MIT OpenCourseWare
http://ocw.mit.edu
2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303) Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Massachusetts Institute of Technology
 Department of Mechanical Engineering
 2.830/6.780J Control of Manufacturing Processes
 Quiz 2 Solution

Problem 1 (45\%)
a)

I	A	B	C	AB	AC	BC	ABC
1	-1	-1	1	1	-1	-1	1
1	-1	1	-1	-1	1	-1	1
1	1	-1	-1	-1	-1	1	1
1	1	1	1	1	1	1	1

b) $\mathrm{A}=\mathrm{BC}, \mathrm{B}=\mathrm{AC}, \mathrm{C}=\mathrm{AB}, \mathrm{I}=\mathrm{ABC}$
c) Assign AC to the column currently representing C . This will have the effect of confounding B with C.
d)

Run \#	A	B	C
1	-1	-1	-1
2	-1	1	1
3	1	-1	-1
4	1	1	1

e) One additional row is needed. This row must distinguish C from B, so their levels must be different, for instance:

A	B	C	AC
1	1	-1	1

f) The above design is not balanced. The levels of the three inputs could be adjusted so the coded columns will add to zero and the design will be balanced, for example:

Run \#	A	B	C
1	-1.5	-1.5	-1
2	-1.5	1	1.5
3	1	-1.5	-1
4	1	1	1.5
5	1	1	-1

Problem 2 (20\%)
a) A 2^{2} experiment would be needed to distinguish the 2-factor interaction
b) 90 (the β_{0} term is the grand mean)
c)

d) Since the mean is specified and there is no model of the variance, the optimum would be that setting that give the target output, and then either maximizes rate or minimizes cost (or some combination of there. For this we set $\mathrm{y}=85$ and solve:
$85=90+10 x_{1}-15 x_{2}+5 x_{1} x_{2}$
$15 x_{2}-5=10 x_{1}+5 x_{1} x_{2}$
$15 x_{2}-5=x_{1}\left(10+5 x_{2}\right)$
$x_{1}=\frac{15 x_{2}-5}{10+5 x_{2}}$
x_{1} and x_{2} must satisfy the above equation to produce $y=85$. Since maximizing feedrate maximizes production rate, the optimum would be to use the maximum feedrate setting, assuming no too wear change means no effect on cost.
e) The variance is minimized when the gradient is zero. Substitute the above relation into the variance model, take the derivative and solve for x_{2}, then use the above relation to find x_{1}.

$$
\begin{aligned}
& \frac{\partial \sigma^{2}}{\partial x_{2}}=0=\frac{7}{\left(x_{2}+2\right)^{2}}-1.12 \\
& \therefore\left\{x_{1}, x_{2}\right\}=\{0.2,0.5\}
\end{aligned}
$$

This ignores the optimization of rate, so now their could be a rate - quality tradeoff to find the final value for the feedrate.

Problem 3 (35\%)
a) From the mean values and variances we can back calculate the correct sums of squares and mean squares. For example, the $\mathrm{SS}_{\text {within }}$ of any row is simply $\mathrm{s}^{2} *(\mathrm{n}-$ 1). The $\mathrm{SS}_{\text {between }+ \text { is }}$ then found from summing the individual deviations of each row average from the grand mean. From this we can get:

ANOVA				F
	SS	dof	MS	F
Between	3.13	$(\mathrm{a}-1)=3$	$3.13 / 3=1.04$	$\mathrm{~F}=1.04 / 0.25=4.27$
Within	13.7	$\mathrm{a}(\mathrm{n}-1)=56$	$13.7 / 56=0.25$	
Total	5.18	59		

b) $\mathrm{F}_{\text {crit }}=\mathrm{F}(0.05,3,56)$ The table in the textbook does not have a row for dof $=60$, so we use dof $=60 . \mathrm{F}_{\text {crit }}=3.34 .<2.84$, so the between variation is significant at the 95% confidence level.
c) If we repeat the above for just the first and last rows we get:

					$P-$ value	F crit
Between Groups Within	0.19	1	0.19	1.18	0.29	4.20
Groups	4.57	28	0.16			
Total	4.76	29				

So now the F test says that there was no significant effect of temperature, so he appears to be wrong, and the extra tests were needed.
d) Clearly the process in not in a state of statistical control, and it is trending down. The other 3 runs are even worse, so all the results are nullified!

