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Case Study Reading

• J. C. Davis, R. S. Gyurcsik, J.-C. Lu, and J. M. Hughes-Oliver, 
“A Robust Metric for Measuring Within-Wafer Uniformity,” IEEE 
Trans. on Components, Packaging, and Manuf. Tech. - Part C,
vol.19, no. 4, pp. 283-289, Oct. 1996. 

• P. K. Mozumder and L. M. Loewenstein, “Method for 
Semiconductor Process Optimization Using Functional 
Representations of Spatial Variations and Selectivity,” IEEE 
Trans. on Components, Hybrids, and Manuf. Tech., vol. 15, no. 
3, pp. 311-316, June 1992. 

• R.-S. Guo and E. Sachs, “Modeling, Optimization and Control 
of Spatial Uniformity in Manufacturing Processes,” IEEE Trans. 
on Semiconductor Manuf., vol. 6, no. 1, pp. 41-57, Feb. 1993.
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Agenda

• Spatial Sampling
– Example: impact of sampling plan on response 

regression

• Spatial Non-Uniformity Models
– DOE/RSM with both process and spatial 

dependencies
– “Multiple Response Surface” (MRS) vs. “Single 

Response Surface” (SRS) approaches
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Spatial Trends

• In many manufacturing processes, a spatial trend 
in some response is observed
– Wafer fabrication: “wafer scale” trends in film 

thicknesses, electrical properties, etc. resulting from 
inherent equipment/process asymmetries

• Key questions: 
– How model?
– How summarize

(e.g. nonuniformity
metric)?

Image removed due to copyright restrictions. Please see 
Fig. 2 in Davis, Joseph C., et al. “A Robust Metric for 
Measuring Within-Wafer Uniformity.” IEEE Transactions 
on Components, Packaging, and Manufacturing 
Technology C 19 (October 1996): 283-289.
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• Synthetic data
– We construct a spatial response for some parameter 

(resistivity) so we know the “true” spatial 
dependency:

• Generate data sets
– Common “circular” wafer map
– Rectangular grid 

• Calculate:
– Response surface model
– Non-uniformity metric, 

e.g. σ/μ

Example
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1. Radial Sampling Plan
• 8 points at a radius of 75 mm
• 8 points at a radius of 50 mm
• 8 points at 25 mm radius
• 1 point at the center of the wafer

X Y rho
25 0 49.9601097

17.68 17.68 49.1136113
0 25 49.7359187

-17.68 17.68 49.8140025
-25 0 48.2246087

-17.68 -17.68 50.1927006
0 -25 49.2427469

17.68 -17.68 49.6791275
50 0 49.8336576

35.36 35.36 49.2292189
0 50 48.9286926

-35.36 35.36 48.2485797
-50 0 47.8966527

-35.36 -35.36 49.2351389
0 -50 49.426475

35.36 -35.36 48.6728475
75 0 48.8338909

53.03 53.03 49.0658809
0 75 49.4461394

-53.03 53.03 47.4035767
-75 0 46.4175911
-53.03 -53.03 48.6600647

0 -75 47.278698
53.03 -53.03 48.6137312

0 0 49.187609
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2. Square Sampling Plan

• 5 x 5 pattern of evenly 
spaced points, at 0, ±40 
mm, and ±80 mm

X Y rho radius
-80 -80 43.0470061 113.137085
-80 -40 43.8235773 89.4427191
-80 0 45.5348185 80
-80 40 46.7131975 89.4427191
-80 80 44.4409087 113.137085
-40 -80 46.9708298 89.4427191
-40 -40 48.0724036 56.5685425
-40 0 48.4718544 40
-40 40 50.0468027 56.5685425
-40 80 48.1854786 89.4427191
0 -80 47.8974197 80
0 -40 47.9125541 40
0 0 50.8052758 0
0 40 49.0474654 40
0 80 49.2586326 80
40 -80 47.0922886 89.4427191
40 -40 49.2927422 56.5685425
40 0 48.9410342 40
40 40 48.4946369 56.5685425
40 80 49.0316954 89.4427191
80 -80 46.2385337 113.137085
80 -40 47.8303103 89.4427191
80 0 47.7426285 80
80 40 49.2722787 89.4427191
80 80 48.1145491 113.137085

-100

-50

0

50

100

y

-100 -50 0 50 100

x Remove bolded data – outside wafer boundary.
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Underlying Patterns (Noise Free)
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• Noise-free interpolation of surfaces, based on 
JMP contouring algorithm.

