
Topic one: Production line profit maximization subject to a

production rate constraint

c⃝2010 Chuan Shi — Topic one: Line optimization : 22/79

Production line profit maximization

The profit maximization problem

max
N

�(N) = �� (N) −
�−1∑

�=1

���� −
�−1∑

�=1

�� ̄��(N)

s.t. � (N) ≥ �̂ ,

�� ≥ �min, ∀� = 1, ⋅ ⋅ ⋅ , � − 1.

where � (N) = production rate, parts/time unit
�̂ = required production rate, parts/time unit
� = profit coefficient, $/part

�̄�(N) = average inventory of buffer �, � = 1, ⋅ ⋅ ⋅ , � − 1
�� = buffer cost coefficient, $/part/time unit
�� = inventory cost coefficient, $/part/time unit

c⃝2010 Chuan Shi — Topic one: Line optimization : Constrained and unconstrained problems 23/79

An example about the research goal

 0 10 20 30 40 50 60 70 80 90 100 0
 10

 20
 30

 40
 50

 60
 70

 80
 90

 100

 1040
 1060
 1080
 1100
 1120
 1140
 1160
 1180
 1200
 1220

J(N)

"data.txt"
"feasible.txt"

1205
1200
1190
1180
1160
1140
1120
1100
1080
1060

Optimal
boundary

N1

N2

J(N)

Figure 2: �(N) vs. �1 and �2

c⃝2010 Chuan Shi — Topic one: Line optimization : Constrained and unconstrained problems 24/79

Two problems

Original constrained problem

max
N

�(N) = �� (N) −
�−1∑

�=1

���� −
�−1∑

�=1

�� ̄��(N)

s.t. � (N) ≥ �̂ ,

�� ≥ �min, ∀� = 1, ⋅ ⋅ ⋅ , � − 1.

Simpler unconstrained problem (Schor’s problem)

max
N

�(N) = �� (N) −
�−1∑

�=1

���� −
�−1∑

�=1

�� ̄��(N)

s.t. �� ≥ �min, ∀� = 1, ⋅ ⋅ ⋅ , � − 1.

c⃝2010 Chuan Shi — Topic one: Line optimization : Constrained and unconstrained problems 25/79

An example for algorithm derivation

Data
�1 = .1, �1 = .01, �2 = .11, �2 = .01, �3 = .1, �3 = .009, �̂ = .88
Cost function
�(N) = 2000� (N) − �1 − �2 − �̄1(N) − �̄2(N)

 0 10 20 30 40 50 60 70 80 90 100 0
 10

 20
 30

 40
 50

 60
 70

 80
 90

 100

 1500
 1520
 1540
 1560
 1580
 1600
 1620
 1640
 1660

J(N)

N1

N2

J(N)

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 20 30 40 50 60 70 80 90 100

N
2

N1

P(N1,N2)=P

P(N1,N2)>P

P(N1,N2)< P

Figure 3: �(N) vs. �1 and �2 Figure 4: � (N)

c⃝2010 Chuan Shi — Topic one: Line optimization : Algorithm derivation 26/79

An example for algorithm derivation

 0 10 20 30 40 50 60 70 80 90 100 0
 10

 20
 30

 40
 50

 60
 70

 80
 90

 100

 1500
 1520
 1540
 1560
 1580
 1600
 1620
 1640
 1660

J(N)

N1

N2

J(N)

Figure 5: �(N) vs. �1 and �2

c⃝2010 Chuan Shi — Topic one: Line optimization : Algorithm derivation 27/79

Algorithm derivation

Two cases
Case 1
The solution of the unconstrained problem is N� s.t. � (N�) ≥ �̂ . In this
case, the solution of the constrained problem is the same as the solution
of the unconstrained problem. We are done.

Unconstrained problem

max
N

�(N) = �� (N) −
�−1∑

�=1

����

−
�−1∑

�=1

�� ̄��(N)

s.t. �� ≥ �min, ∀� = 1, ⋅ ⋅ ⋅ , � − 1.

(N1 , N2)
u u

P(N1,N2) > P

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 20 30 40 50 60 70 80 90 100

N
2

N1

c⃝2010 Chuan Shi — Topic one: Line optimization : Algorithm derivation 28/79

Algorithm derivation

Two cases (continued)
Case 2
N� satisfies � (N�) < �̂ . This is not the solution of the constrained
problem.

