2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303) Spring 2008

For information about citing these materials or our Terms of Use, visit: <u>http://ocw.mit.edu/terms</u>.

Control of Manufacturing Processes

Subject 2.830/6.780/ESD.63 Spring 2008 Lecture #4

Probability Models of Manufacturing Processes

February 14, 2008

Note: Reading Assignment

- May & Spanos
 - Read Chapter 4
- Montgomery
 - Skim/consult Chapters 2 & 3 if need additional explanations or examples beyond May & Spanos

Turning Process

Observations from Experiments

• Randomness + Deterministic Changes

Manufacturing

CNC Data

Brake Bending of Sheet

Bending Process

Observations from Bending Process

- Clear Input-Output Effects (Deterministic)
- Also Randomness as well

Manufacturing

Observations from Injection Molding

Observations from Data

 Clearly some measurement "noise"? shift 3 shift 2 shift 1 22 23 σh. 67 69

Observations from Data

• Systematic/traceable "operator error"

Sheet Shearing

How Model to Distinguish these Effects?

A Random Process + A Deterministic Process

Random Processes

 Consider the Output-only, "Black Box" view of the Run Chart

- How do we characterize the process?
 - Using Y(t) only
- WHY do we characterize the process Using *Y(t)* only?

The Why

- Did output really change?
- Did the input cause the change?
- If not, why did the output vary?
- How confident are we of these answers?

• Can we model the randomness?

Background Needed

- Theory of Random Processes and Random Variables
- Use of Sample Statistics Based on Measurements
 - SPC basis
 - DOE: use of experimental I/O data
 - Feedback control with random disturbances

How to Describe Randomness?

- Look at a Frequency Histogram of the Data
- Estimates likelihood of certain ranges occurring:

$$-\Pr(y_1 < Y < y_2)$$

- "Probability that a random variable Y falls between the limits y_1 and y_2 "

Example: Thermoforming Histogram (2000 data)

How to Describe Continuous Randomness

- Process outputs Y are continuous variables
- The *Probability* of *Y(t)* taking on any specific value for a continuum

$$\operatorname{Prob}(Y(t) = y^*) = \underline{0}$$

- Must use instead a Cumulative Probability Function Pr(Y(t)<y*)
 - Look at Cumulative Frequency

Cumulative Frequency

Continuous Equivalents

Probability Function: (P(x))

• Probability Density Function pdf(x) = dP/dx

Process Outputs as a Random Variable

- The Histogram suggests a pdf
 - Parent or underlying behavior "sampled" by the process
- Standard Forms (There are Many)
 - e.g. The Uniform and Normal pdf's

Analysis of Histograms

- Is there a consistent pattern?
- Is an underlying "parent" distribution suggested?

Histogram for CNC Turning

Histogram for Bending (MIT 2002 data)

Histogram for Bending (MIT 2002 data)

Consider: No Intentional Changes ($\Delta u = 0$)

• Shearing during shift 1('02), aluminum only

Consider: No Effective Changes ($\partial Y / \partial u = 0$)

• Injection Molding Entire MIT Run (2002)

Injection Molding (S'2003)

Conclusion?

- When there are no input effect (no ∆u or ∂Y/∂u) a consistent histogram pattern can emerge
- How do we use knowledge of this pattern?
 - Predict behavior
 - Set limits on "normal" behavior
- Define analytical probability density functions

Underlying or "Parent" Probability

- A model of the "true", continuous behavior of the random process
- Can be thought of as a continuous random variable obeying a set of rules (the *probability function*)
- We can only glimpse into these rules by sampling the random variable (i.e. the process output)
- Underlying process can have
 - Continuous values (e.g. geometry)
 - Discrete values (e.g. defect occurrence)

Continuous Probability Functions

Recall Probability Function (Cumulative)
 P(x) = Prob(Y(t) < x)

• Define pdf = p(x) = dP/dx

Thus:
$$P(x) = \int_{-\infty}^{x} p df(x) dx$$

Х

Use of the *pdf* : Expectation

$$E\{x(t)\} =$$
 expected value of $x(t)$

$$E\{x(t)\} = \int_{-\infty}^{\infty} x(t) p df(x,t) dx$$

 $\mu(t) = E\{\mathbf{x}(t)\}$ mean value of x

Note that *pdf* and μ (*or any other expected value*) can be functions of time. In general, they may be <u>non-stationary</u>.