Radial 25 points Square 21 points (4 excluded)
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Surface Regression – Radial Pattern
• Model form:

Radial Pattern 
 
Summary of Fit 
Rsquare 0.654747
RSquare Adj 0.563891
Root Mean Square Error 0.602697
Mean of Response 48.89365
Observations (or Sum Wgts) 25
 
Analysis of Variance 
Source DF Sum of Squares Mean Square F Ratio
Model 5 13.088445 2.61769 7.2064
Error 19 6.901635 0.36324 Prob > F
C. Total 24 19.990080 0.0006
 
Parameter Estimates 
Term  Estimate Std Error t Ratio Prob>|t|
Intercept  49.572542 0.200911 246.74 <.0001
X  0.0114423 0.003222 3.55 0.0021
Y  0.0021554 0.003222 0.67 0.5115
x*y  0.0001744 0.000097 1.79 0.0894
x*x  -0.00031 0.000075 -4.12 0.0006
y*y  -0.000175 0.000075 -2.32 0.0314
 

• Correctly rejects xy term
• Incorrectly rejects y term
• R2 appears poor at 0.65
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Surface Regression – Square Pattern
• Model form:

Rectangular Pattern 
 
Summary of Fit 
RSquare 0.766179
RSquare Adj 0.688239
Root Mean Square Error 0.859359
Mean of Response 48.11609
Observations (or Sum Wgts) 21
 
Analysis of Variance 
Source DF Sum of Squares Mean Square F Ratio
Model 5 36.298420 7.25968 9.8303
Error 15 11.077466 0.73850 Prob > F
C. Total 20 47.375886 0.0003
 
Parameter Estimates 
Term  Estimate Std Error t Ratio Prob>|t|
Intercept  49.606808 0.395623 125.39 <.0001
x  0.0137149 0.003684 3.72 0.0020
y  0.0115245 0.003684 3.13 0.0069
y*x  -0.000073 0.00009 -0.82 0.4261
x*x  -0.000404 0.000081 -4.98 0.0002
y*y  -0.000172 0.000081 -2.12 0.0514
 

• Correctly rejects xy term
• Keeps y term
• R2 better at 0.77
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Surface Regressions – Summary

• Radial:
– Correctly rejects xy term
– Incorrectly rejects y term
– R2 is poor at 0.65

• Square:
– Correctly rejects xy term
– Keeps y term
– R2 better at 0.77
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Calculated Nonuniformity Metrics
Radial Sampling Plan       
Mean 48.89365
Std Dev 0.91264
Std Err Mean 0.18253
Upper 95% Mean 49.27037
Lower 95% Mean 48.51693
N 25.00000
NU = σ/μ = 0.018666 

Rectangular Sampling Plan 
Mean 48.11609 
Std Dev 1.53909 
Std Err Mean 0.33586 
upper 95% Mean 48.81667 
lower 95% Mean 47.41551 
N 21.00000 
NU = σ/μ = 0.031987 

• Very different apparent non-uniformities!
– 1.9% vs. 3.2%

• Why?
– May be sampling different portions of curvature
– Data points are “representing” different amounts of 

the underlying wafer surface
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Estimates from Dense 29 x 29 Spatial Sample
Moments 
Mean 48.30429
Std Dev 1.52280
Std Err Mean 0.05905
upper 95% Mean 48.42024
lower 95% Mean 48.18834
N 665.00000
NU = σ/μ = 0.031525 

Summary of Fit 
RSquare 0.768175
RSquare Adj 0.766416
Root Mean Square Error 0.735979
Mean of Response 48.30429
Observations (or Sum Wgts) 665
Analysis of Variance 
Source DF Sum of Squares Mean Square F Ratio
Model 5 1182.8127 236.563 436.7318
Error 659 356.9575 0.542 Prob > F
C. Total 664 1539.7702  <.0001
Parameter Estimates 
Term  Estimate Std Error t Ratio Prob>|t|
Intercept  49.883177 0.057113 873.41 0.0000
x  0.016497 0.000569 28.99 <.0001
y  0.0061666 0.000569 10.84 <.0001
y*x  -0.000007 0.000014 -0.50 0.6158
x*x  -0.000414 0.000012 -34.35 <.0001
y*y  -0.000214 0.000012 -17.72 <.0001
 

• “True” NU about 3.15%

• NOTE: R2 still only 0.77. 
Cannot “model” away the 
random σ2 = 0.49 noise!
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Robust Within-Wafer Uniformity Measures

• Davis et al.
– Signal-to-noise (SNR) ratio for systematic trends is 

sensitive to location and number of measurements
– Proposes an “Integration Statistic”

• Base SNR on the total nonuniformity across an entire 
(spline) interpolated surface

• Simple approximation
– Get much of the benefit by

• Uniform sampling, or
• Weighting importance of each measurement point by the 

amount of area that point represents
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Typical: Linear Interpolation of Surface

E.g. 8 + 4 + 1

• Clearly only a coarse approximation of surface
– Non-uniformity metrics based on this are subject to bias 

and variance errors

Image removed due to copyright restrictions. Please see 
Fig. 1 in Davis, Joseph C., et al. “A Robust Metric for 
Measuring Within-Wafer Uniformity.” IEEE Transactions 
on Components, Packaging, and Manufacturing 
Technology C 19 (October 1996): 283-289.
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Proposed Interpolator: Thin Plate Splines

