2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303) Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Control of Manufacturing Processes

Subject 2.830/6.780/ESD.63 Spring 2008 Lecture #21

Case Study: Spatial Modeling

May 6, 2008

1

Case Study Reading

- J. C. Davis, R. S. Gyurcsik, J.-C. Lu, and J. M. Hughes-Oliver, "A Robust Metric for Measuring Within-Wafer Uniformity," *IEEE Trans. on Components, Packaging, and Manuf. Tech. - Part C,* vol.19, no. 4, pp. 283-289, Oct. 1996.
- P. K. Mozumder and L. M. Loewenstein, "Method for Semiconductor Process Optimization Using Functional Representations of Spatial Variations and Selectivity," *IEEE Trans. on Components, Hybrids, and Manuf. Tech.,* vol. 15, no. 3, pp. 311-316, June 1992.
- R.-S. Guo and E. Sachs, "Modeling, Optimization and Control of Spatial Uniformity in Manufacturing Processes," *IEEE Trans. on Semiconductor Manuf.*, vol. 6, no. 1, pp. 41-57, Feb. 1993.

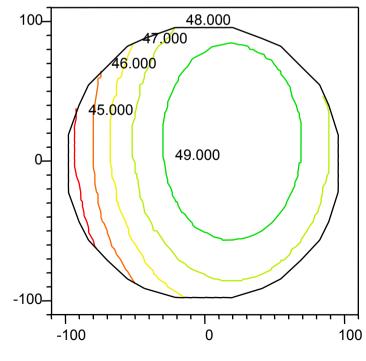
Agenda

- Spatial Sampling
 - Example: impact of sampling plan on response regression
- Spatial Non-Uniformity Models
 - DOE/RSM with both process and spatial dependencies
 - "Multiple Response Surface" (MRS) vs. "Single Response Surface" (SRS) approaches

Spatial Trends

- In many manufacturing processes, a spatial trend in some response is observed
 - Wafer fabrication: "wafer scale" trends in film thicknesses, electrical properties, etc. resulting from inherent equipment/process asymmetries
- Key questions:
 - How model?
 - How summarize (e.g. nonuniformity metric)?

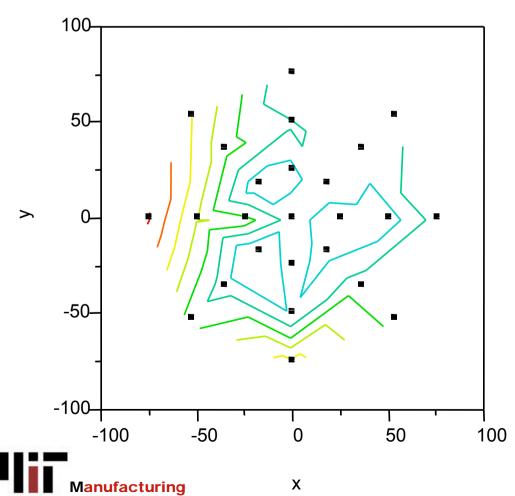
Image removed due to copyright restrictions. Please see Fig. 2 in Davis, Joseph C., et al. "A Robust Metric for Measuring Within-Wafer Uniformity." *IEEE Transactions on Components, Packaging, and Manufacturing Technology C* 19 (October 1996): 283-289.



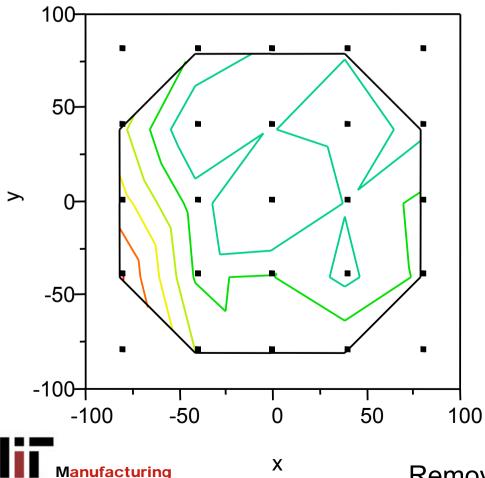
Example

- Synthetic data
 - We construct a spatial response for some parameter (resistivity) so we know the "true" spatial dependency: $\rho = 50 - \frac{(x-20)^2}{50^2} - \frac{(y-15)^2}{70^2} + N(0, 0.49)$
- Generate data sets
 - Common "circular" wafer map
 - Rectangular grid
- Calculate:

