2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303) Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Control of Manufacturing Processes

Subject 2.830/6.780/ESD.63 Spring 2008 Lecture #16

Process Robustness

April 10, 2008

2.830J/6.780J/ESD.63J

Outline

Last Time

- Optimization Basics
- Empirical Response Surface Methods
 - Steepest Ascent Hill Climbing Approach
- Today
 - Process Robustness
 - Minimizing Sensitivity
 - Maximizing Process Capability
 - Variation Modeling
 - Noise Inputs as Random Factors
 - Taguchi Approach
 - Inner Outer Arrays

What to Optimize?

- Process Goals
 - Cost (Minimize)
 - Quality
 - Rate
 - Flexibility

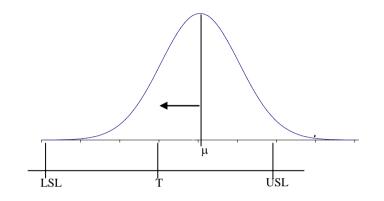
(Maximize Cpk or Minimize E(L)) (Maximize) (N/A for now)

Simple Problem: Minimum Cost

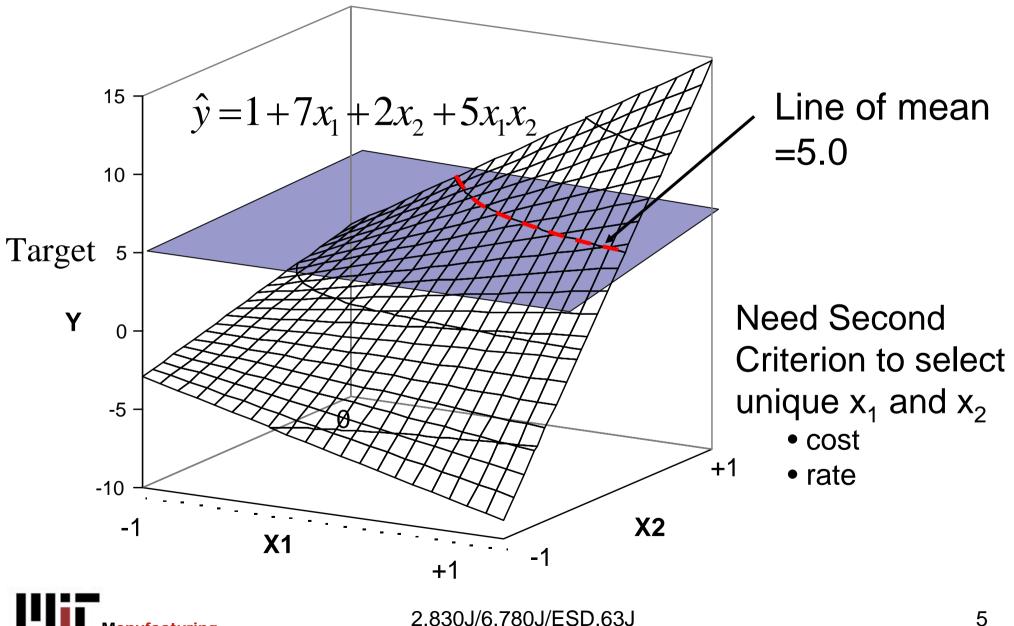
• Must Hit Target

 $\overline{x} = T$

- Multiple Input Factors
 - Contours of constant output
 - Match to Target
 - Assume constant output variance
- Choose Operating Point to
 - Minimize Cost (e.g. material usage; tool wear, etc)
 - Minimize Cycle Time



Linear Model with Constraint



Manufacturing

Quality: Minimum Variation

$$\Delta Y = \frac{\partial Y}{\partial \alpha} \Delta \alpha + \frac{\partial Y}{\partial u} \Delta u$$

- Minimize Sensitivity to $\Delta \alpha$ – Process Robustness
- Maximize C_{pk}
- Minimize expected quality loss: E{L(x))}

