Topic one: $\mathcal{P r o d u c t i o n ~ l i n e ~ p r o f i t ~ m a x i m i z a t i o n ~ s u b j e c t ~ t o ~ a ~}$ production rate constraint

Production line profit maximization

The profit maximization problem

$$
\max _{\mathbf{N}} J(\mathbf{N})=A P(\mathbf{N})-\sum_{i=1}^{k-1} b_{i} N_{i}-\sum_{i=1}^{k-1} c_{i} \bar{n}_{i}(\mathbf{N})
$$

s.t. $P(\mathbf{N}) \geq \hat{P}$,

$$
N_{i} \geq N_{\min }, \forall i=1, \cdots, k-1
$$

where $P(\mathbf{N})=$ production rate, parts/time unit
$\hat{P}=$ required production rate, parts/time unit $A=$ profit coefficient, \$/part
$\bar{n}_{i}(\mathbf{N})=$ average inventory of buffer $i, i=1, \cdots, k-1$
$b_{i}=$ buffer cost coefficient, $\$ /$ part/time unit
$c_{i}=$ inventory cost coefficient, \$/part/time unit

An example about the research goal

Figure 2: $J(\mathbf{N})$ vs. N_{1} and N_{2}

Two problems

Original constrained problem

$$
\max _{\mathbf{N}} J(\mathbf{N})=A P(\mathbf{N})-\sum_{i=1}^{k-1} b_{i} N_{i}-\sum_{i=1}^{k-1} c_{i} \bar{n}_{i}(\mathbf{N})
$$

s.t. $P(\mathbf{N}) \geq \hat{P}$,

$$
N_{i} \geq N_{\min }, \forall i=1, \cdots, k-1
$$

Simpler unconstrained problem (Schor's problem)

$$
\begin{array}{rl}
\max _{\mathbf{N}} & J(\mathbf{N}) \\
\text { s.t. } & N_{i} \geq N_{\min }, \forall i=1, \cdots, \sum_{i=1}^{k-1} b_{i} N_{i}-\sum_{i=1}^{k-1} c_{i} \bar{n}_{i}(\mathbf{N}) \\
\text { s. }
\end{array}
$$

An example for algoritfim derivation

DATA
$r_{1}=.1, p_{1}=.01, r_{2}=.11, p_{2}=.01, r_{3}=.1, p_{3}=.009, \hat{P}=.88$
Cost function
$J(\mathbf{N})=2000 P(\mathbf{N})-N_{1}-N_{2}-\bar{n}_{1}(\mathbf{N})-\bar{n}_{2}(\mathbf{N})$

Figure 3: $J(\mathbf{N})$ vs. N_{1} and N_{2}

Figure 4: $P(\mathbf{N})$

An example for algoritfim derivation

Figure 5: $J(\mathbf{N})$ vs. N_{1} and N_{2}

Algoritfim derivation

Two cases

Case 1
The solution of the unconstrained problem is \mathbf{N}^{u} s.t. $P\left(\mathbf{N}^{u}\right) \geq \hat{P}$. In this case, the solution of the constrained problem is the same as the solution of the unconstrained problem. We are done.

$$
\begin{aligned}
& \text { Unconstrained problem } \\
& \qquad \begin{aligned}
\max _{\mathbf{N}} J(\mathbf{N})= & A P(\mathbf{N})-\sum_{i=1}^{k-1} b_{i} N_{i} \\
& -\sum_{i=1}^{k-1} c_{i} \bar{n}_{i}(\mathbf{N}) \\
\text { s.t. } N_{i} \geq & N_{\min }, \forall i=1, \cdots, k-1 .
\end{aligned} \\
& \left.\qquad \begin{array}{rl}
\\
& \\
& \\
\end{array}\right]
\end{aligned}
$$

Algoritfim derivation

Two cases (continued)
Case 2
\mathbf{N}^{u} satisfies $P\left(\mathbf{N}^{u}\right)<\hat{P}$. This is not the solution of the constrained problem.