• TPS: essentially localized polynomials with minimum 
curvature between “knots” or data points

Image removed due to copyright restrictions. Please see 
Fig. 2 in Davis, Joseph C., et al. “A Robust Metric for 
Measuring Within-Wafer Uniformity.” IEEE Transactions 
on Components, Packaging, and Manufacturing 
Technology C 19 (October 1996): 283-289.
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Alternative to SNR (σ/μ): 
“Integration Statistic” I

• Key ideas
– Use interpolated surface g(r, θ)
– Integrate deviations across the entire surface
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Integration Statistic & Quality Loss

• Concern: cancellation in simple integration statistic
• Alternative: modify with a loss transformation
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Approximation to Integral

• Where Cj weight accounts for interpolation
– Davis et al.: weights from coefficients of 

spline interpolation function
– Alternative: the area that the point xj

represents
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Improvement – Radial Nonuniformity Example

• Typical radial spatial pattern
– SNR = µ/σ with radial measurements

• See bias for small # data
– Integration statistic based on TPS

• Removes bias
• Reduces variance

15% deterministic
+ 2% random 5, 13, 25, 73 points

300 
runs

Image removed due to copyright restrictions. Please see 
Fig. 4-7 in Davis, Joseph C., et al. “A Robust Metric for 
Measuring Within-Wafer Uniformity.” IEEE Transactions 
on Components, Packaging, and Manufacturing 
Technology C 19 (October 1996): 283-289.
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Improvement – Asymmetrical Pattern
• Asymmetrical nonuniformity

– 13 measurement sites
– SNR with angular rotation

• Highly sensitive to angle
– Integration statistic based on TPS

• Reduced (but not eliminated) bias 
(20% smaller variation)

Image removed due to copyright restrictions. Please see 
Fig. 8-10 in Davis, Joseph C., et al. “A Robust Metric for 
Measuring Within-Wafer Uniformity.” IEEE Transactions 
on Components, Packaging, and Manufacturing 
Technology C 19 (October 1996): 283-289.
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Agenda

• Spatial Sampling
– Example: impact of sampling plan on response 

regression

• Spatial Non-Uniformity Models
– DOE/RSM with both process and spatial 

dependencies
– “Multiple Response Surface” (MRS) vs. “Single 

Response Surface” (SRS) approaches
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• Silicon nitride etch
• Want response surface models for:

– Nitride and oxide etch rates: R(Si3N4) and R(SiO2)
– Nonuniformity of etch rates: U(Si3N4) and 

U(SiO2)
– Selectivity of nitride to oxide: S(Si3N4:SiO2)
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Typical Etch Nonuniformity – Oxide Etch Rate

• Relevant Process 
Parameters:

• Typical spatial map:
– 19 measurements
– 2 concentric hexagons 

[octagons?] plus center point

Image removed due to copyright restrictions. Please see Table 1 and Fig. 2 
in Mozumder, Purnendu K., and Lee M. Loewenstein. “Method for 
Semiconductor Process Optimization Using Functional Representations of 
Spatial Variations and Selectivity.” IEEE Transactions on Components, 
Hybrids, and Manufacturing Technology 15 (June 1992): 311-316.
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Challenge: Spatial Parameters

• Rates have a spatial dependence
– How model this, as a function of both spatial position 

and the process conditions?

• Nonuniformity is a derived parameter:
– Ratio of standard deviation to mean
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Two-layered Spatial Model of Etch Rates

Spatial Terms

Process
Terms

Image removed due to copyright restrictions. Please see Fig. 3 in 
Mozumder, Purnendu K., and Lee M. Loewenstein. “Method for 
Semiconductor Process Optimization Using Functional Representations of 
Spatial Variations and Selectivity.” IEEE Transactions on Components, 
Hybrids, and Manufacturing Technology 15 (June 1992): 311-316.
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Spatial Models: Regression Surfaces

• Rate as function of position
• Spatial coefficients become functions of 

process conditions

Image removed due to copyright restrictions. Please see Table 3 in 
Mozumder, Purnendu K., and Lee M. Loewenstein. “Method for 
Semiconductor Process Optimization Using Functional Representations of 
Spatial Variations and Selectivity.” IEEE Transactions on Components, 
Hybrids, and Manufacturing Technology 15 (June 1992): 311-316.
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Process Models: Polynomial Regression

• 2nd order + cubic term (in process conditions)
• Process DOE

– Uses Latin Hypercube Sampling (LHS)