anufacturing

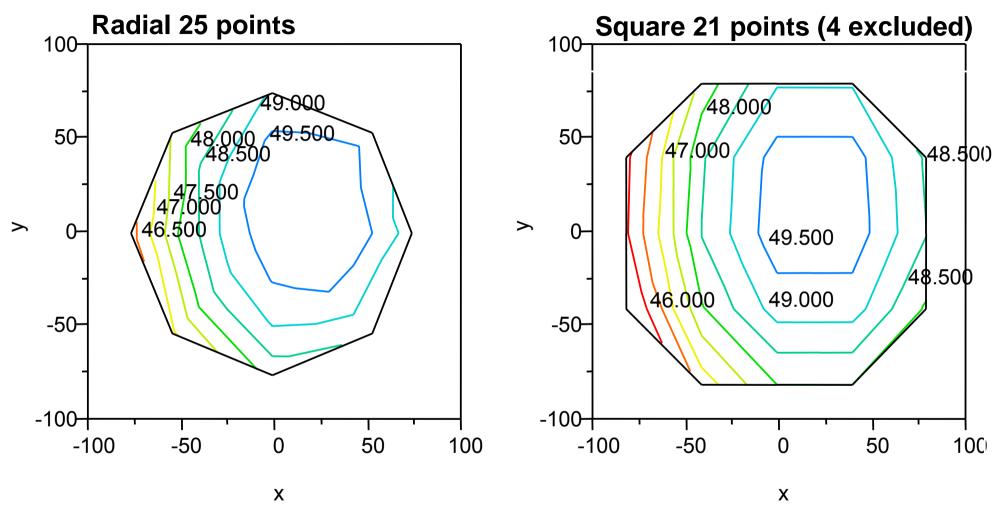

- Response surface model
- Non-uniformity metric,
 e.g. σ/μ

Х


1. Radial Sampling Plan

- 8 points at a radius of 75 mm
- 8 points at a radius of 50 mm
- 8 points at 25 mm radius
- 1 point at the center of the wafer

Х	Y	rho
25	0	49.9601097
17.68	17.68	49.1136113
0	25	49.7359187
-17.68	17.68	49.8140025
-25	0	48.2246087
-17.68	-17.68	50.1927006
0	-25	49.2427469
17.68	-17.68	49.6791275
50	0	49.8336576
35.36	35.36	49.2292189
0	50	48.9286926
-35.36	35.36	48.2485797
-50	0	47.8966527
-35.36	-35.36	49.2351389
0	-50	49.426475
35.36	-35.36	48.6728475
75	0	48.8338909
53.03	53.03	49.0658809
0	75	49.4461394
-53.03	53.03	47.4035767
-75	0	46.4175911
-53.03	-53.03	48.6600647
0	-75	47.278698
53.03	-53.03	48.6137312
0	0	49.187609


- 2. Square Sampling Plan
 - 5 x 5 pattern of evenly spaced points, at 0, \pm 40 mm, and \pm 80 mm

Х	Y	rho	radius
-80	-80	43.0470061	113.137085
-80	-40	43.8235773	89.4427191
-80	0	45.5348185	80
-80	40	46.7131975	89.4427191
-80	80	44.4409087	113.137085
-40	-80	46.9708298	89.4427191
-40	-40	48.0724036	56.5685425
-40	0	48.4718544	40
-40	40	50.0468027	56.5685425
-40	80	48.1854786	89.4427191
0	-80	47.8974197	80
0	-40	47.9125541	40
0	0	50.8052758	0
0	40	49.0474654	40
0	80	49.2586326	80
40	-80	47.0922886	89.4427191
40	-40	49.2927422	56.5685425
40	0	48.9410342	40
40	40	48.4946369	56.5685425
40	80	49.0316954	89.4427191
80	-80	46.2385337	113.137085
80	-40	47.8303103	89.4427191
80	0	47.7426285	80
80	40	49.2722787	89.4427191
80	80	48.1145491	113.137085

Remove bolded data – outside wafer boundáry.