Algoritfim derivation

Two cases (continued)
Case 2 (continued)
In this case, we consider the following unconstrained problem:

$$
\begin{array}{rl}
\max _{\mathbf{N}} & J(\mathbf{N})=A^{\prime} P(\mathbf{N})-\sum_{i=1}^{k-1} b_{i} N_{i}-\sum_{i=1}^{k-1} c_{i} \bar{n}_{i}(\mathbf{N}) \\
\text { s.t. } & N_{i} \geq N_{\min }, \forall i=1, \cdots, k-1
\end{array}
$$

in which A is replaced by A^{\prime}. Let $\mathbf{N}^{\star}\left(A^{\prime}\right)$ be the solution to this problem and $P^{\star}\left(A^{\prime}\right)=P\left(\mathbf{N}^{\star}\left(A^{\prime}\right)\right)$.

Assertion

The constrained problem

$$
\begin{aligned}
\max _{\mathbf{N}} \quad J(\mathbf{N}) & =A^{\prime} P(\mathbf{N})-\sum_{i=1}^{k-1} b_{i} N_{i}-\sum_{i=1}^{k-1} c_{i} \bar{n}_{i}(\mathbf{N}) \\
\text { s.t. } & P(\mathbf{N}) \\
& \geq \hat{P}, \\
N_{i} & \geq N_{\min }, \forall i=1, \cdots, k-1 .
\end{aligned}
$$

has the same solution for all A^{\prime} in which the solution of the corresponding unconstrained problem

$$
\begin{array}{rl}
\max _{\mathbf{N}} & J(\mathbf{N})=A^{\prime} P(\mathbf{N})-\sum_{i=1}^{k-1} b_{i} N_{i}-\sum_{i=1}^{k-1} c_{i} \bar{n}_{i}(\mathbf{N}) \\
\text { s.t. } & N_{i} \geq N_{\min }, \forall i=1, \cdots, k-1 .
\end{array}
$$

has $P^{\star}\left(A^{\prime}\right) \leq \hat{P}$.

Interpretation of the assertion

We claim

If the optimal solution of the unconstrained problem is not that of the constrained problem, then the solution of the constrained problem, $\left(N_{1}^{\star}, \cdots, N_{k-1}^{\star}\right)$, satisfies $P\left(N_{1}^{\star}, \cdots, N_{k-1}^{\star}\right)=\hat{P}$.

ear programming

Interpretation of the assertion

We claim

If the optimal solution of the unconstrained problem is not that of the constrained problem, then the solution of the constrained problem, $\left(N_{1}^{\star}, \cdots, N_{k-1}^{\star}\right)$, satisfies $P\left(N_{1}^{\star}, \cdots, N_{k-1}^{\star}\right)=\hat{P}$.

$\max _{\mathrm{N}} J(N)$	$=500 P(N)-N-\bar{n}(N)$
s.t. $P(N)$	$\geq \hat{P}$
N	$\geq N_{\text {min }}$
気	
$\max _{\mathbf{N}} J(\mathbf{N})$	$=500 \hat{P}-N-\bar{n}(N)$
s.t. $P(N)$	$\geq \hat{P} \Rightarrow P(N)=\hat{P}$
N	$\geq N_{\text {min }}$

Interpretation of the assertion

We claim

If the optimal solution of the unconstrained problem is not that of the constrained problem, then the solution of the constrained problem, $\left(N_{1}^{\star}, \cdots, N_{k-1}^{\star}\right)$, satisfies $P\left(N_{1}^{\star}, \cdots, N_{k-1}^{\star}\right)=\hat{P}$.

We formally prove this by the Karush-Kuhn-Tucker (KKT) conditions of nonlinear programming.

Interpretation of the assertion

Karush-TuЋn-Tucker (ККI) conditions

Let x^{\star} be a local minimum of the problem

$$
\begin{array}{cl}
\min & f(x) \\
\mathrm{s.t.} & h_{1}(x)=0, \cdots, h_{m}(x)=0 \\
& g_{1}(x) \leq 0, \cdots, g_{r}(x) \leq 0
\end{array}
$$

where f, h_{i}, and g_{j} are continuously differentiable functions from \Re^{n} to \Re. Then there exist unique Lagrange multipliers $\lambda_{1}^{\star}, \cdots, \lambda_{m}^{\star}$ and $\mu_{1}^{\star}, \cdots, \mu_{r}^{\star}$, satisfying the following conditions:

$$
\begin{aligned}
& \nabla_{x} L\left(x^{\star}, \lambda^{\star}, \mu^{\star}\right)=0, \\
& \mu_{j}^{\star} \geq 0, j=1, \cdots, r, \\
& \mu_{j}^{\star} g_{j}\left(x^{\star}\right)=0, j=1, \cdots, r .
\end{aligned}
$$

where $L(x, \lambda, \mu)=f(x)+\sum_{i=1}^{m} \lambda_{i} h_{i}(x)+\sum_{j=1}^{r} \mu_{j} g_{j}(x)$ is called the Lagrangian function.

Convert the constrained problem to minimization form

Minimization form

The constrained problem

$$
\begin{array}{lrl}
\min _{\mathbf{N}} & -J(\mathbf{N}) & =-A P(\mathbf{N})+\sum_{i=1}^{k-1} b_{i} N_{i}+\sum_{i=1}^{k-1} c_{i} \bar{n}_{i}(\mathbf{N}) \\
\text { s.t. } & \hat{P}-P(\mathbf{N}) \leq 0 \\
& N_{\min }-N_{i} \leq 0, \forall i=1, \cdots, k-1
\end{array}
$$

We have argued that we treat N_{i} as continuous variables, and $P(N)$ and $J(N)$ as continuously differentiable functions.

Applying KXI conditions

The Slater constraint qualification for convex inequalities guarantees the existence of Lagrange multipliers for our problem. So, there exist unique Lagrange multipliers $\mu_{i}^{\star}, i=0, \cdots, k-1$ for the constrained problem to satisfy the KKT conditions:

$$
\begin{equation*}
-\nabla J\left(\mathbf{N}^{\star}\right)+\mu_{0}^{\star} \nabla\left(\hat{P}-P\left(\mathbf{N}^{\star}\right)\right)+\sum_{i=1}^{k-1} \mu_{i}^{\star} \nabla\left(N_{\min }-N_{i}\right)=0 \tag{1}
\end{equation*}
$$

or

$$
-\left(\begin{array}{c}
\frac{\partial J\left(\mathbf{N}^{\star}\right)}{\partial N_{1}} \tag{2}\\
\frac{\partial J\left(\mathbf{N}^{\star}\right)}{\partial N_{2}} \\
\vdots \\
\frac{\partial J\left(\mathbf{N}^{\star}\right)}{}
\end{array}\right)-\mu_{0}^{\star}\left(\begin{array}{c}
\frac{\partial P\left(\mathbf{N}^{\star}\right)}{\partial N_{1}} \\
\frac{\partial P\left(\mathbf{N}^{\star}\right)}{\partial N_{2}} \\
\vdots \\
\frac{\partial P\left(\mathbf{N}^{\star}\right)}{r}
\end{array}\right)-\mu_{1}^{\star}\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right)-\cdots-\mu_{k-1}^{\star}\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
1
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right),
$$

Applying KXI conditions

and

$$
\begin{gather*}
\mu_{i}^{\star} \geq 0, \forall i=0, \cdots, k-1, \tag{3}\\
\mu_{0}^{\star}\left(\hat{P}-P\left(\mathbf{N}^{\star}\right)\right)=0, \tag{4}\\
\mu_{i}^{\star}\left(N_{\min }-N_{i}^{\star}\right)=0, \forall i=1, \cdots, k-1, \tag{5}
\end{gather*}
$$

where \mathbf{N}^{\star} is the optimal solution of the constrained problem. Assume that $N_{i}^{\star}>N_{\text {min }}$ for all i. In this case, by equation (5), we know that $\mu_{i}^{\star}=0, \forall i=1, \cdots, k-1$.

