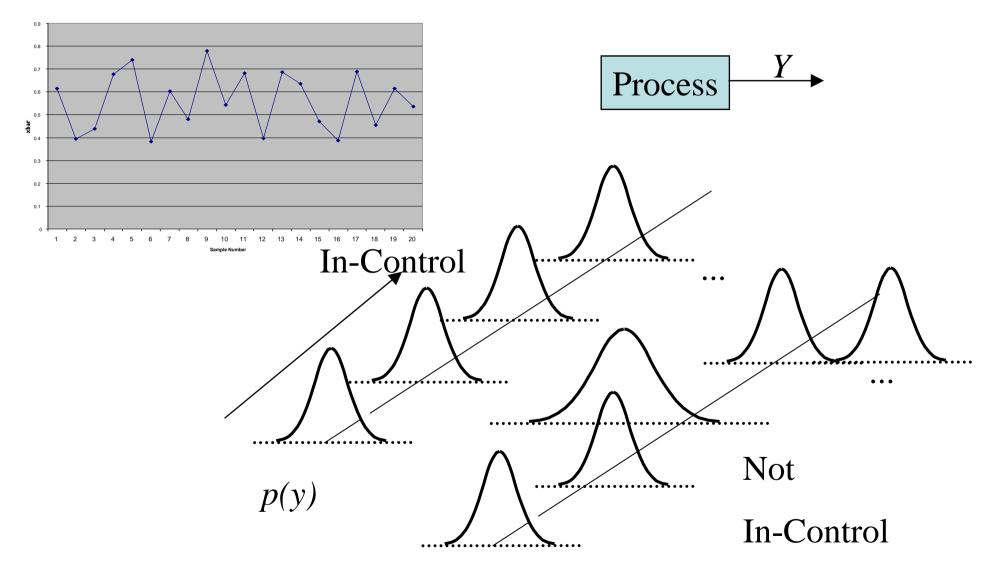
Limits and Extensions

- Need for averaging
- Assumptions of Normality
- Assumption of independence
- Pitfalls
 - Misinterpretation of Data
 - Improper Sampling
- What are alternatives?
 - Different Sampling Schemes
 - Different Averaging Schemes
 - Continuous Update to Improve Statistics

Conclusions

- Hypothesis Testing
 - Use knowledge of PDFs to evaluate hypotheses
 - Quantify the degree of certainty (a and b)
 - Evaluate effect of sampling and sample size
- Shewhart Charts
 - Application of Statistics to Production
 - Plot Evolution of Sample Statistics \overline{x} and S
 - Look for Deviations from Model

Detection : The SPC Hypothesis



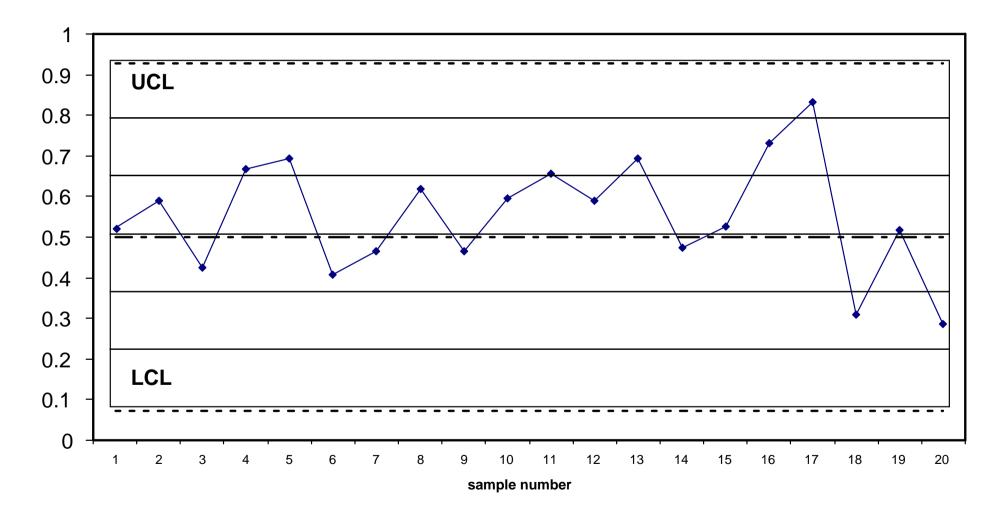
Out of Control

- Data is not Stationary (μ or σ are not constant)
- Process Output is being "caused" by a disturbance (assignable or special cause)
- This disturbance can be identified and eliminated
 - Trends indicate certain types
 - Correlation with know events
 - shift changes
 - material changes