Maximizing Cpk

$$C_{pk} = \min\left(\frac{(USL - \mu)}{3\sigma}, \frac{(LSL - \mu)}{3\sigma}\right)$$

Measure using estimates of response of y and s:

$$C_{pk} = \min\left(\frac{(USL - \hat{y})}{3\hat{s}}, \frac{(LSL - \hat{y})}{3\hat{s}}\right)$$

Or create a new response variable from the raw data

$$\eta_j = \min\left(\frac{(USL - \overline{y}_j)}{3s_j}, \frac{(LSL - \overline{y}_j)}{3s_j}\right)$$

- Single variable that combines y and s
- Could be discontinuous

Variance Dependence on Operating Point

- We often assume that σ^2 is constant throughout the operating space
 - Implicit in simple ANOVA, most regression fits
 - Process optimization might also assume this
 - E.g. C_{pk} , E(L), sensitivity to α independent of u
- Reality: process variation may be different at different operating points!
 - Imperfect control of u implies $\delta Y/\delta u$ can vary, if model/dependence is nonlinear
 - Presence or sensitivity to noise may depend on u

Process Output Variance

 We can define the response variable as η=σ_j and solve for <u>η=Xβ+ε</u>

							Within Test	Within Test
	Inpu	t and Lev	els	Response Replicates			mean	std.dev.
Test	x 1	x 2		η_{i1}	η_{i2}	η_{i3}	ybar _i	S _i
1	-	-		η_{11}			ybar ₁	S ₁
2	+	-					y bar ₂	S ₂
3	-	+				η_{33}	y bar ₃	S ₃
4	+	+				η ₄₃	y bar ₄	S ₄

New Response Variable

2.830J/6.780J/ESD.63J

Process Output Variance

- Solve for <u>η=Xβ+ε</u> using the same X matrix as with y.
- This will yield a "variance response surface"
- Linear model: minimum at the boundary

Combining Mean and Variance:

- Find the line (or general function) defining minimum error from the *y* response surface
- Find the minimum variance using those constrained x₁ and x₂ values

Combining Mean and Variance: Direct Method

$$\hat{y} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{12} x_1 x_2 \quad \text{y surface}$$

$$y^* = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{12} x_1 x_2 = \text{target}$$
solve for x_1

$$x_1 = \frac{(y^* - \beta_0 - \beta_1 x_2)}{\beta_1 + \beta_{12} x_2} x_2 \quad \text{(line on surface)}$$

$$\hat{s} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{12} x_1 x_2 \quad \text{s surface}$$

Combining Mean and Variance: Direct Method

Substitute for x_1 in the s equation and find minimum

 $x_{1} = \frac{(y^{*} - \beta_{0} - \beta_{1}x_{2})}{\beta_{1} + \beta_{12}x_{2}}x_{2}$ $\hat{s} = 1 + \beta'_{1}x_{1} + \beta'_{2}x_{2} + \beta'_{12}x_{1}x_{2}$ surface $\hat{s} = f(x_2)$ it will be non – linear in general $\frac{\partial \hat{s}}{\partial x_2} = 0 \quad \text{solve for } x_2$ 2.830J/6.780J/ESD.63J

Minimizing E(L)

$$E\{L(x)\} = k\sigma_{x}^{2} + k(\mu_{x} - x^{*})^{2}$$

define a new response variable:

$$\eta_j = ks_{\overline{y}_j}^2 + k(\overline{y}_j - y^*)^2$$

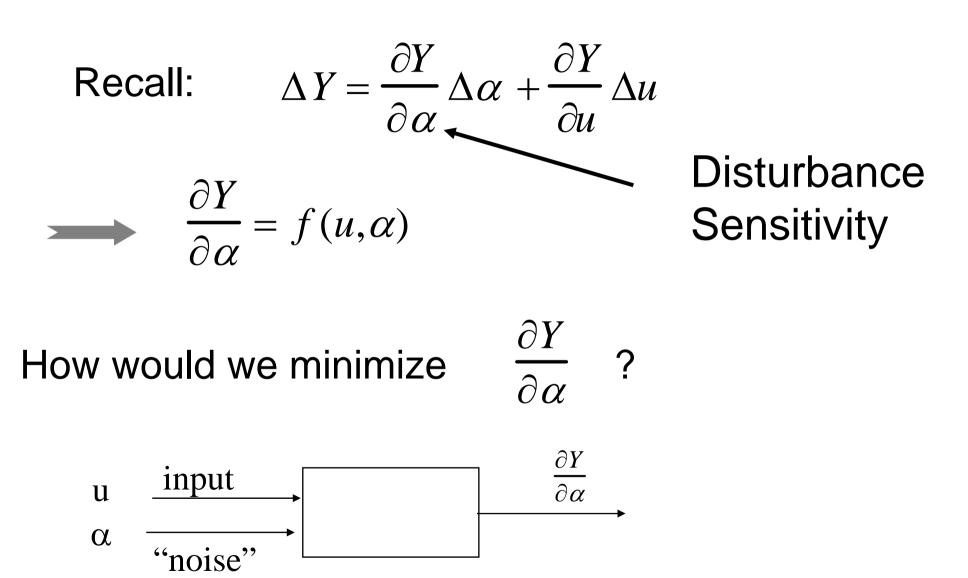
and find $min(\eta)$

NOTE: Since the response variable is *quadratic* in *y* and *s*, the new estimation model should be *quadratic* as well

Problems?

- With Variance Varying?
- What Caused Non-Constant Variance?
- Can We Assess "Robustness"?

Use of the Variation Model

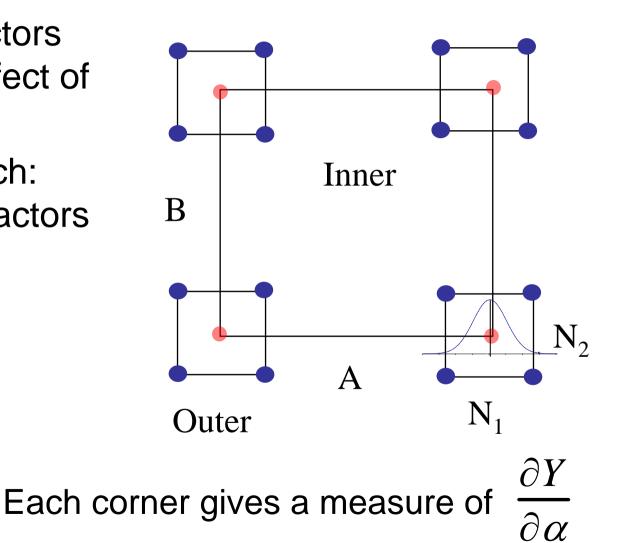


2.830J/6.780J/ESD.63J

anufacturing

Robustness to Noise Factors – Inner and Outer Factors

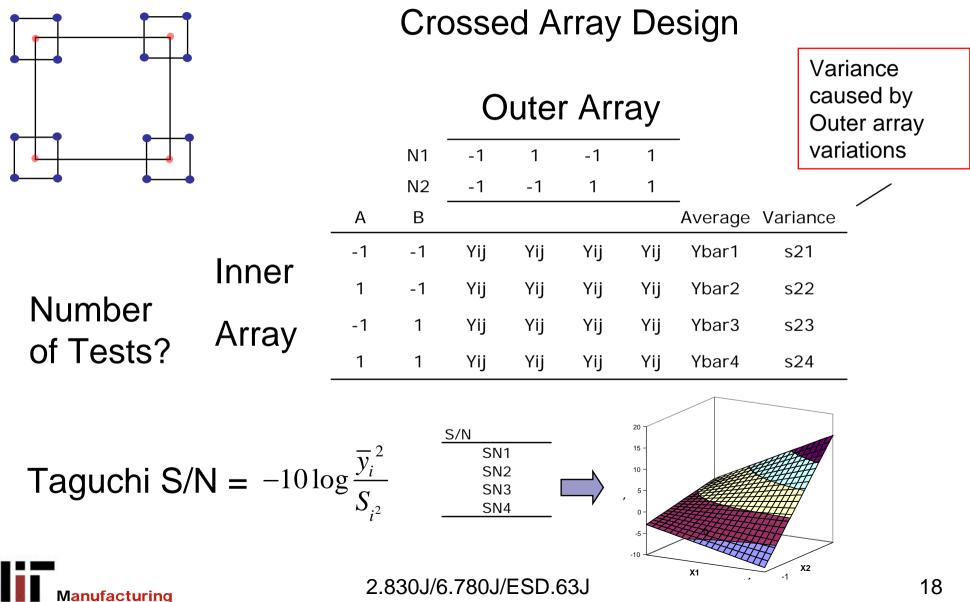
- Find Control Factors that Minimize Effect of Noise
- Taguchi Approach: Varying Noise Factors at Each Level of Control Factors