Applying KXI conditions

The KKT conditions are simplified to

$$
\begin{gather*}
-\left(\begin{array}{c}
\frac{\partial J\left(\mathbf{N}^{\star}\right)}{\partial N_{1}} \\
\frac{\partial J\left(\mathbf{N}^{\star}\right)}{\partial N_{2}} \\
\vdots \\
\frac{\partial J\left(\mathbf{N}^{\star}\right)}{\partial N_{k-1}}
\end{array}\right)-\mu_{0}^{\star}\left(\begin{array}{c}
\frac{\partial P\left(\mathbf{N}^{\star}\right)}{\partial N_{1}} \\
\frac{\partial P\left(\mathbf{N}^{\star}\right)}{\partial N_{2}} \\
\vdots \\
\frac{\partial P\left(\mathbf{N}^{\star}\right)}{\partial N_{k-1}}
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right), \tag{6}\\
\mu_{0}^{\star}\left(\hat{P}-P\left(\mathbf{N}^{\star}\right)\right)=0 \tag{7}
\end{gather*}
$$

where $\mu_{0}^{\star} \geq 0$. Since \mathbf{N}^{\star} is not the optimal solution of the unconstrained problem, $\nabla J\left(\mathbf{N}^{\star}\right) \neq 0$. Thus, $\mu_{0}^{\star} \neq 0$ since otherwise condition (6) would be violated. By condition (7), the optimal solution \mathbf{N}^{\star} satisfies $P\left(\mathbf{N}^{\star}\right)=\hat{P}$.

Applying KXI conditions

The KKT conditions are simplified to

$$
\begin{gathered}
-\left(\begin{array}{c}
\frac{\partial J\left(\mathbf{N}^{\star}\right)}{\partial N_{1}} \\
\frac{\partial J\left(\mathbf{N}^{\star}\right)}{\partial N_{2}} \\
\vdots \\
\frac{\partial J\left(\mathbf{N}^{\star}\right)}{\partial N_{k-1}}
\end{array}\right)-\mu_{0}^{\star}\left(\begin{array}{c}
\frac{\partial P\left(\mathbf{N}^{\star}\right)}{\partial N_{1}} \\
\frac{\partial P\left(\mathbf{N}^{\star}\right)}{\partial N_{2}} \\
\vdots \\
\frac{\partial P\left(\mathbf{N}^{\star}\right)}{\partial N_{k-1}}
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right) \\
\mu_{0}^{\star}\left(\hat{P}-P\left(\mathbf{N}^{\star}\right)\right)=0
\end{gathered}
$$

In addition, conditions (6) and (7) reveal how we could find μ_{0}^{\star} and \mathbf{N}^{\star}. For every μ_{0}^{\star}, condition (6) determines \mathbf{N}^{\star} since there are $k-1$ equations and $k-1$ unknowns. Therefore, we can think of $\mathbf{N}^{\star}=\mathbf{N}^{\star}\left(\mu_{0}^{\star}\right)$. We search for a value of μ_{0}^{\star} such that $P\left(\mathbf{N}^{\star}\left(\mu_{0}^{\star}\right)\right)=\hat{P}$. As we indicate in the following, this is exactly what the algorithm does.

Applying KXI conditions

Replacing μ_{0}^{\star} by $\mu_{0}>0$ in constraint (6) gives

$$
-\left(\begin{array}{c}
\frac{\partial J\left(\mathbf{N}^{c}\right)}{\partial N_{1}} \tag{8}\\
\frac{\partial J\left(\mathbf{N}^{c}\right)}{\partial N_{2}} \\
\vdots \\
\frac{\partial J\left(\mathbf{N}^{c}\right)}{\partial N_{k-1}}
\end{array}\right)-\mu_{0}\left(\begin{array}{c}
\frac{\partial P\left(\mathbf{N}^{c}\right)}{\partial N_{1}} \\
\frac{\partial P\left(\mathbf{N}^{c}\right)}{\partial N_{2}} \\
\vdots \\
\frac{\partial P\left(\mathbf{N}^{c}\right)}{\partial N_{k-1}}
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right)
$$

where \mathbf{N}^{c} is the unique solution of (8). Note that \mathbf{N}^{c} is the solution of the following optimization problem:

$$
\begin{array}{cl}
\min _{\mathbf{N}} & -\bar{J}(\mathbf{N})=-J(\mathbf{N})+\mu_{0}(\hat{P}-P(\mathbf{N})) \tag{9}\\
\text { s.t. } & N_{\min }-N_{i} \leq 0, \forall i=1, \cdots, k-1
\end{array}
$$