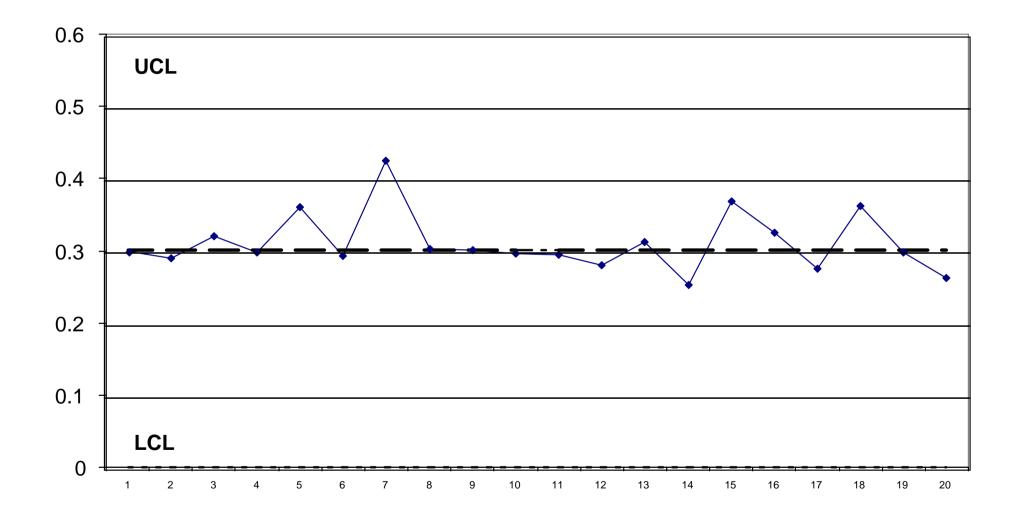
Use of the S Chart

- Plot of sample Variance
 Variance of the Mean for Shewhart xbar (n>1)
- What Does it Tell Us about State of Control?
 It simply plots the "other" statistic