 $k_n = \#$ noise factors $k_c = \#$ control factors

2.830J/6.780J/ESD.63J

Robustness to Noise Factors



Taguchi – Signal-to-Noise Ratios

• Nominal the best:

$$SN_N = 10\log(\bar{y}/s)$$

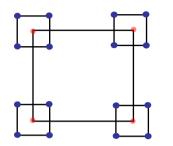
• Larger the better:

$$SN_L = -10 \log(\frac{1}{n} \sum_{i=1}^{n} \frac{1}{y_i^2})$$

• Smaller the better:

$$SN_S = -10\log(\frac{1}{n}\sum_{i=1}^n y_i^2)$$

Crossed Array Method



Number of tests

- Control Factor tests * Noise Factor tests
- Linear model leads to linear response surface for S/N
- True Optimum requires Quadratic test on inner array
 - # Tests = 3^{kc} 2^{kn} unless interaction ignored
 - 3^{kc} requirement can be reduced with use of central composite or related designs

Robustness Using Noise Response

$$\Delta Y = \frac{\partial Y}{\partial \alpha} \Delta \alpha + \frac{\partial Y}{\partial u} \Delta u$$

- *u:* control factors
- α: some can be manipulated if desired (Noise Factors)
 some cannot (Pure error)

Treat *control and noise* as factors for experiments:

$$\hat{y} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{12} x_1 x_2 + \gamma_1 z_1 + \delta_{11} x_1 z_1 + \delta_{21} x_2 z_1$$

x_i are control factors, z_j are noise factors

Noise Response Surface Approach

 $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{12} x_1 x_2 + \gamma_1 z_1 + \delta_{11} x_1 z_1 + \delta_{21} x_2 z_1 + \varepsilon$

Assume $z_1 : N(0, \sigma_z)$ $\varepsilon : N(0, \sigma)$

Full factorial in x_1 and x_2 (Control Factors) Interaction terms for z_1 (Noise Factors)

• Why are they vital?

Noise Response Models

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{12} x_1 x_2 + \gamma_1 z_1 + \delta_{11} x_1 z_1 + \delta_{21} x_2 z_1 + \varepsilon$$
Assume $z_1 \colon N(0, \sigma_z)$
 $\mathcal{E} \colon N(0, \sigma)$
 $\mathcal{E}(y) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{12} x_1 x_2$

Variance of Response:

$$V(y) = (\gamma_1 + \delta_{11}x_1 + \delta_{21}x_2)^2 \sigma_z^2 + \sigma^2$$

Now variance is a function of control factors

Variance Models

$$V(y) = (\gamma_1 + \delta_{11}x_1 + \delta_{21}x_2)^2 \sigma_z^2 + \sigma^2$$

 $V(x_1, x_2) = (\gamma_1^2 + 2\gamma_1 \delta_{12} x_1 + 2\gamma_1 \delta_{21} x_2 + 2\gamma_1$ $\delta_{12}^{2}x_{1}^{2} + \delta_{21}^{2}x_{2}^{2} + 2\delta_{12}\delta_{21}x_{1}x_{2} + \sigma_{21}^{2}$