(N1 , N2)
u u

P(N1,N2) > P

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 20 30 40 50 60 70 80 90 100

N
2

N1

c⃝2010 Chuan Shi — Topic one: Line optimization : Algorithm derivation 29/79

Algorithm derivation

Two cases (continued)

Case 2 (continued)

In this case, we consider the following unconstrained problem:

�−1 �−1∑ ∑
max �(N) = �′� (N) − ���� − ���̄�(N)
N

�=1 �=1

s.t. �� ≥ �min, ∀� = 1, ⋅ ⋅ ⋅ , � − 1.

in which � is replaced by �′ . Let N★(�′) be the solution to this problem
and � ★(�′) = � (N★(�′)).

c⃝2010 Chuan Shi — Topic one: Line optimization : Algorithm derivation 30/79

Assertion

The constrained problem
�−1 �−1∑ ∑

max �(N) = �′� (N) − ���� − ���̄�(N)
N

�=1 �=1

s.t. � (N) � , ≥ ˆ

�� ≥ �min, ∀� = 1, ⋅ ⋅ ⋅ , � − 1.

has the same solution for all �′ in which the solution of the corresponding
unconstrained problem ∑�−1 �−1∑

max �(N) = �′� (N) − ���� − ���̄�(N)
N

�=1 �=1

s.t. �� ≥ �min, ∀� = 1, ⋅ ⋅ ⋅ , � − 1.

has � ★(�′) ≤ �̂ .
c⃝2010 Chuan Shi — Topic one: Line optimization : Algorithm derivation 31/79

⋅ ⋅ ⋅
⋅ ⋅ ⋅

s.t.

s.t.

� (�

Interpretation of the assertion

We claim
If the optimal solution of the unconstrained problem is not that of the constrained

−1
★
�

★problem, then the solution of the constrained problem, (�

−1
★
�

, �), satisfies 1 ,

) = �̂ . ★ , � 1 ,

 400

 410

 420

 430

 440

 450

 460

 470

 480

 0 5 10 15 20 25 30 35 40
 0

 10

 20

 30

 40

 50

 60

 70

 80

A
’P

(N
)

C
os

t (
$)

NP(N*(A’)) < P

N*(A’)

max �(�) = 500� (�) − � − �̄(�)
N

s.t.	 � (�) ≥ �̂

� ≥ �min

max �(N) = 500�̂ − � − �̄(�)
N

s.t.	 � (�) ≥ �̂ ⇒ � (�) = �̂

� ≥ �min

We formally prove this by the Karush-Kuhn-Tucker (KKT) conditions of nonlin-
ear programming.

c⃝2010 Chuan Shi — Topic one: Line optimization : Algorithm derivation	 32/79

⋅ ⋅ ⋅
⋅ ⋅ ⋅

s.t.

s.t.

� (�

Interpretation of the assertion

We claim
If the optimal solution of the unconstrained problem is not that of the constrained

−1
★
�

★problem, then the solution of the constrained problem, (�

−1
★
�

, �), satisfies 1 ,

) = �̂ . ★ , � 1 ,

 400

 410

 420

 430

 440

 450

 460

 470

 480

 0 5 10 15 20 25 30 35 40
 0

 10

 20

 30

 40

 50

 60

 70

 80

A
’P

(N
)

C
os

t (
$)

NP(N*(A’)) < P

N*(A’)

max �(�) = 500� (�) − � − �̄(�)
N

s.t.	 � (�) ≥ �̂

� ≥ �min

max �(N) = 500�̂ − � − �̄(�)
N

s.t.	 � (�) ≥ �̂ ⇒ � (�) = �̂

� ≥ �min

We formally prove this by the Karush-Kuhn-Tucker (KKT) conditions of nonlin-
ear programming.

c⃝2010 Chuan Shi — Topic one: Line optimization : Algorithm derivation	 32/79

⋅ ⋅ ⋅
⋅ ⋅ ⋅

s.t.

s.t.