Consider this Process Xbar Chart



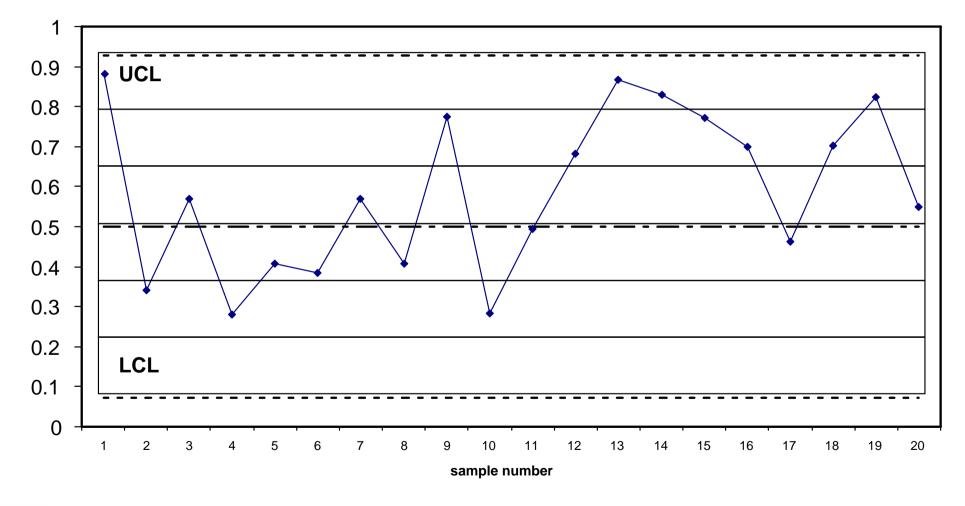
And the S Chart



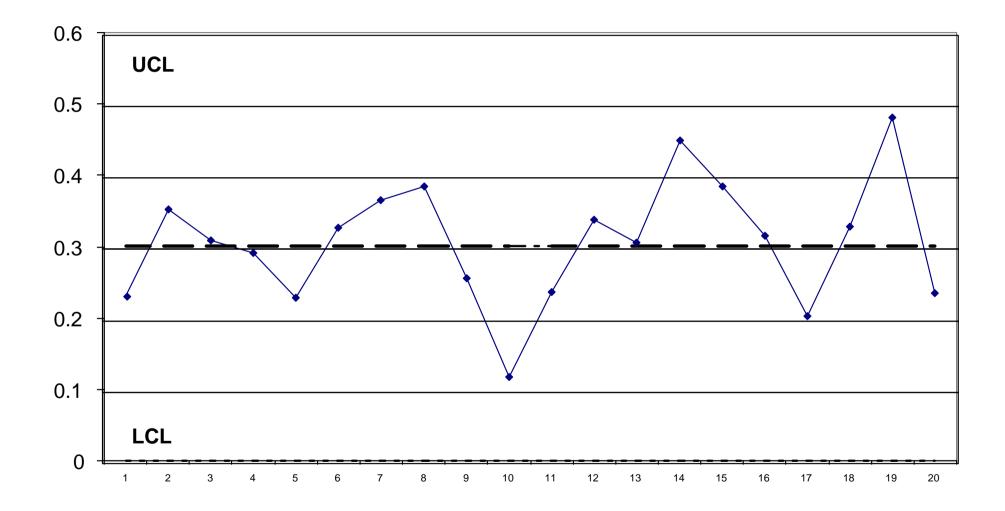
In Control?