Quadratic in x_1, x_2

2.830J/6.780J/ESD.63J

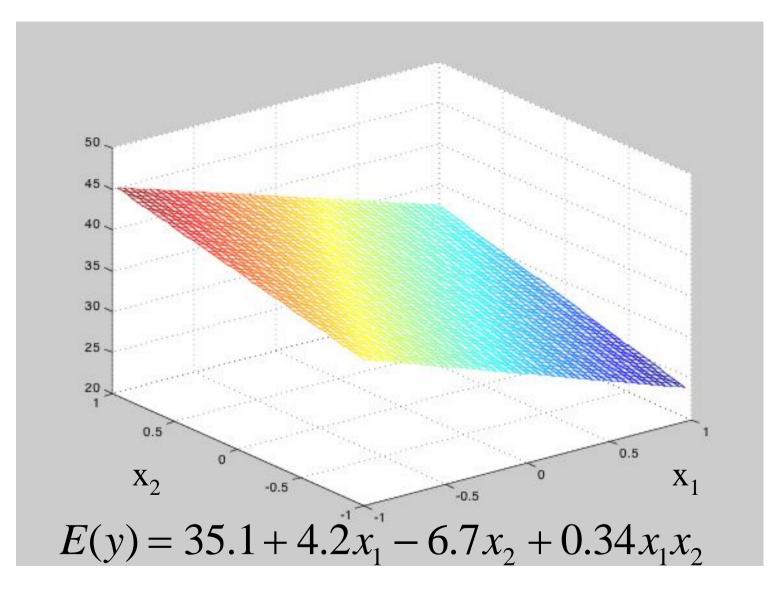
- Control Factors
 - Depth of Punch x_1
 - Width of Die x_2
- Noise Factors
 - Yield Point of Material z₁
 - Thickness of Material z₂

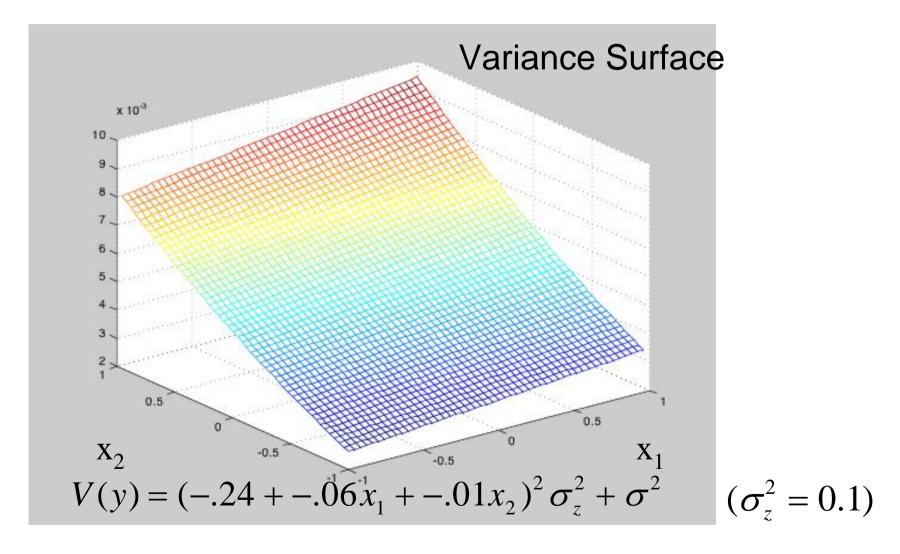
 $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{12} x_1 x_2 + \gamma_1 z_1 + \delta_{11} x_1 z_1 + \delta_{21} x_2 z_1 + \varepsilon$