Stationary Processes

$$pdf(x,t) = pdf(x) = p(x)$$
 : stationary pdf

$$E\{x\} = \int_{-\infty}^{\infty} x \ p(x) dx = \mu_x$$

 μ_x : theoretical or "true" mean

• For a stationary process μ_x is a constant

Stationary Processes

$$E\{(x-\mu_x)^2\} = \int_{-\infty}^{\infty} (x-\mu_x)^2 p(x) dx = \sigma_x^2$$
$$= "true" variance$$

• For a stationary process σ_x is a constant

$$\sigma_x^2 = E\{x^2\} - \mu_x^2$$

= mean square - square of mean

The Uniform Distribution

p(x)

 $p(x) = \frac{1}{r} \implies x_1 < x < x_2$ $p(x) = 0 \implies x < x_1 \quad x > x_2$

The Normal Distribution

Ζ

Cumulative Distribution

Properties of the Normal pdf

- Symmetric about mean
- Only two parameters:

 μ and σ

- Superposition Applies:
 - sum of normal random variables has a normal distribution

Superposition of Random Variables

If we define a variable

$$y = C_1 X_1 + C_2 X_2 + C_3 X_3 + C_4 X_4 + \dots$$

- c_i are constants
- x_i are independent random variables

$$\mu_{y} = C_{1}\mu_{1} + C_{2}\mu_{2} + C_{3}\mu_{3} + C_{4}\mu_{4} + \dots$$

$$\sigma_{y}^{2} = C_{1}^{2}\sigma_{i}^{2} + C_{2}^{2}\sigma_{2}^{2} + C_{3}^{2}\sigma_{3}^{2} + C_{4}^{2}\sigma_{4}^{2}$$

From expectation operation, for any pdf.

Use of the PDF: Confidence Intervals

- How likely are certain values of the random variable?
- For a "Standard Normal" Distribution:

Confidence Intervals

- $P(-1 \le z \le 1) = P(z \le 1) P(z \le -1) = 0.841 (1 0.841) = 0.682$ (± 1σ)
- P(-2≤z≤2) = P(z ≤2) P(z ≤-2) = 0.977 (1-0.977) = **0.954** (± 2 σ)
- $P(-3 \le z \le 3) = P(z \le 3) P(z \le -3) = 0.998 (1 0.998) = 0.997$ $(\pm 3\sigma)$

P(z) tabulated (e.g. p. 752 of Montgomery)

Confidence Intervals

Is the Process "Normal" ?

- Is the underlying distribution really normal?
 - Look at histogram
 - Look at curve fit to histogram
 - Look at % of data in 1, 2 and 3 σ bands
 - Confidence Intervals
 - Probability (or qq) plots (see Mont. 3-3.7)
 - Look at "kurtosis"
 - Measure of deviation from normal

Kurtosis: Deviation from Normal

$$k = \frac{E(x - \mu_x)^4}{\sigma^4}$$

k=1 - normal k>1 more "peaked" k<1 more "flat"

Or for sampled data:

$$k = \left[\frac{n(n+1)}{(n-1)(n-2)(n-3)}\sum_{i=1}^{n} \left[\frac{x_i - \bar{x}}{s}\right]^4\right] - \frac{3(n-1)^2}{(n-2)(n-3)}$$

The Central Limit Theorem

- If x_1, x_2, x_3, x_N ... are N independent observations of a random variable with "moments" μ_x and $\sigma_{x'}^2$
- The distribution of the *sum* of all the samples will tend toward normal.

Example: Uniformly Distributed Data

Sampling: Using Measurements (Data) to Model the Random Process

- In general p(x) is unknown
- Data can suggest form of p(x)
 - e.g.. uniform, normal, weibull, etc.
- Data can be used to estimate parameters of distributions

- e.g. μ and σ for normal distribution - $p(x) = p(x, \mu, \sigma)$

- How to Estimate
 - Sample Statistics
- Uncertainty in Estimates
 - Sample Statistic pdf's

Sample Statistics

x(j) = samples of x(t) taken *n* times

$$\overline{x} = \frac{1}{n} \sum_{j=1}^{n} x(j)$$
: Average or Sample Mean

$$S^{2} = \frac{1}{n-1} \sum_{j=1}^{n} (x(j) - \overline{x})^{2}$$
: Sample Variance

$$S = \sqrt{\frac{1}{n-1} \sum_{j=1}^{n} (x(j) - \overline{x})^2}$$
: Sample Std.Dev.

Sample Mean Uncertainty

• If all x_i come from a distribution with μ_x and σ_x^2 , and we divide the sum by n:

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \qquad \overline{x} = c_1 x_1 + c_2 x_2 + c_3 x_3 + \mathbf{K} \ c_n x_n \\ c_i = \frac{1}{n}$$

Then:
$$\mu_{\overline{x}} = \mu_x$$
 and $\sigma_{\overline{x}}^2 = \frac{1}{n}\sigma_x^2$ or $\sigma_{\overline{x}} = \frac{1}{\sqrt{n}}\sigma_x$

Conclusions

- All Physical Processes Have a Degree of Natural Randomness
- We can Model this Behavior using Probability
 Distribution Functions
- We can Calibrate and Evaluate the Quality of this Model from Measurement Data