Same Process Later in Time

Xbar

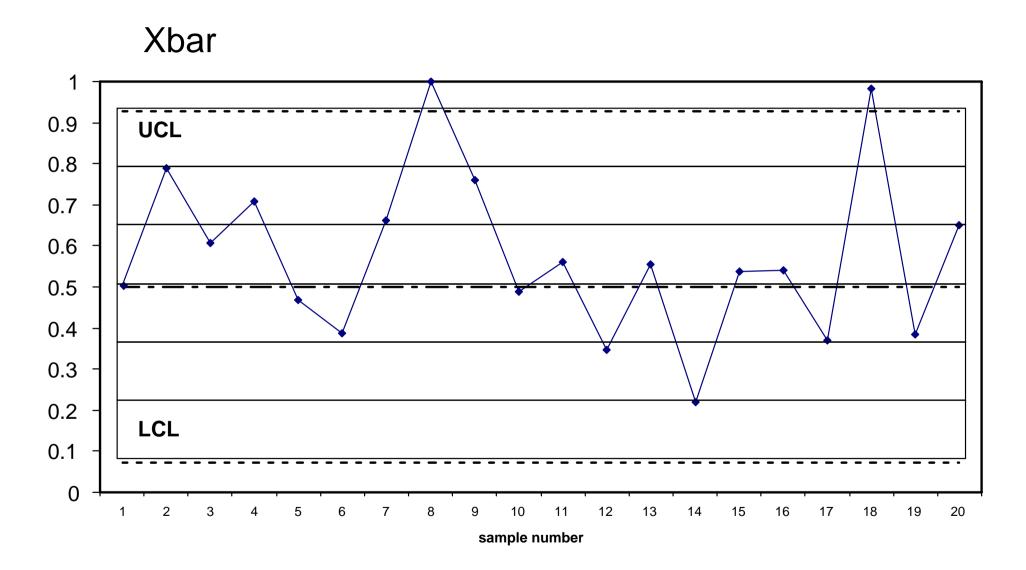


Later S Chart

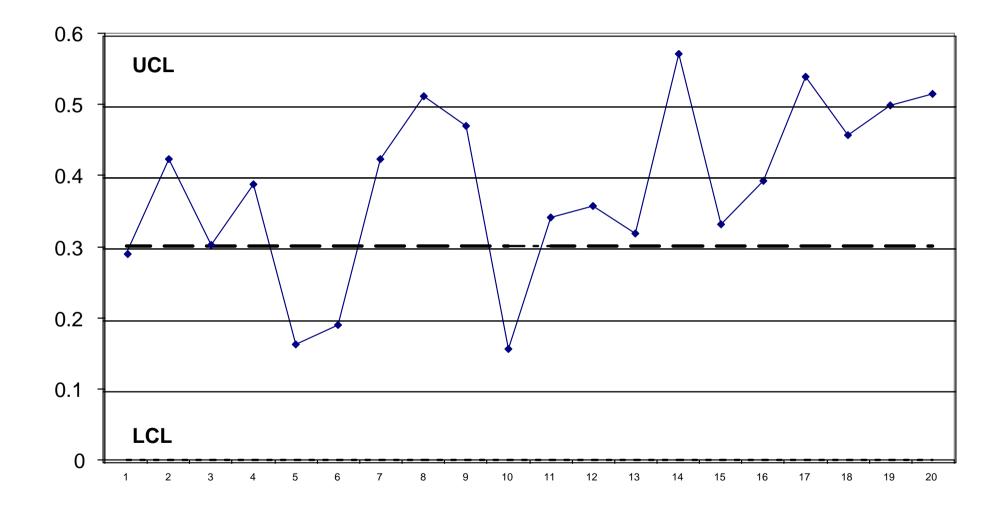


What Changed??

A Different Sequence



S Chart



Use of S Chart

- Detect Changes in Variance of Parent Distribution
- Distinguish Between Mean and Variance Changes

Statistical Process Control

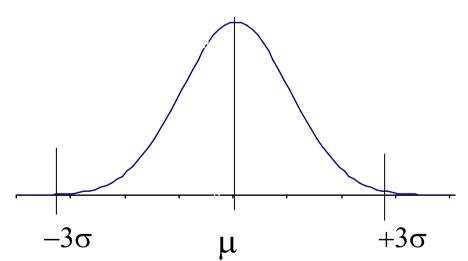
- Model Process as a Normal Independent* Random Variable
- Completely described by μ and σ
- Estimate using *xba*r and s
- Enforce Stationary Conditions
- Look for Deviations in Either Statistic
- If so?
- Call an Engineer!

Another Use of the Statistical Process Model: The Manufacturing -Design Interface

We now have an empirical model of the process

How "good" is the process?

Is it capable of producing what we need?



Process Capability

- Assume Process is In-control
- Described fully by xbar and s
- Compare to Design Specifications
 - Tolerances
 - Quality Loss

Design Specifications

• Tolerances: Upper and Lower Limits

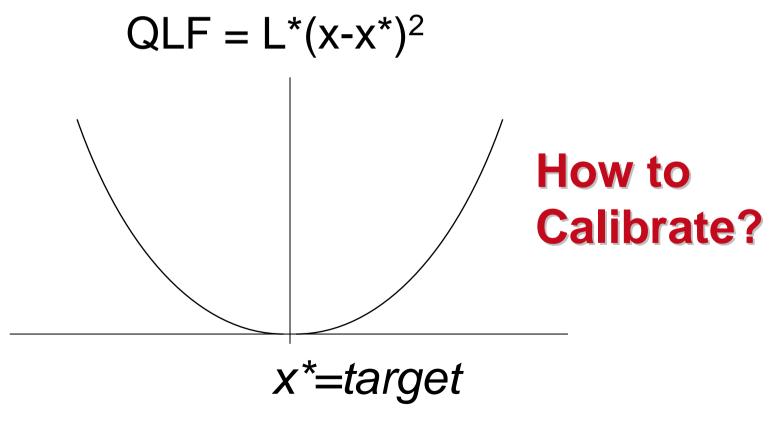
nufacturing



53

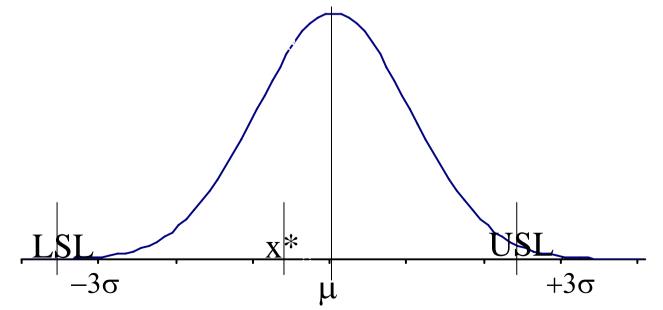
Design Specifications

 Quality Loss: Penalty for Any Deviation from Target



Use of Tolerances: Process Capability

- Define Process using a Normal Distribution
- Superimpose x*, LSL and USL
- Evaluate Expected Performance