� (�

Interpretation of the assertion

We claim
If the optimal solution of the unconstrained problem is not that of the constrained

−1
★
�

★problem, then the solution of the constrained problem, (�

−1
★
�

, �), satisfies 1 ,

) = �̂ . ★ , � 1 ,

 400

 410

 420

 430

 440

 450

 460

 470

 480

 0 5 10 15 20 25 30 35 40
 0

 10

 20

 30

 40

 50

 60

 70

 80

A
’P

(N
)

C
os

t (
$)

NP(N*(A’)) < P

N*(A’)

max �(�) = 500� (�) − � − �̄(�)
N

s.t.	 � (�) ≥ �̂

� ≥ �min

max �(N) = 500�̂ − � − �̄(�)
N

s.t.	 � (�) ≥ �̂ ⇒ � (�) = �̂

� ≥ �min

We formally prove this by the Karush-Kuhn-Tucker (KKT) conditions of nonlin-
ear programming.

c⃝2010 Chuan Shi — Topic one: Line optimization : Algorithm derivation	 32/79

Interpretation of the assertion

 0 10 20 30 40 50 60 70 80 90 100 0
 10

 20
 30

 40
 50

 60
 70

 80
 90

 100

 1040
 1060
 1080
 1100
 1120
 1140
 1160
 1180
 1200
 1220

J(N)

"infeasible.txt"
"feasible.txt"

1205
1200
1190
1180
1160
1140
1120
1100
1080
1060

Optimal
boundary

N1

N2

J(N)

A = 1500 (Original Problem)

 0 10 20 30 40 50 60 70 80 90 100 0
 10

 20
 30

 40
 50

 60
 70

 80
 90

 100
 1880
 1900
 1920
 1940
 1960
 1980
 2000
 2020
 2040
 2060
 2080

J(N)

"infeasible.txt"
"feasible.txt"

2060
2055

2049.8
2040
2020
2000
1980
1950
1930
1900

Optimal
boundary

N1

N2

J(N)

A’ = 2500

 0 10 20 30 40 50 60 70 80 90 100 0
 10

 20
 30

 40
 50

 60
 70

 80
 90

 100

 2650

 2700

 2750

 2800

 2850

 2900

 2950

J(N)

"infeasible.txt"
"feasible.txt"

2921
2919.7

2910
2900
2880
2860
2830
2800
2770
2730

Optimal
boundary

N1

N2

J(N)

A’ = 3500

 0 10 20 30 40 50 60 70 80 90 100 0
 10

 20
 30

 40
 50

 60
 70

 80
 90

 100
 3450
 3500
 3550
 3600
 3650
 3700
 3750
 3800
 3850

J(N)

"infeasible.txt"
"feasible.txt"

3819
3816
3813
3818
3800
3770
3730
3700
3660
3620
3580
3540
3500

Optimal
boundary

N1

N2

J(N)

A’ = 4535.82 (Final A’)

c⃝2010 Chuan Shi — Topic one: Line optimization : Algorithm derivation 33/79

⋅ ⋅ ⋅
⋅ ⋅ ⋅

⋅ ⋅ ⋅
⋅ ⋅ ⋅

⋅ ⋅ ⋅

⋅ ⋅ ⋅

Karush-Kuhn-Tucker (KKT) conditions
Let �★ be a local minimum of the problem

min �(�)
s.t.	 ℎ1(�) = 0, , ℎ�(�) = 0,

�1(�) ≤ 0, , ��(�) ≤ 0,

where � , ℎ�, and �� are continuously differentiable functions from ℜ�

to Then there exist unique Lagrange multipliers �★ , �★ andℜ. 1, �
�★
1, , �★

� , satisfying the following conditions:

∇��(�
★, �★, �★) = 0,

�★
� ≥ 0, � = 1, , �,

�★
� �� (�

★) = 0, � = 1, , �. ∑� ∑�where �(�, �, �) = �(�) + �=1 ��ℎ�(�) + �=1 �� ��(�) is called the
Lagrangian function.

c⃝2010 Chuan Shi — Topic one: Line optimization : Proofs of the algorithm by KKT conditions 34/79