Underlying Patterns (Noise Free)

 Noise-free interpolation of surfaces, based on JMP contouring algorithm.

Surface Regression – Radial Pattern

• Model form: $\hat{\rho} = a + bx + cy + dxy + ex^2 + fy^2$

Radial Pattern

Summary of FitRsquare0.654747RSquare Adj0.563891Root Mean Square Error0.602697Mean of Response48.89365Observations (or Sum Wgts)25				•1 • •7 •5	 Correctly rejects xy term Incorrectly rejects y term 				
Analysis of	Variance								
Source	DF	Sum o	f Squares	Mean	Square		F Ratio		
Model	5	1	3.088445		2.61769		7.2064		
Error	19		6.901635	(0.36324	F	Prob > F		
C. Total	24	1	9.990080				0.0006		
Parameter E	Estimates								
Term	Estir	nate	Std Error	t Rati	o l	Prob> t			
Intercept	49.572	2542	0.200911	246.7	4	<.0001			
Х	0.0114	1423	0.003222	3.5	5	0.0021			
Y	0.002	1554	0.003222	0.6	7	0.5115			
x*y	0.000	1744	0.000097	1.7	9	0.0894			
X [*] X	-0.00	0031	0.000075	-4.1	2	0.0006			
у*у	-0.000	0175	0.000075	-2.3	2	0.0314			

Surface Regression – Square Pattern

• Model form: $\hat{\rho} = a + bx + cy + dxy + ex^2 + fy^2$

Summary of Eit

Manufacturing

Rectangular Pattern

Summary of I RSquare RSquare Adj Root Mean Squar Mean of Respons Observations (or S	e 0.766179 e Adj 0.688239 ean Square Error 0.859359				 Keeps y term 				
Analysis of V	ariance								
Source	DF	Sum	of Squares	Mean	Square		F Ratio		
Model	5		36.298420	•	7.25968		9.8303		
Error	15		11.077466		0.73850		Prob > F		
C. Total	20		47.375886				0.0003		
Parameter Es	timates								
Term	Es	timate	Std Error	t Rat	io	Prob> t			
Intercept	49.6	06808	0.395623	125.3	39	<.0001			
Х		37149	0.003684	3.7	2	0.0020			
У		15245	0.003684	3.1		0.0069			
y*x		00073	0.00009	-0.8		0.4261			
Х*Х		00404	0.000081	-4.9	98	0.0002			
У*У	-0.0	00172	0.000081	-2.1	2	0.0514			

Surface Regressions – Summary

true : $\rho = 49.794 + 0.016x + 0.0061y + 0xy - 0.0004x^2 - 0.0002y^2$

radial: $\hat{\rho} = 49.572 + 0.0114x + 0.002y + 0.00017xy - 0.0003x^2 - 0.00017y^2$

square: $\hat{\rho} = 49.607 + 0.0137x + 0.0115y - 0.000073xy - 0.0004x^2 - 0.00017y^2$

• Radial:

- Correctly rejects xy term
- Incorrectly rejects y term
- R^2 is poor at 0.65
- Square:
 - Correctly rejects xy term
 - Keeps y term
 - R^2 better at 0.77

Calculated Nonuniformity Metrics

Radial Sampling Plan Rectangular Sampling Plan 48.11609 Mean 48.89365 Mean Std Dev 0.91264 Std Dev 1.53909 0.18253 Std Err Mean Std Err Mean 0.33586 Upper 95% Mean 49.27037 upper 95% Mean 48.81667 Lower 95% Mean 48.51693 lower 95% Mean 47.41551 Ν 25.00000 Ν 21.00000 $NU = \sigma/\mu = 0.018666$ $NU = \sigma/\mu = 0.031987$

- Very different apparent non-uniformities!
 - 1.9% vs. 3.2%
- Why?

anufacturing

- May be sampling different portions of curvature
- Data points are "representing" different amounts of the underlying wafer surface