Applying KXI conditions

The problem above is equivalent to

$$
\begin{array}{cl}
\max _{\mathbf{N}} & \bar{J}(\mathbf{N})=J(\mathbf{N})-\mu_{0}(\hat{P}-P(\mathbf{N})) \tag{10}\\
\text { s.t. } & N_{\min }-N_{i} \leq 0, \forall i=1, \cdots, k-1
\end{array}
$$

Applying KXI conditions

The problem above is equivalent to

$$
\begin{array}{cl}
\max _{\mathbf{N}} & \bar{J}(\mathbf{N})=J(\mathbf{N})-\mu_{0}(\hat{P}-P(\mathbf{N})) \tag{10}\\
\text { s.t. } & N_{\min }-N_{i} \leq 0, \forall i=1, \cdots, k-1 .
\end{array}
$$

or

$$
\begin{align*}
\max _{\mathbf{N}} & \bar{J}(\mathbf{N})=A P(\mathbf{N})-\sum_{i=1}^{k-1} b_{i} N_{i}-\sum_{i=1}^{k-1} c_{i} \bar{n}_{i}-\mu_{0}(\hat{P}-P(\mathbf{N})) \tag{11}\\
\text { s.t. } & N_{\min }-N_{i} \leq 0, \forall i=1, \cdots, k-1 .
\end{align*}
$$

Applying KXI conditions

The problem above is equivalent to

$$
\begin{array}{cl}
\max _{\mathbf{N}} & \bar{J}(\mathbf{N})=J(\mathbf{N})-\mu_{0}(\hat{P}-P(\mathbf{N})) \tag{10}\\
\text { s.t. } & N_{\min }-N_{i} \leq 0, \forall i=1, \cdots, k-1 .
\end{array}
$$

or

$$
\begin{array}{cl}
\max _{\mathbf{N}} & \bar{J}(\mathbf{N})=A P(\mathbf{N})-\sum_{i=1}^{k-1} b_{i} N_{i}-\sum_{i=1}^{k-1} c_{i} \bar{n}_{i}-\mu_{0}(\hat{P}-P(\mathbf{N})) \\
\text { s.t. } & N_{\min }-N_{i} \leq 0, \forall i=1, \cdots, k-1 .
\end{array}
$$

or

$$
\begin{equation*}
\max _{\mathbf{N}} \bar{J}(\mathbf{N})=\left(A+\mu_{0}\right) P(\mathbf{N})-\sum_{i=1}^{k-1} b_{i} N_{i}-\sum_{i=1}^{k-1} c_{i} \bar{n}_{i} \tag{12}
\end{equation*}
$$

s.t. $\quad N_{i} \geq N_{\text {min }}, \forall i=1, \cdots, k-1$.

Applying KXI conditions

or, finally,

$$
\begin{equation*}
\max _{\mathbf{N}} \bar{J}(\mathbf{N})=A^{\prime} P(\mathbf{N})-\sum_{i=1}^{k-1} b_{i} N_{i}-\sum_{i=1}^{k-1} c_{i} \bar{n}_{i} \tag{13}
\end{equation*}
$$

s.t. $\quad N_{i} \geq N_{\text {min }}, \forall i=1, \cdots, k-1$.
where $A^{\prime}=A+\mu_{0}$. This is exactly the unconstrained problem, and \mathbf{N}^{c} is its optimal solution. Note that $\mu_{0}>0$ indicates that $A^{\prime}>A$.

In addition, the KKT conditions indicate that the optimal solution of the constrained problem \mathbf{N}^{\star} satisfies $P\left(\mathbf{N}^{\star}\right)=\hat{P}$. This means that, for every $A^{\prime}>A\left(\right.$ or $\left.\mu_{0}>0\right)$, we can find the corresponding optimal solution N^{C} satisfying condition (8) by solving problem (13). We need to find the A^{\prime} such that the solution to problem (13), denoted as $\mathbf{N}^{\star}\left(A^{\prime}\right)$, satisfies

Applying KXI conditions

or, finally,

$$
\begin{equation*}
\max _{\mathbf{N}} \bar{J}(\mathbf{N})=A^{\prime} P(\mathbf{N})-\sum_{i=1}^{k-1} b_{i} N_{i}-\sum_{i=1}^{k-1} c_{i} \bar{n}_{i} \tag{13}
\end{equation*}
$$

$$
\text { s.t. } \quad N_{i} \geq N_{\min }, \forall i=1, \cdots, k-1 .
$$

where $A^{\prime}=A+\mu_{0}$. This is exactly the unconstrained problem, and \mathbf{N}^{c} is its optimal solution. Note that $\mu_{0}>0$ indicates that $A^{\prime}>A$.