Convert the constrained problem to minimization form

Minimization form

The constrained problem

min
N

−�(N) = −�� (N) +
�−1∑

�=1

���� +
�−1∑

�=1

�� ̄��(N)

s.t. �̂ − � (N) ≤ 0

�min − �� ≤ 0, ∀� = 1, ⋅ ⋅ ⋅ , � − 1

We have argued that we treat �� as continuous variables, and � (�) and
�(�) as continuously differentiable functions.

c⃝2010 Chuan Shi — Topic one: Line optimization : Proofs of the algorithm by KKT conditions 35/79

⋅ ⋅ ⋅

Applying KKT conditions

The Slater constraint qualification for convex inequalities guarantees the
existence of Lagrange multipliers for our problem. So, there exist unique
Lagrange multipliers �★

� , � = 0, , � − 1 for the constrained problem to
satisfy the KKT conditions:

�−1∑
−∇�(N★) + �★

0∇(�̂ − � (N★)) + ��
★∇(�min − ��) = 0 (1)

�=1

or ⎛ ⎛⎞ ⎞⎛⎞⎛⎞⎛

⎞
∂�(N★) ∂� (N★) ⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎟⎟⎟⎟⎟⎟⎟⎟⎠

− �★
0

⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎟⎟⎟⎟⎟⎟⎟⎟⎠

∂�1
∂�(N★)
∂�2
...

∂�(N★)

∂�1

∂� (N★ 1 0 0

)
 ⎜⎜⎜⎝

0
...

⎟⎟⎟⎠−⋅ ⋅ ⋅− �★
�−1

⎜⎜⎜⎝

0
...

⎟⎟⎟⎠
=

⎜⎜⎜⎝

0
...

⎟⎟⎟⎠
∂�2
...

∂� (N★)

★ − �− ,1

0 1 0

∂��−1 ∂��−1

(2)

c⃝2010 Chuan Shi — Topic one: Line optimization : Proofs of the algorithm by KKT conditions 36/79

⋅ ⋅ ⋅

haha

haha
⋅ ⋅ ⋅

⋅ ⋅ ⋅

�

Applying KKT conditions

★
�

and

≥ 0, ∀� = 0, , � − 1, (3)

�0
 (�̂ − � (N★)) = 0, ★ (4)

where N★ is the optimal solution of the constrained problem. Assume

★�
�

★that �
�
★�
�

★
�(�min − �) = 0, ∀� = 1, , � − 1, (5)

> �min for all �. In this case, by equation (5), we know that
= 0, ∀� = 1, , � − 1.

c⃝2010 Chuan Shi — Topic one: Line optimization : Proofs of the algorithm by KKT conditions 37/79

Applying KKT conditions

The KKT conditions are simplified to
 ⎛
 ⎞
 ⎛

∂�(N★) ∂� (N★) ⎞⎛

⎞

−

⎜⎜⎜⎜⎜⎜⎜⎜⎝
∂�1

∂�(N★)
∂�2
.
 .
 .

∂�(N★)

⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂�1

∂� (N★)

∂�2
.
 .
 .

∂� (N★)

⎟⎟⎟⎟⎟⎟⎟⎟⎠

0

=

⎜⎜⎜⎝

⎟⎟⎟⎠

0

.
. .

− �★
0 (6)
,

0

∂��−1 ∂��−1

�★
0(�̂

 − � (N★)) = 0, (7)

where �★
0 ≥ 0. Since N★ is not the optimal solution of the unconstrained

problem, ∇�(N★) =∕ 0. Thus, �★ =∕ 0 since otherwise condition (6) 0
would be violated. By condition (7), the optimal solution N★ satisfies
� (N★) = �̂ .

c⃝2010 Chuan Shi — Topic one: Line optimization : Proofs of the algorithm by KKT conditions 38/79

Applying KKT conditions

The KKT conditions are simplified to
 ⎛
 ⎞
 ⎛

∂�(N★) ∂� (N★) ⎞⎛

⎞

−

⎜⎜⎜⎜⎜⎜⎜⎜⎝
∂�1

∂�(N★)
∂�2
.
 .
 .

∂�(N★)

⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂�1

∂� (N★)

∂�2
.
 .
 .

∂� (N★)

⎟⎟⎟⎟⎟⎟⎟⎟⎠

0

=

⎜⎜⎜⎝

⎟⎟⎟⎠

0

.
. .

