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In all problems, please show your work and explain your reasoning. Statistical tables for the 
cumulative standard normal distribution, percentage points of the χ2 distribution, percentage 
points of the t distribution, and percentage points of the F distribution (all from Montgomery, 5th 

Ed.) are provided. 

Problem 1 [45%] 

An experiment is designed and executed, in which the design or input variable is x and the output 
variable is y. The input range is normalized to [-1, +1]. Experiments are run in the order shown 
in Table 1 below, with the input setting and output result as given in the table. 

Table 1: Full factorial DOE experiment results 

Run # x y 

1 -1 8 

2 1 18 

3 -1 9 

4 1 19 

5 -1 10 

6 1 20 

Part (a) [5%] 


Fit a model of the form y = β0 + β1 x to the data, and determine point estimates for β0 and β1. 
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Part (b) [10%] 

Determine the standard error (std. err.) and 95% confidence intervals for the estimates of β0 and 
β1. Are both parameters significant to 95% confidence or better? Should you include both terms 
in the model? 

Part (c) [5%] 

Following good practice, we next examine the residuals (differences between the model 
prediction values and measured values, for our data). In particular, we consider the residuals as a 
function of run order. What pattern in the residuals raises a concern? What modifications might 
you suggest to the experimental design or analysis in light of this? 
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Part (d) [10%] 

Setting aside any reservations about the existing experimental design or the model, we next 
consider using the model to predict some values, for further experimentation and optimization.  

(i) We are interested in how well the model predicts outputs, at different values for x. 
Derive a formula for the standard error ( s ŷ ) in the output estimate ŷi  as a function of 
the input value xi. 

(ii)	 Next, we consider a prediction at possible center point in the input space. Provide a 
95% confidence interval prediction for the output value at the design space center 
point, i.e., give the point estimate and 95% confidence interval bounds for ŷ(x = 0) . 
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(iii)	 Finally, we also consider an extrapolation of the model beyond the original range of 
experimentation. Provide a 95% confidence interval prediction for the output value at 
x equal to 3 (in normalized units), i.e., give the point estimate and 95% confidence 
interval bounds for ŷ(x = 3).  Comment on the confidence in model outputs as a 
function of how far we are extrapolating from our experimental region. 

Part (e) [10%] 

We now perform one additional experimental run to augment Table 1. Setting the input x to 0, 
the output y is experimentally observed to be equal to 7. Based on this, perform and discuss a 
lack of fit analysis. To 95% confidence or better, does the model from part (a) show evidence of 
lack of fit? 

Part (f) [5%] 

Fit a new model, including the center point data point (x=0, y=7). I.e., find α 0 , α1 , and α 2 for a 
model of the form y = α 0 +α1 ⋅ x +α 2 ⋅ x

2 . For this part, point estimates are sufficient. Note: it is 
possible to identify model coefficients by inspection, graphical, or other simplified means; full-
scale set up and solution of regression equations is not necessary. 
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Problem 2 [20%] 


Consider the random-access memory chip shown below, having R rows and C columns: 
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Array of memory cells 
(R rows × C columns) 

Defect here kills its 
whole row and column 

Control logic Datapath (C columns) 

We are interested in investigating the defect tolerance of the memory array. Small particles 
(which may be regarded as causing point defects) land on the memory chip during fabrication, 
with a per-area density of D0. Particles landing on the datapath, row decoder or control logic do 
not cause faults (these circuits are very robustly designed), but when a defect lands on one of the 
memory cells, each cell having an area A, the entire row and the entire column of cells in which 
the afflicted cell sits are rendered inoperative.  

Assume that the spatial density of defects is very tightly distributed, so that we can write the 
proportion of memory cells not hit by a particle during fabrication as Y = exp(–AD0). 

Part (a) [3%] 

Write down an expression in terms of Y, R, and C for the number, F, of individual memory cells 
hit by particles during fabrication. 
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Part (b) [10%] 

Write down expressions in terms of Y, R and C for (i) the proportion of columns that are 
operative after fabrication, and (ii) the proportion of rows operative. 

Part (c) [7%] 

Write down an expression in terms of Y, R and C for the overall proportion, P, of memory cells 
that is available for use after fabrication.  

Part (d) [optional; for up to 5 bonus percentage points] 


Show that the proportion of usable memory cells is maximized when the memory array is square. 
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Problem 3 [35%] 

Part (a) [20%] 

Measurements are made of the threshold voltages of MOSFET devices at three randomly chosen 
locations on each of three wafers themselves chosen randomly from a lot. The deviations of the 
measured threshold voltages from their target value are shown below. Complete the nested 
variance analysis. Cells requiring a value to be inserted have a thick border. Some calculations 
have already been done for you. 

Wafer # Site # Threshold voltage 
deviation (mV) 

Wafer 
average 

(mV) 

Squared 
deviations of 

point from 
grand ave. 

(mV2) 

Squared 
deviations of 

wafer ave. 
from grand 
ave. (mV2) 

Squared 
deviations 

of point 
from wafer 
ave. (mV2) 

1 1 1 1 1 
1 2 2 0 0 
1 3 3 2 1 0 1 
2 1 2 0 0 
2 2 2 0 0 
2 3 2 2 0 0 0 
3 1 4 4 4 
3 2 0 4 4 
3 3 2 2 0 0 0 

Grand average: 2 

SS_D 10 
SS_W 0 
SS_E 10 

ANOVA (in mV2) 
Source Degrees of Freedom SS MS F0 Fcrit (5% level) 

WAFER 

ERROR N/A N/A 

C TOTAL N/A N/A 

VARIANCE COMPONENTS (in mV2) 

Variation source MS # data in SS Observed 
variance 

Estimated 
variance 

ERROR (site-to-site) 

WAFER (wafer-to-wafer) 

TOTAL 
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Part (b) [5%]


What do you conclude from the nested variance analysis above?


Part (c) [10%] 

Now you are given threshold voltage deviation data from the same process, but this time taken 
from nine separate wafers. From each wafer one measurement is taken at one of three specified 
(not randomly chosen) locations. The objective is to check for evidence of any systematic (fixed) 
relationship between threshold voltage deviation and position on the wafer. Complete the 
ANOVA below. 

Typical wafer (one location 
measured per wafer) 

Location 1 

Location 2 

Location 3 

Wafer # 

Site 
(location 
on wafer) 

Threshold 
voltage 

deviation (mV) 
Per-location 
average (mV) 

1 1 1 
7/32 1 2 

3 1 4 
4 2 2 

4/35 2 2 
6 2 0 
7 3 3 

7/38 3 2 
9 3 2 

grand average: 2 

Source of variation Sum of 
squares 

Degrees of 
freedom 

Mean 
square F0  Fcrit (5% level) 

Between groups 

Within groups N/A N/A 

Total N/A N/A N/A 
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Part (c), cont’d. 

Is there evidence at the 95% confidence level of a significant systematic dependence of threshold 
voltage on site location? 
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