In addition, the KKT conditions indicate that the optimal solution of the constrained problem \mathbf{N}^{\star} satisfies $P\left(\mathbf{N}^{\star}\right)=\hat{P}$. This means that, for every $A^{\prime}>A\left(\right.$ or $\left.\mu_{0}>0\right)$, we can find the corresponding optimal solution \mathbf{N}^{c} satisfying condition (8) by solving problem (13). We need to find the A^{\prime} such that the solution to problem (13), denoted as $\mathbf{N}^{\star}\left(A^{\prime}\right)$, satisfies $P\left(\mathbf{N}^{\star}\left(A^{\prime}\right)\right)=\hat{P}$.

Applying KXI conditions

Then, $\mu_{0}=A^{\prime}-A$ and $\mathbf{N}^{\star}\left(A^{\prime}\right)$ satisfy conditions (6) and (7):

$$
\begin{gathered}
-\nabla J\left(\mathbf{N}^{\star}\left(A^{\prime}\right)\right)+\mu_{0}^{\star} \nabla\left(\hat{P}-P\left(\mathbf{N}^{\star}\left(A^{\prime}\right)\right)\right)=0 \\
\mu_{0}^{\star}\left(\hat{P}-P\left(\mathbf{N}^{\star}\left(A^{\prime}\right)\right)\right)=0
\end{gathered}
$$

Hence, $\mu_{0}^{\star}=A^{\prime}-A$ is exactly the Lagrange multiplier satisfying the KKT conditions of the constrained problem, and $\mathbf{N}^{\star}=\mathbf{N}^{\star}\left(A^{\prime}\right)$ is the optimal solution of the constrained problem.

Consequently, solving the constrained problem through our algorithm is essentially finding the unique Lagrange multipliers and optimal solution of the problem.

Applying KXI conditions

Then, $\mu_{0}=A^{\prime}-A$ and $\mathbf{N}^{\star}\left(A^{\prime}\right)$ satisfy conditions (6) and (7):

$$
\begin{gathered}
-\nabla J\left(\mathbf{N}^{\star}\left(A^{\prime}\right)\right)+\mu_{0}^{\star} \nabla\left(\hat{P}-P\left(\mathbf{N}^{\star}\left(A^{\prime}\right)\right)\right)=0, \\
\mu_{0}^{\star}\left(\hat{P}-P\left(\mathbf{N}^{\star}\left(A^{\prime}\right)\right)\right)=0
\end{gathered}
$$

Hence, $\mu_{0}^{\star}=A^{\prime}-A$ is exactly the Lagrange multiplier satisfying the KKT conditions of the constrained problem, and $\mathbf{N}^{\star}=\mathbf{N}^{\star}\left(A^{\prime}\right)$ is the optimal solution of the constrained problem.

Consequently, solving the constrained problem through our algorithm is essentially finding the unique Lagrange multipliers and optimal solution of the problem.

$\mathfrak{A l g o r i t h m}$ summary for case 2

Solve unconstrained problem

Solve, by a gradient method, the unconstrained problem for fixed A^{\prime}

$$
\begin{array}{rl}
\max _{\mathbf{N}} & J(\mathbf{N})=A^{\prime} P(\mathbf{N})-\sum_{i=1}^{k-1} b_{i} N_{i}-\sum_{i=1}^{k-1} c_{i} \bar{n}_{i}(\mathbf{N}) \\
\text { s.t. } & N_{i} \geq N_{\min }, \forall i=1, \cdots, k-1 .
\end{array}
$$

Search

Numerical results

Numerical experiment outline

- Experiments on short lines.

■ Experiments on long lines.

- Computation speed.