Estimates from Dense 29 x 29 Spatial Sample

$\begin{array}{l} \textbf{Moments} \\ \text{Mean} \\ \text{Std Dev} \\ \text{Std Err Mean} \\ \text{upper 95\% Mean} \\ \text{lower 95\% Mean} \\ \text{N} \\ \text{NU} = \sigma/\mu = 0.03152 \end{array}$	48.30429 1.52280 0.05905 48.42024 48.18834 665.00000		• NOT	e" NU abour E: R² still or not "model"	nly 0.77.
Summary of Fit			ranc	$1000 \sigma^2 = 0.4$	9 noisal
RSquare		0.768175			3 110136:
RSquare Adj		0.766416			
Root Mean Square Erro	or	0.735979)		
Mean of Response		48.30429)		
Observations (or Sum	Wgts)	665	5		
Analysis of Varia	nce				
Source D		Squares	Mean Squ	are F Ratio	
Model		182.8127	•	63 🖌 436.7318	
Error 65	9 3	356.9575	0.5	542 Prob > F	
C. Total 66	4 15	539.7702		<.0001	
Parameter Estima	ates				
Term	Estimate	Std Error	t Ratio	Prob> t	
Intercept	49.883177	0.057113	873.41	0.0000	
х	0.016497	0.000569	28.99	<.0001	
У	0.0061666	0.000569	10.84	<.0001	
у*х	-0.000007	0.000014	-0.50	0.6158	
X*X	-0.000414	0.000012	-34.35	<.0001	
у*у	-0.000214	0.000012	-17.72	<.0001	

Robust Within-Wafer Uniformity Measures

- Davis et al.
 - Signal-to-noise (SNR) ratio for systematic trends is sensitive to location and number of measurements
 - Proposes an "Integration Statistic"
 - Base SNR on the total nonuniformity across an entire (spline) interpolated surface
- Simple approximation
 - Get much of the benefit by
 - Uniform sampling, or
 - Weighting importance of each measurement point by the amount of area that point represents

Typical: Linear Interpolation of Surface

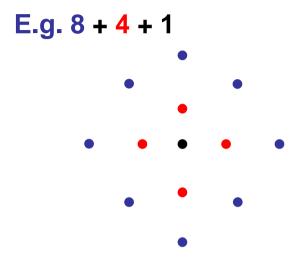


Image removed due to copyright restrictions. Please see Fig. 1 in Davis, Joseph C., et al. "A Robust Metric for Measuring Within-Wafer Uniformity." *IEEE Transactions on Components, Packaging, and Manufacturing Technology C* 19 (October 1996): 283-289.

- Clearly only a coarse approximation of surface
 - Non-uniformity metrics based on this are subject to bias and variance errors

Proposed Interpolator: Thin Plate Splines

Image removed due to copyright restrictions. Please see Fig. 2 in Davis, Joseph C., et al. "A Robust Metric for Measuring Within-Wafer Uniformity." *IEEE Transactions on Components, Packaging, and Manufacturing Technology C* 19 (October 1996): 283-289.

• TPS: essentially localized polynomials with minimum curvature between "knots" or data points

Alternative to SNR (σ/μ): "Integration Statistic" *I*

$$I = \frac{I_n}{\operatorname{Vol}_{target}}$$
$$= \frac{\iint_{r,\theta} [T - g(r,\theta)] r \, dr \, d\theta}{\operatorname{Vol}_{Target}}$$
(1)

where Vol_{Target} is the target volume, T is the target value of the response, and $g(r, \theta)$ is the function representing the response surface.

- Key ideas
 - Use interpolated surface $g(r, \theta)$
 - Integrate deviations across the entire surface

Integration Statistic & Quality Loss

- Concern: cancellation in simple integration statistic
- Alternative: modify with a loss transformation

$$I = \frac{\iint_{r,\,\theta} h(T - g(r,\theta))r\,dr\,d\theta}{\operatorname{Vol}_{Target}} \tag{2}$$

where h() is a general loss transformation such as |x| or x^2 .