Process Capability

• Definitions

$$C_p = \frac{(USL - LSL)}{6\sigma} = \frac{\text{tolerance range}}{99.97\%}$$
 confidence range

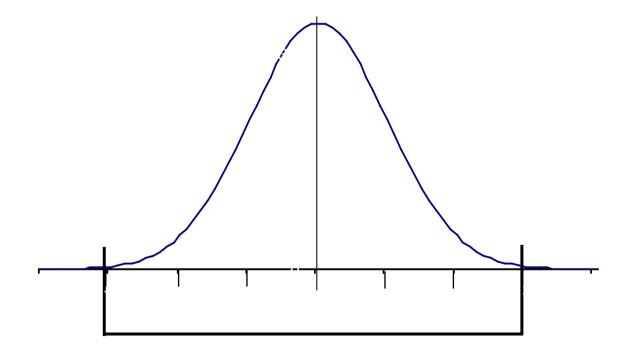
- Compares ranges only
- No effect of a mean shift:

Process Capability: C_{pk}

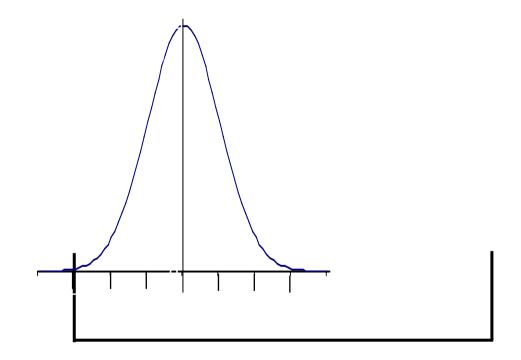
$$C_{pk} = \min\left(\frac{(USL - \mu)}{3\sigma}, \frac{(LSL - \mu)}{3\sigma}\right)$$

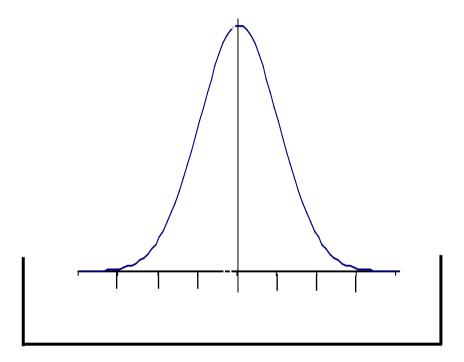
= Minimum of the normalized deviation from the mean