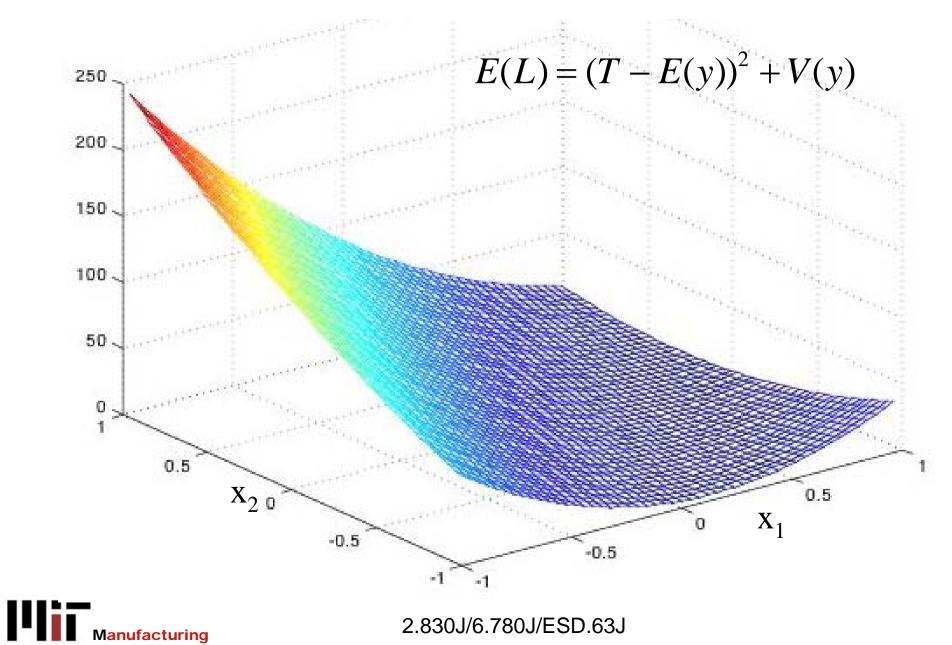
ур	W	sigma	Mean		
<u></u>	x2	Z	Angle	βO	35.09
-1	-1	-1	38.1	β1	4.16
1	-1	-1	45.9	β 2	-6.69
-1	1	-1	24.1	, γ1	-0.24
1	1	-1	33.2	β 12	0.34
-1	-1	1	37.8	δ11	-0.06
1	-1	1	45.3	δ21	-0.01
-1	1	1	23.7	β123	0.01
1	1	1	32.6	pizs j	0.01

 $y = 35.1 + 4.2x_1 - 6.7x_2 + 0.34x_1x_2$ $-.24z_1 - .06x_1z_1 + -0.013x_2z_1 + \varepsilon$

2.830J/6.780J/ESD.63J







Response Model Method

- Define Control and Noise Factors
- Perform Appropriate Linear Experiment
- If possible scale noise factor changes to

 (Assumes we know noise factor statistics)
- Define Response Surface for V
- Optimize V, Subject to desired E(y)
- Number of Tests?
 - Full factorial with center point:
 - Quadratic in control:
 - RSM, full factorial with center point:
 - RSM, central composite:
- Taguchi orthogonal arrays: fractional factorials ignoring noise factor interactions

 $(2^{kc}+1)(2^{kn})$ $3^{kc} 2^{kn}$ $(2^{kc+kn} + 1)$

 $2^{kc+kn}+2(kc+kn)+1$

Comparison

Control	Noise	Crossed	Crossed	Response
Factors	Factors	Array Lin.	Array (quad)	Surface
2	1	8	18	6
2	2	16	36	13
3	3	64	216	60
4	3	128	648	124

- Crossed array with S/N does not adjust mean
- Size of Experiments is Large vs. RSM
- Forces use of Fractional Factorial DOE
 - Assumes little or no Interaction

Conclusions: Process Optimization

- Cost, Rate, Quality
- Quality:
 - Min E(L)
 - Max C_{pk}
 - Max S/N
- All depend on variation equation:

$$\Delta Y = \frac{\partial Y}{\partial \alpha} \Delta \alpha + \frac{\partial Y}{\partial u} \Delta u \qquad \Longrightarrow \qquad \frac{\partial Y}{\partial \alpha} = f(u, \alpha)$$