Approximation to Integral

$$I \approx \frac{\sum_{j=1}^{M} AC_j h(T - x_j)}{\text{Vol}_{target}}.$$
 (6)

- Where C_i weight accounts for interpolation
 - Davis et al.: weights from coefficients of spline interpolation function
 - Alternative: the area that the point x_j represents

Improvement – Radial Nonuniformity Example

- Typical radial spatial pattern
 - SNR = μ/σ with radial measurements
 - See bias for small # data
 - Integration statistic based on TPS
 - Removes bias
 - Reduces variance

Image removed due to copyright restrictions. Please see Fig. 4-7 in Davis, Joseph C., et al. "A Robust Metric for Measuring Within-Wafer Uniformity." *IEEE Transactions on Components, Packaging, and Manufacturing Technology C* 19 (October 1996): 283-289.

5, 13, 25, 73 points

300

runs

Improvement – Asymmetrical Pattern

- Asymmetrical nonuniformity
 - 13 measurement sites
 - SNR with angular rotation
 - Highly sensitive to angle
 - Integration statistic based on TPS
 - Reduced (but not eliminated) bias (20% smaller variation)

Image removed due to copyright restrictions. Please see Fig. 8-10 in Davis, Joseph C., et al. "A Robust Metric for Measuring Within-Wafer Uniformity." *IEEE Transactions on Components, Packaging, and Manufacturing Technology C* 19 (October 1996): 283-289.

Agenda

- Spatial Sampling
 - Example: impact of sampling plan on response regression
- Spatial Non-Uniformity Models
 - DOE/RSM with both process and spatial dependencies
 - "Multiple Response Surface" (MRS) vs. "Single Response Surface" (SRS) approaches

Method for Semiconductor Process Optimization Using Functional Representations of Spatial Variations and Selectivity

Purnendu K. Mozumder, Member, IEEE, and Lee M. Loewenstein

- Silicon nitride etch
- Want response surface models for:
 - Nitride and oxide etch rates: $R(Si_3N_4)$ and $R(SiO_2)$
 - Nonuniformity of etch rates: U(Si₃N₄) and U(SiO₂)
 - Selectivity of nitride to oxide: S(Si₃N₄:SiO₂)

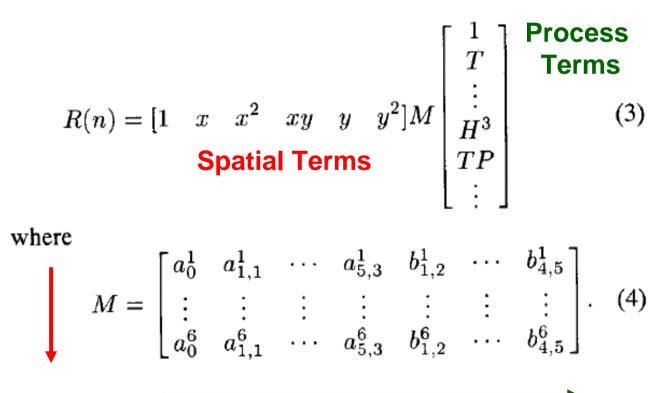
311

Typical Etch Nonuniformity – Oxide Etch Rate

- Typical spatial map:
 - 19 measurements
 - 2 concentric hexagons
 [octagons?] plus center point

Relevant Process
 Parameters:

Image removed due to copyright restrictions. Please see Table 1 and Fig. 2 in Mozumder, Purnendu K., and Lee M. Loewenstein. "Method for Semiconductor Process Optimization Using Functional Representations of Spatial Variations and Selectivity." *IEEE Transactions on Components, Hybrids, and Manufacturing Technology* 15 (June 1992): 311-316.


Challenge: Spatial Parameters

- Rates have a **spatial** dependence
 - How model this, as a function of both spatial position and the process conditions?
- Nonuniformity is a **derived** parameter:
 - Ratio of standard deviation to mean

Two-layered Spatial Model of Etch Rates

Image removed due to copyright restrictions. Please see Fig. 3 in Mozumder, Purnendu K., and Lee M. Loewenstein. "Method for Semiconductor Process Optimization Using Functional Representations of Spatial Variations and Selectivity." *IEEE Transactions on Components, Hybrids, and Manufacturing Technology* 15 (June 1992): 311-316.