Method we use to check the algorithm
\hat{P} surface search in $\left(N_{1}, \cdots, N_{k-1}\right)$ space. All buffer size allocations, N , such that $P(\mathbf{N})=\hat{P}$ compose the \hat{P} surface.

\hat{P} surface search

P̂ surface

Figure 6: \hat{P} Surface search

Experiment on short lines (4-buffer line)

- Line parameters: $\hat{P}=.88$

machine	M_{1}	M_{2}	M_{3}	M_{4}	M_{5}
r	.11	.12	.10	.09	.10
p	.008	.01	.01	.01	.01

- Machine 4 is the least reliable machine (bottleneck) of the line.
- Cost function

$$
J(\mathbf{N})=2500 P(\mathbf{N})-\sum_{i=1}^{4} N_{i}-\sum_{i=1}^{4} \bar{n}_{i}(\mathbf{N})
$$

Experiment on short lines (4-buffer line)

Results

- Optimal solutions

	\hat{P} Surface Search	The algorithm	Error	Rounded N^{\star}
Prod. rate	.8800	.8800		.8800
N_{1}^{\star}	28.85	28.8570	0.02%	29.0000
N_{2}^{\star}	58.46	58.5694	0.19%	59.0000
N_{3}^{\star}	92.98	92.9068	0.08%	93.0000
N_{4}^{\star}	87.39	87.4415	0.06%	87.0000
\bar{n}_{1}	19.0682	19.0726	0.02%	19.1791
\bar{n}_{2}	34.3084	34.3835	0.23%	34.7289
\bar{n}_{3}	48.7200	48.6981	0.04%	48.9123
\bar{n}_{4}	31.9894	32.0063	0.05%	31.9485
Profit $(\$)$	1798.2	1798.1	0.006%	1797.4000

- The maximal error is 0.23% and appears in \bar{n}_{2}.

■ Computer time for this experiment is 2.69 seconds.

Experiment on long lines (11-buffer Cine)

- Line parameters: $\hat{P}=.88$

machine	M_{1}	M_{2}	M_{3}	M_{4}	M_{5}	M_{6}
r	.11	.12	.10	.09	.10	.11
p	.008	.01	.01	.01	.01	.01
machine	M_{7}	M_{8}	M_{9}	M_{10}	M_{11}	M_{12}
r	.10	.11	.12	.10	.12	.09
p	.009	.01	.009	.008	.01	.009

- Cost function

$$
J(\mathbf{N})=6000 P(\mathbf{N})-\sum_{i=1}^{11} N_{i}-\sum_{i=1}^{11} \bar{n}_{i}(\mathbf{N})
$$

Experiment on long lines (11-buffer Cine)

Results

- Optimal solutions, buffer sizes:

	\hat{P} Surface Search	The algorithm	Error	Rounded N^{\star}
Prod. rate	.8800	8800		.8799
N_{1}^{\star}	29.10	29.1769	0.26%	29.0000
N_{2}^{\star}	59.20	59.2830	0.14%	59.0000
N_{3}^{\star}	97.80	97.7980	0.002%	98.0000
N_{4}^{\star}	107.50	107.4176	0.08%	107.0000
N_{5}^{\star}	84.50	84.4804	0.02%	84.0000
N_{6}^{\star}	70.80	70.6892	0.17%	71.0000
N_{\star}^{\star}	63.10	63.1893	0.14%	63.0000
$N_{ \pm}^{\star}$	53.10	52.9274	0.33%	53.0000
N_{\star}^{\star}	47.20	47.2232	0.05%	47.0000
N_{10}^{\star}	47.90	47.7967	0.22%	48.0000
N_{11}^{\star}	48.80	48.7716	0.06%	49.0000

Experiment on long lines (11-buffer Cine)

Results (CONtinued)

- Optimal solutions, average inventories:

	\hat{P} Surface Search	The algorithm	Error	Rounded N^{\star}
\bar{n}_{1}	19.2388	19.2986	0.31%	19.1979
\bar{n}_{2}	34.9561	35.0423	0.25%	34.8194
\bar{n}_{3}	52.5423	52.6032	0.12%	52.6833
\bar{n}_{4}	45.1528	45.1840	0.07%	45.0835
\bar{n}_{5}	34.4289	34.4770	0.14%	34.2790
\bar{n}_{6}	30.7073	30.7048	0.01%	30.8229
\bar{n}_{7}	28.0446	28.1299	0.30%	28.0902
\bar{n}_{8}	21.5666	21.5438	0.11%	21.5932
\bar{n}_{9}	21.5059	21.5442	0.18%	21.4299
\bar{n}_{10}	22.6756	22.6496	0.11%	22.7303
\bar{n}_{11}	20.8692	20.8615	0.04%	20.9613
Profit $(\$)$	4239.3	4239.2	0.002%	4239.5000

■ Computer time is 91.47 seconds.

Experiments for Tolio, Matta, and Gershwin (2002) model

Consider a 4-machine 3-buffer line with constraints $\hat{P}=.87$. In addition, $A=$ 2000 and all b_{i} and c_{i} are 1 .

machine	M_{1}	M_{2}	M_{3}	M_{4}
$r_{i 1}$.10	.12	.10	.20
$p_{i 1}$.01	.008	.01	.007
$r_{i 2}$	-	.20	-	.16
$p_{i 2}$	-	.005	-	.004

	\hat{P} Surf. Search	The algorithm	Error
$P\left(\mathbf{N}^{\star}\right)$.8699	.8699	
N_{1}^{\star}	29.8600	29.9930	0.45%
N_{2}^{\star}	38.2200	38.0206	0.52%
N_{3}^{\star}	20.6800	20.7616	0.39%
\bar{n}_{1}	17.2779	17.3674	0.52%
\bar{n}_{2}	17.2602	17.1792	0.47%
\bar{n}_{3}	6.1996	6.2121	0.20%
Profit $(\$)$	1610.3000	1610.3000	0.00%

Experiments for Levantesi, Matta, and Tolio (2003) model

Consider a 4-machine 3-buffer line with constraints $\hat{P}=.87$. In addition, $A=$ 2000 and all b_{i} and c_{i} are 1 .

machine	M_{1}	M_{2}	M_{3}	M_{4}
μ_{i}	1.0	1.02	1.0	1.0
$r_{i 1}$.10	.12	.10	.20
$p_{i 1}$.01	.008	.01	.012
$r_{i 2}$	-	.20	-	.16
$p_{i 2}$	-	.005	-	.006

	P^{\star} Surf. Search	The algorithm	Error
$P\left(\mathbf{N}^{\star}\right)$.8699	.8700	
N_{1}^{\star}	27.7200	27.9042	0.66%
N_{2}^{\star}	38.7900	38.9281	0.34%
N_{3}^{\star}	34.0700	34.1574	0.26%
\bar{n}_{1}	15.4288	15.5313	0.66%
\bar{n}_{2}	19.8787	19.9711	0.46%
\bar{n}_{3}	13.8937	13.9426	0.35%
Profit $(\$)$	1590.0000	1589.7000	0.02%

Computation speed

Experiment

- Run the algorithm for a series of experiments for lines having identical machines to see how fast the algorithm could optimize longer lines.

■ Length of the line varies from 4 machines to 30 machines.
■ Machine parameters are $p=.01$ and $r=.1$.

- In all cases, the feasible production rate is $\hat{P}=.88$.
- The objective function is

$$
J(\mathbf{N})=A P(\mathbf{N})-\sum_{i=1}^{k-1} N_{i}-\sum_{i=1}^{k-1} \bar{n}_{i}(\mathbf{N}) .
$$

where $A=500 k$ for the line of length k.

Computation speed

Algoritfm reliability

We run the algorithm on 739 randomly generated 4-machine 3-buffer lines. 98.92% of these experiments have a maximal error less than 6%.

Algoritfim reliability

Taking a closer look at those 98.92% experiments, we find a more accurate distribution of the maximal error. We find that, out of the total 739 experiments, 83.90% of them have a maximal error less than 2%.

MIT OpenCourseWare
http://ocw.mit.edu

2.852 Manufacturing Systems Analysis

Spring 2010

For information about citing these materials or our Terms of Use,visit:http://ocw.mit.edu/terms.