− �★
0 ,

0

∂��−1 ∂��−1

�★
0(�̂

 − � (N★)) = 0,

In addition, conditions (6) and (7) reveal how we could find �★
0 and N★ .

For every �★
0, condition (6) determines N★ since there are � − 1 equations

and � − 1 unknowns. Therefore, we can think of N★ = N★(�0
★). We

search for a value of �★
0 such that � (N★(�★

0)) = �̂ . As we indicate in the
following, this is exactly what the algorithm does.

c⃝2010 Chuan Shi — Topic one: Line optimization : Proofs of the algorithm by KKT conditions 39/79

Applying KKT conditions

Replacing �★
0 by �0 > 0 in constraint (6) gives ⎛
 ⎞
 ⎛

∂�(N�) ∂� (N�) ⎞⎛

⎞

−

⎜⎜⎜⎜⎜⎜⎜⎜⎝
∂�1

∂�(N�)
∂�2
.
 .
 .

∂�(N�)

⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂�1
∂� (N�)
∂�2
.
 .
 .

∂� (N�)

⎟⎟⎟⎟⎟⎟⎟⎟⎠

0

=

⎜⎜⎜⎝

⎟⎟⎟⎠

0

.
. .

− �0 (8)
,

0

∂��−1 ∂��−1

where N� is the unique solution of (8). Note that N� is the solution of
the following optimization problem:

min
N

− �̄(N) = −�(N) + �0(�̂ − � (N))

(9)

s.t. �min − �� ≤ 0, ∀� = 1, ⋅ ⋅ ⋅ , � − 1.

c⃝2010 Chuan Shi — Topic one: Line optimization : Proofs of the algorithm by KKT conditions 40/79

⋅ ⋅ ⋅

⋅ ⋅ ⋅

⋅ ⋅ ⋅

Applying KKT conditions
The problem above is equivalent to

max �̄(N) = �(N) − �0(�̂ − � (N))
N

(10)

s.t. �min − �� ≤ 0, ∀� = 1, , � − 1.

or

�−1 �−1∑ ∑
max �̄(N) = �� (N) − ���� − ���̄� − �0(�̂ − � (N))
N

�=1 �=1 (11)

s.t. �min − �� ≤ 0, ∀� = 1, , � − 1.

or
�−1 �−1∑ ∑

max �̄(N) = (� + �0)� (N) − ���� − ���̄�
N (12)

�=1 �=1
s.t. �� ≥ �min, ∀� = 1, , � − 1.

c⃝2010 Chuan Shi — Topic one: Line optimization : Proofs of the algorithm by KKT conditions 41/79

⋅ ⋅ ⋅

⋅ ⋅ ⋅

⋅ ⋅ ⋅

Applying KKT conditions
The problem above is equivalent to

max �̄(N) = �(N) − �0(�̂ − � (N))
N

(10)

s.t. �min − �� ≤ 0, ∀� = 1, , � − 1.

or

�−1 �−1∑ ∑
max �̄(N) = �� (N) − ���� − ���̄� − �0(�̂ − � (N))
N

�=1 �=1 (11)

s.t. �min − �� ≤ 0, ∀� = 1, , � − 1.

or
�−1 �−1∑ ∑

max �̄(N) = (� + �0)� (N) − ���� − ���̄�
N (12)

�=1 �=1
s.t. �� ≥ �min, ∀� = 1, , � − 1.

c⃝2010 Chuan Shi — Topic one: Line optimization : Proofs of the algorithm by KKT conditions 41/79

⋅ ⋅ ⋅

⋅ ⋅ ⋅

⋅ ⋅ ⋅

Applying KKT conditions
The problem above is equivalent to

max �̄(N) = �(N) − �0(�̂ − � (N))
N

(10)

s.t. �min − �� ≤ 0, ∀� = 1, , � − 1.

or

�−1 �−1∑ ∑
max �̄(N) = �� (N) − ���� − ���̄� − �0(�̂ − � (N))
N

�=1 �=1 (11)

s.t. �min − �� ≤ 0, ∀� = 1, , � − 1.

or
�−1 �−1∑ ∑

max �̄(N) = (� + �0)� (N) − ���� − ���̄�
N (12)