Spatial Models: Regression Surfaces

$$R(Si_{3}N_{4}) = c_{0}^{N} + c_{1x}^{N}x + c_{1y}^{N}y + c_{2x}^{N}x^{2} + c_{xy}^{N}xy + c_{2y}^{N}y^{2}.$$
(5)

- Rate as function of position
- Spatial coefficients become functions of process conditions

Image removed due to copyright restrictions. Please see Table 3 in Mozumder, Purnendu K., and Lee M. Loewenstein. "Method for Semiconductor Process Optimization Using Functional Representations of Spatial Variations and Selectivity." *IEEE Transactions on Components, Hybrids, and Manufacturing Technology* 15 (June 1992): 311-316.

Process Models: Polynomial Regression

$$y = a_0 + \sum_{i=1}^{5} a_{i1}x_i + a_{i2}x_i^2 + a_{i3}x_i^3 + \sum_{i=1,j>i}^{5} b_{ij}x_ix_j$$
(2)

- 2nd order + cubic term (in process conditions)
- Process DOE
 - Uses Latin Hypercube Sampling (LHS)

Image removed due to copyright restrictions. Please see Table 2 in Mozumder, Purnendu K., and Lee M. Loewenstein. "Method for Semiconductor Process Optimization Using Functional Representations of Spatial Variations and Selectivity." *IEEE Transactions on Components, Hybrids, and Manufacturing Technology* 15 (June 1992): 311-316.

Uniformity & Selectivity Functions

• Build out of more **fundamental** rate functions

$$U(n) = \frac{R(n,\sigma)}{R(n,\mu)} \text{ where } n = SiO_2, Si_3N_4$$
$$S(Si_3N_4:SiO_2) = \frac{R(Si_3N_4)}{R(SiO_2)}$$

• For models of given spatial form:

$$R(n) = c_0 + \frac{(c_{2x} + c_{2y})r^2}{4}$$
(6)

$$U(n) = [\{(6r^2c_{1x}^2 + 3r^4c_{2x}^2 + 6r^2c_{1y}^2 + 2r^4c_{2x}c_{2y} + 3r^4c_{2y}^2 + 12r^2c_{2x}^2c_0 + 12r^2c_{2y}^2c_0 + 24c_0^2 + r^4c_{xy}^2)/24R(n,\mu)^2\} - 1]^{1/2}.$$
(7)

Multiobjective Optimization

- 1. maximum $S(Si_3N_4 : SiO_2);$
- 2. minimum $U(Si_3N_4)$ across individual wafers;
- 3. maximum $R(Si_3N_4, \mu)$.

```
\min_{T,P,p,N,H} w_{RO} R(SiO_2,\mu)
```

 $\min_{T,P,p,N,H} w_{UN} U(Si_3N_4)$

Image removed due to copyright restrictions. Please see Table 4 and 5 in Mozumder, Purnendu K., and Lee M. Loewenstein. "Method for Semiconductor Process Optimization Using Functional Representations of Spatial Variations and Selectivity." *IEEE Transactions on Components, Hybrids, and Manufacturing Technology* 15 (June 1992): 311-316.

```
\max_{T,P,p,N,H} w_{RN} R(Si_3N_4,\mu)
```


Agenda

- Spatial Sampling
 - Example: impact of sampling plan on response regression

Spatial Non-Uniformity

- DOE/RSM with both process and spatial dependencies
- "Multiple Response Surface" (MRS) vs.
 "Single Response Surface" (SRS) approaches

Modeling, Optimization and Control of Spatial Uniformity in Manufacturing Processes

Ruey-Shan Guo, Member, IEEE, and Emanuel Sachs

- "Site Models"
 - Build models for each spatial location as a function of the process conditions
 - Then combine these sites as necessary for any derived or spatial parameters

(Measurement Sites)

Image removed due to copyright restrictions. Please see Table 1 in Guo, Ruey-Shan, and Sachs, Emanuel. "Modeling, Optimization, and Control of Spatial Uniformity in Manufacturing Processes." *IEEE Transactions on Semiconductor Manufacturing* 6 (February 1993): 41-57.