• Compares effect of offsets



-





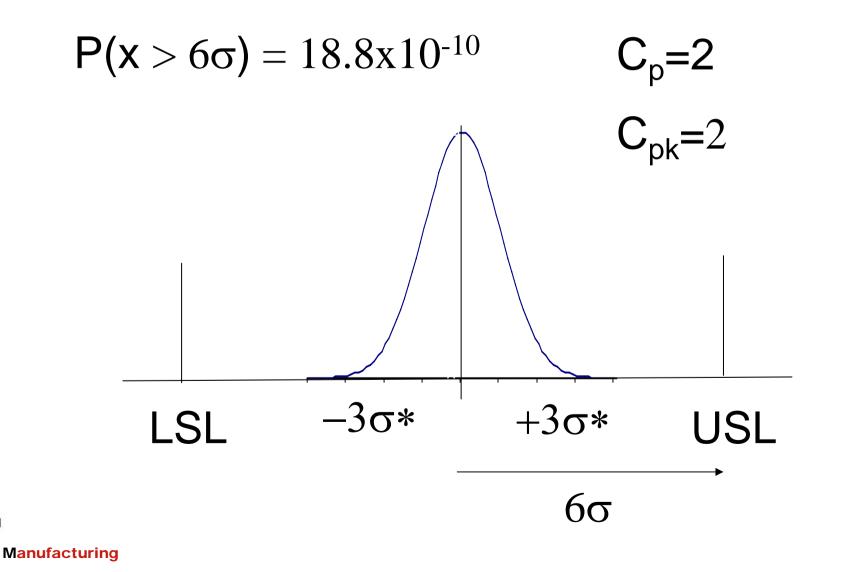
Effect of Changes

- In Design Specs
- In Process Mean
- In Process Variance
- What are good values of Cp and Cpk?

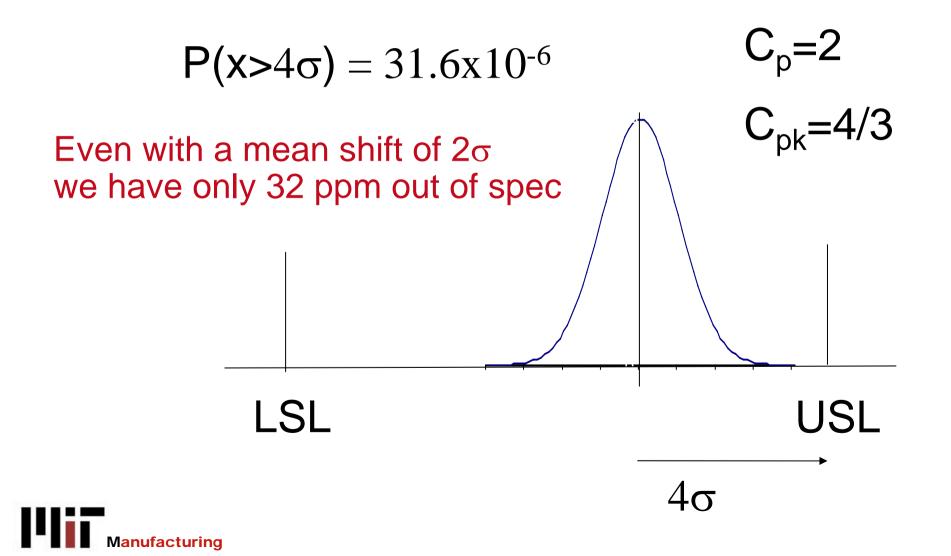
Cpk Table

Cpk	Z	P <ls or<br="">P>USL</ls>
1	3	1E-03
1.33	5	3E-07
1.67	4	3E-05
2	6	1E-09

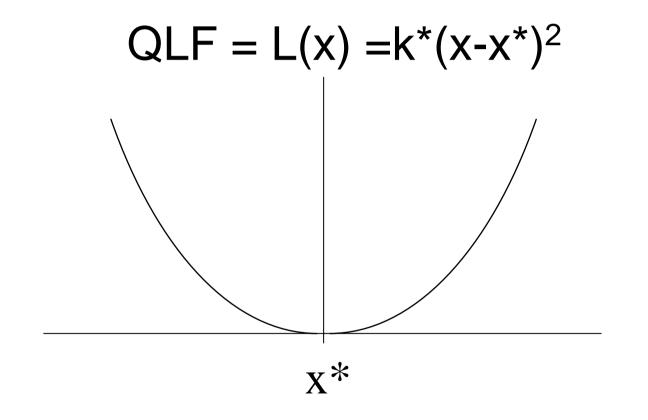
The "6 Sigma" problem



The 6 σ problem: Mean Shifts



Capability from the Quality Loss Function



Given L(x) and p(x) what is E{L(x)}?

Expected Quality Loss

$$E\{L(x)\} = E[k(x - x^*)^2]$$

= $k[E(x^2) - 2E(xx^*) + E(x^{*2})]$
= $k\sigma_x^2 + k(\mu_x - x^*)^2$
/
Penalizes
Variation
Deviation

μ

Manufacturing

Process Capability

- The reality (the process statistics)
- The requirements (the design specs)
- Cp a measure of variance vs. tolerance
- Cpk a measure of variance from target
- Expected Loss- An overall measure of goodness