�=1 �=1
s.t. �� ≥ �min, ∀� = 1, , � − 1.

c⃝2010 Chuan Shi — Topic one: Line optimization : Proofs of the algorithm by KKT conditions 41/79

⋅ ⋅ ⋅

Applying KKT conditions

or, finally,

�−1 �−1∑ ∑
max �̄(N) = �′� (N) − ���� − ���̄�
N

�=1 �=1 (13)

s.t. �� ≥ �min, ∀� = 1, , � − 1.

where �′ = � + �0. This is exactly the unconstrained problem, and N�

is its optimal solution. Note that �0 > 0 indicates that �′ > �.

In addition, the KKT conditions indicate that the optimal solution of the
constrained problem N★ satisfies � (N★) = �̂ . This means that, for every
�′ > � (or �0 > 0), we can find the corresponding optimal solution N�

satisfying condition (8) by solving problem (13). We need to find the
�′ such that the solution to problem (13), denoted as N★(�′), satisfies
� (N★(�′)) = �̂ .

c⃝2010 Chuan Shi — Topic one: Line optimization : Proofs of the algorithm by KKT conditions 42/79

⋅ ⋅ ⋅

Applying KKT conditions

or, finally,

�−1 �−1∑ ∑
max �̄(N) = �′� (N) − ���� − ���̄�
N

�=1 �=1 (13)

s.t. �� ≥ �min, ∀� = 1, , � − 1.

where �′ = � + �0. This is exactly the unconstrained problem, and N�

is its optimal solution. Note that �0 > 0 indicates that �′ > �.

In addition, the KKT conditions indicate that the optimal solution of the
constrained problem N★ satisfies � (N★) = �̂ . This means that, for every
�′ > � (or �0 > 0), we can find the corresponding optimal solution N�

satisfying condition (8) by solving problem (13). We need to find the
�′ such that the solution to problem (13), denoted as N★(�′), satisfies
� (N★(�′)) = �̂ .

c⃝2010 Chuan Shi — Topic one: Line optimization : Proofs of the algorithm by KKT conditions 42/79

d

Applying KKT conditions

Then, �0 = �′ − � and N★(�′) satisfy conditions (6) and (7):

−∇�(N★(�′)) + �★
0∇(�̂ − � (N★(�′))) = 0,

�★
0(�̂ − � (N★(�′))) = 0.

Hence, �★ = �′ −� is exactly the Lagrange multiplier satisfying the KKT 0
conditions of the constrained problem, and N★ = N★(�′) is the optimal
solution of the constrained problem.

Consequently, solving the constrained problem through our algorithm is
essentially finding the unique Lagrange multipliers and optimal solution
of the problem.

c⃝2010 Chuan Shi — Topic one: Line optimization : Proofs of the algorithm by KKT conditions 43/79

d

Applying KKT conditions

Then, �0 = �′ − � and N★(�′) satisfy conditions (6) and (7):

−∇�(N★(�′)) + �★
0∇(�̂ − � (N★(�′))) = 0,

�★
0(�̂ − � (N★(�′))) = 0.

Hence, �★ = �′ −� is exactly the Lagrange multiplier satisfying the KKT 0
conditions of the constrained problem, and N★ = N★(�′) is the optimal
solution of the constrained problem.

Consequently, solving the constrained problem through our algorithm is
essentially finding the unique Lagrange multipliers and optimal solution
of the problem.

c⃝2010 Chuan Shi — Topic one: Line optimization : Proofs of the algorithm by KKT conditions 43/79

Algorithm summary for case 2

Solve unconstrained problem

Solve, by a gradient method, the unconstrained prob-
lem for fixed �′

max
N

�(N) = �′� (N) −
�−1∑

�=1

���� −
�−1∑

�=1

�� ̄��(N)

s.t. �� ≥ �min, ∀� = 1, ⋅ ⋅ ⋅ , � − 1.

Search

Do a one-dimensional search on �′ > � to find �′

such that the solution of the unconstrained problem,
N★(�′), satisfies

� (N★(�′)) = �̂ .

P(N*(A'))=P?