SRS vs MRS

- Single Response Surface (SRS)
 - Directly model σ/μ :

$$\frac{\sigma}{\mu} = C_1 + C_2 X_1 + C_3 X_2 + C_4 X_1^2 + C_5 X_2^2 + C_6 X_1 X_2$$

- Multiple Response Surfaces (MRS)
 - Lower order models of each site $Y_{1} = C_{11} + C_{12}X_{1} + C_{13}X_{2}$ $Y_{2} = C_{21} + C_{22}X_{1} + C_{23}X_{2}$ (3)
 (4)

$$Y_3 = C_{31} + C_{32}X_1 + C_{33}X_2 \tag{5}$$

- Combine functionally to derive uniformity $\mu = \frac{1}{3}(Y_1 + Y_2 + Y_3)$ (6)

$$\frac{\sigma}{\mu} = \frac{\sqrt{\frac{1}{2}[(Y_1 - \mu)^2 + (Y_2 - \mu)^2 + (Y_3 - \mu)^2]}}{\mu}$$
(7)

Claimed MRS Advantages

- Effective models from small number of data
- Rapid adaptation of models after a process disturbance
 - Important for cycle to cycle control
- Immunity of models to the presence of noise
- Model forms are compatible with process knowledge

Argument: Complexity of Uniformity

Image removed due to copyright restrictions. Please see Fig. 2 in Guo, Ruey-Shan, and Sachs, Emanuel. "Modeling, Optimization, and Control of Spatial Uniformity in Manufacturing Processes." *IEEE Transactions on Semiconductor Manufacturing* 6 (February 1993): 41-57.

Implications for Control

Image removed due to copyright restrictions. Please see Fig. 3 in Guo, Ruey-Shan, and Sachs, Emanuel. "Modeling, Optimization, and Control of Spatial Uniformity in Manufacturing Processes." *IEEE Transactions on Semiconductor Manufacturing* 6 (February 1993): 41-57.

Example: LPCVD of Polysilicon

Image removed due to copyright restrictions. Please see Fig. 4 in Guo, Ruey-Shan, and Sachs, Emanuel. "Modeling, Optimization, and Control of Spatial Uniformity in Manufacturing Processes." *IEEE Transactions on Semiconductor Manufacturing* 6 (February 1993): 41-57.

• Goal is to optimize SNR defined as $(\mu/\sigma)^2$

Image removed due to copyright restrictions. Please see Fig. 5 in Guo, Ruey-Shan, and Sachs, Emanuel. "Modeling, Optimization, and Control of Spatial Uniformity in Manufacturing Processes." *IEEE Transactions on Semiconductor Manufacturing* 6 (February 1993): 41-57.

Image removed due to copyright restrictions. Please see Fig. 6 in Guo, Ruey-Shan, and Sachs, Emanuel. "Modeling, Optimization, and Control of Spatial Uniformity in Manufacturing Processes." *IEEE Transactions on Semiconductor Manufacturing* 6 (February 1993): 41-57.

Model Fits with Injected Noise

Image removed due to copyright restrictions. Please see Fig. 7 and 8 in Guo, Ruey-Shan, and Sachs, Emanuel. "Modeling, Optimization, and Control of Spatial Uniformity in Manufacturing Processes." *IEEE Transactions on Semiconductor Manufacturing* 6 (February 1993): 41-57.

MRS vs SRS Modeling – Impact on Optimization

Image removed due to copyright restrictions. Please see Fig. 9 and 10 in Guo, Ruey-Shan, and Sachs, Emanuel. "Modeling, Optimization, and Control of Spatial Uniformity in Manufacturing Processes." *IEEE Transactions on Semiconductor Manufacturing* 6 (February 1993): 41-57.

Conclusions

- Spatial Sampling
 - Sampling plan impacts spatial modeling
 - Uniform sampling, or appropriate weighting
- Combined Process/Spatial Modeling
 - Generally better to model fundamental parameters as function of process
 - Create derived measures using combinations of the lower level models
 - E.g. spatial nonuniformity, selectivity