Image removed due to copyright restrictions. Please see Table 2 in 
Mozumder, Purnendu K., and Lee M. Loewenstein. “Method for 
Semiconductor Process Optimization Using Functional Representations of 
Spatial Variations and Selectivity.” IEEE Transactions on Components, 
Hybrids, and Manufacturing Technology 15 (June 1992): 311-316.
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Uniformity & Selectivity Functions

• Build out of more fundamental rate functions

• For models of given spatial form:
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Multiobjective Optimization

Image removed due to copyright restrictions. Please see Table 4 and 5 in 
Mozumder, Purnendu K., and Lee M. Loewenstein. “Method for 
Semiconductor Process Optimization Using Functional Representations of 
Spatial Variations and Selectivity.” IEEE Transactions on Components, 
Hybrids, and Manufacturing Technology 15 (June 1992): 311-316.
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Agenda

• Spatial Sampling
– Example: impact of sampling plan on response 

regression

• Spatial Non-Uniformity
– DOE/RSM with both process and spatial 

dependencies
– “Multiple Response Surface” (MRS) vs. 

“Single Response Surface” (SRS) approaches
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• “Site Models”
– Build models for each spatial location as a function 

of the process conditions
– Then combine these sites as necessary for any 

derived or spatial parameters
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(Measurement Sites)

Image removed due to copyright restrictions. Please see Table 1 in Guo, 
Ruey-Shan, and Sachs, Emanuel. “Modeling, Optimization, and Control 
of Spatial Uniformity in Manufacturing Processes.” IEEE Transactions on 
Semiconductor Manufacturing 6 (February 1993): 41-57.
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SRS vs MRS

• Single Response Surface (SRS)
– Directly model σ/μ:

• Multiple Response Surfaces (MRS)
– Lower order 

models of each site

– Combine functionally to derive uniformity
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Claimed MRS Advantages

• Effective models from small number of data
• Rapid adaptation of models after a process 

disturbance
– Important for cycle to cycle control

• Immunity of models to the presence of noise
• Model forms are compatible with process 

knowledge
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Argument: Complexity of Uniformity

Image removed due to copyright restrictions. Please see Fig. 2 in Guo, 
Ruey-Shan, and Sachs, Emanuel. “Modeling, Optimization, and Control 
of Spatial Uniformity in Manufacturing Processes.” IEEE Transactions on 
Semiconductor Manufacturing 6 (February 1993): 41-57.
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Implications for Control

Image removed due to copyright restrictions. Please see Fig. 3 in Guo, 
Ruey-Shan, and Sachs, Emanuel. “Modeling, Optimization, and Control 
of Spatial Uniformity in Manufacturing Processes.” IEEE Transactions on 
Semiconductor Manufacturing 6 (February 1993): 41-57.
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Example: LPCVD of Polysilicon

• Goal is to optimize SNR defined as (μ/σ)2

Image removed due to copyright restrictions. Please see Fig. 4 in Guo, 
Ruey-Shan, and Sachs, Emanuel. “Modeling, Optimization, and Control 
of Spatial Uniformity in Manufacturing Processes.” IEEE Transactions on 
Semiconductor Manufacturing 6 (February 1993): 41-57.
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Image removed due to copyright restrictions. Please see Fig. 5 in Guo, 
Ruey-Shan, and Sachs, Emanuel. “Modeling, Optimization, and Control 
of Spatial Uniformity in Manufacturing Processes.” IEEE Transactions on 
Semiconductor Manufacturing 6 (February 1993): 41-57.
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Image removed due to copyright restrictions. Please see Fig. 6 in Guo, 
Ruey-Shan, and Sachs, Emanuel. “Modeling, Optimization, and Control 
of Spatial Uniformity in Manufacturing Processes.” IEEE Transactions on 
Semiconductor Manufacturing 6 (February 1993): 41-57.
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Model Fits with Injected Noise

SRS MRS

Image removed due to copyright restrictions. Please see Fig. 7 and 8 in 
Guo, Ruey-Shan, and Sachs, Emanuel. “Modeling, Optimization, and 
Control of Spatial Uniformity in Manufacturing Processes.” IEEE 
Transactions on Semiconductor Manufacturing 6 (February 1993): 41-57.
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MRS vs SRS Modeling – Impact on Optimization

Image removed due to copyright restrictions. Please see Fig. 9 and 10 in 
Guo, Ruey-Shan, and Sachs, Emanuel. “Modeling, Optimization, and 
Control of Spatial Uniformity in Manufacturing Processes.” IEEE 
Transactions on Semiconductor Manufacturing 6 (February 1993): 41-57.
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Conclusions

• Spatial Sampling
– Sampling plan impacts spatial modeling
– Uniform sampling, or appropriate weighting

• Combined Process/Spatial Modeling
– Generally better to model fundamental parameters 

as function of process
– Create derived measures using combinations of 

the lower level models
• E.g. spatial nonuniformity, selectivity
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