Solve unconstrained problem

Search: Choose A'

Yes

No

Quit

c⃝2010 Chuan Shi — Topic one: Line optimization : Proofs of the algorithm by KKT conditions 44/79

⋅ ⋅ ⋅

Numerical results

Numerical experiment outline

Experiments on short lines.

Experiments on long lines.

Computation speed.

Method we use to check the algorithm

�̂ surface search in (�1, , ��−1) space. All buffer size allocations, N,
such that � (N) = �̂ compose the �̂ surface.

c⃝2010 Chuan Shi — Topic one: Line optimization : Numerical results 45/79

�̂ surface search

 15

 20

 25

 30

 35

 40 40 45 50 55 60 65 70

 70

 75

 80

 85

 90

N3

P surface
The optimal solution

N1

N2

Figure 6: �̂ Surface search

c⃝2010 Chuan Shi — Topic one: Line optimization : Numerical results 46/79

Experiment on short lines (4-buffer line)

Line parameters: �̂ = .88

machine �1 �2 �3 �4 �5

� .11 .12 .10 .09 .10
� .008 .01 .01 .01 .01

Machine 4 is the least reliable machine (bottleneck) of the line.

Cost function

4 4∑ ∑
�(N) = 2500� (N) − �� − �̄�(N)

�=1 �=1

c⃝2010 Chuan Shi — Topic one: Line optimization : Numerical results 47/79

Experiment on short lines (4-buffer line)

Results

Optimal solutions

�̂ Surface Search The algorithm Error Rounded �★

Prod. rate .8800 .8800 .8800
�★

1 28.85 28.8570 0.02% 29.0000
�★

2 58.46 58.5694 0.19% 59.0000
�★

3 92.98 92.9068 0.08% 93.0000
�★

4 87.39 87.4415 0.06% 87.0000
�̄1 19.0682 19.0726 0.02% 19.1791
�̄2 34.3084 34.3835 0.23% 34.7289
�̄3 48.7200 48.6981 0.04% 48.9123
�̄4 31.9894 32.0063 0.05% 31.9485

Profit ($) 1798.2 1798.1 0.006% 1797.4000

The maximal error is 0.23% and appears in �̄2.

Computer time for this experiment is 2.69 seconds.

c⃝2010 Chuan Shi — Topic one: Line optimization : Numerical results 48/79

Experiment on long lines (11-buffer line)

Line parameters: �̂ = .88

machine �1 �2 �3 �4 �5 �6

� .11 .12 .10 .09 .10 .11
� .008 .01 .01 .01 .01 .01

machine �7 �8 �9 �10 �11 �12

� .10 .11 .12 .10 .12 .09
� .009 .01 .009 .008 .01 .009

Cost function

11 11∑ ∑
�(N) = 6000� (N) − �� − �̄�(N)

�=1 �=1

c⃝2010 Chuan Shi — Topic one: Line optimization : Numerical results 49/79

Experiment on long lines (11-buffer line)

Results

Optimal solutions, buffer sizes:

�̂ Surface Search The algorithm Error Rounded �★

Prod. rate .8800 .8800 .8799
�★

1 29.10 29.1769 0.26% 29.0000
�★

2 59.20 59.2830 0.14% 59.0000
�★

3 97.80 97.7980 0.002% 98.0000
�★

4 107.50 107.4176 0.08% 107.0000
�★

5 84.50 84.4804 0.02% 84.0000
�★

6 70.80 70.6892 0.17% 71.0000
�★

7 63.10 63.1893 0.14% 63.0000
�★

8 53.10 52.9274 0.33% 53.0000
�★

9 47.20 47.2232 0.05% 47.0000
� ★

10 47.90 47.7967 0.22% 48.0000
� ★

11 48.80 48.7716 0.06% 49.0000

c⃝2010 Chuan Shi — Topic one: Line optimization : Numerical results 50/79

Experiment on long lines (11-buffer line)

Results (continued)

Optimal solutions, average inventories:

�̂ Surface Search The algorithm Error Rounded �★

�̄1 19.2388 19.2986 0.31% 19.1979
�̄2 34.9561 35.0423 0.25% 34.8194
�̄3 52.5423 52.6032 0.12% 52.6833
�̄4 45.1528 45.1840 0.07% 45.0835
�̄5 34.4289 34.4770 0.14% 34.2790
�̄6 30.7073 30.7048 0.01% 30.8229
�̄7 28.0446 28.1299 0.30% 28.0902
�̄8 21.5666 21.5438 0.11% 21.5932
�̄9 21.5059 21.5442 0.18% 21.4299
�̄10 22.6756 22.6496 0.11% 22.7303
�̄11 20.8692 20.8615 0.04% 20.9613

Profit ($) 4239.3 4239.2 0.002% 4239.5000

Computer time is 91.47 seconds.

c⃝2010 Chuan Shi — Topic one: Line optimization : Numerical results 51/79

Experiments for Tolio, Matta, and Gershwin (2002) model

Consider a 4-machine 3-buffer line with constraints �̂ = .87. In addition, � =
2000 and all �� and �� are 1.

machine �1 �2 �3 �4

��1 .10 .12 .10 .20
��1 .01 .008 .01 .007
��2 – .20 – .16
��2 – .005 – .004

�̂ Surf. Search The algorithm Error
� (N★) .8699 .8699
�★

1 29.8600 29.9930 0.45%
�★

2 38.2200 38.0206 0.52%
�★

3 20.6800 20.7616 0.39%
�̄1 17.2779 17.3674 0.52%
�̄2 17.2602 17.1792 0.47%
�̄3 6.1996 6.2121 0.20%

Profit ($) 1610.3000 1610.3000 0.00%

c⃝2010 Chuan Shi — Topic one: Line optimization : Numerical results 52/79

Experiments for Levantesi, Matta, and Tolio (2003) model

Consider a 4-machine 3-buffer line with constraints �̂ = .87. In addition, � =
2000 and all �� and �� are 1.

machine �1 �2 �3 �4

�� 1.0 1.02 1.0 1.0
��1 .10 .12 .10 .20
��1 .01 .008 .01 .012
��2 – .20 – .16
��2 – .005 – .006

� ★ Surf. Search The algorithm Error
� (N★) .8699 .8700
�★

1 27.7200 27.9042 0.66%
�★

2 38.7900 38.9281 0.34%
�★

3 34.0700 34.1574 0.26%
�̄1 15.4288 15.5313 0.66%
�̄2 19.8787 19.9711 0.46%
�̄3 13.8937 13.9426 0.35%

Profit ($) 1590.0000 1589.7000 0.02%

c⃝2010 Chuan Shi — Topic one: Line optimization : Numerical results 53/79

Computation speed

Experiment

Run the algorithm for a series of experiments for lines having iden
-

tical machines to see how fast the algorithm could optimize longer

lines.

Length of the line varies from 4 machines to 30 machines.

Machine parameters are � = .01 and � = .1.

In all cases, the feasible production rate is �̂ = .88.

The objective function is

�−1 �−1∑ ∑
�(N) = �� (N) − �� − �̄�(N).

�=1 �=1

where � = 500� for the line of length �.

c⃝2010 Chuan Shi — Topic one: Line optimization : Numerical results 54/79

Computation speed

 0

 500

 1000

 1500

 2000

 2500

 3000

 5 10 15 20 25 30

C
om

pu
te

r t
im

e
(s

ec
on

ds
)

Length of production lines

1 min
3 mins

10 mins

c⃝2010 Chuan Shi — Topic one: Line optimization : Numerical results 55/79

Algorithm reliability

We run the algorithm on 739 randomly generated 4-machine 3-buffer lines.
98.92% of these experiments have a maximal error less than 6%.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

250

300

350

400

450

Maximal Error

Fr
eq

u
en

cy

c⃝2010 Chuan Shi — Topic one: Line optimization : Numerical results 56/79

Algorithm reliability

Taking a closer look at those 98.92% experiments, we find a more accurate
distribution of the maximal error. We find that, out of the total 739 experiments,
83.90% of them have a maximal error less than 2%.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

10

20

30

40

50

60

Maximal Error

Fr
eq

u
en

cy

c⃝2010 Chuan Shi — Topic one: Line optimization : Numerical results 57/79

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

MIT OpenCourseWare
http://ocw.mit.edu

2.852 Manufacturing Systems Analysis
Spring 2010

For information about citing these materials or our Terms of Use,visit:http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

