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Production line profit maximization 

The profit maximization problem 

max 
N 

�(N) = �� (N) − 
�−1∑ 

�=1 

���� − 
�−1∑ 

�=1 

�� ̄��(N) 

s.t. � (N) ≥ �̂ , 

�� ≥ �min, ∀� = 1, ⋅ ⋅ ⋅ , � − 1. 

where � (N) = production rate, parts/time unit 
�̂ = required production rate, parts/time unit 
� = profit coefficient, $/part 

�̄�(N) = average inventory of buffer �, � = 1, ⋅ ⋅ ⋅ , � − 1 
�� = buffer cost coefficient, $/part/time unit 
�� = inventory cost coefficient, $/part/time unit 
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An example about the research goal 
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Figure 2: �(N) vs. �1 and �2 
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Two problems 

Original constrained problem 

max 
N 

�(N) = �� (N) − 
�−1∑ 

�=1 

���� − 
�−1∑ 

�=1 

�� ̄��(N) 

s.t. � (N) ≥ �̂ , 

�� ≥ �min, ∀� = 1, ⋅ ⋅ ⋅ , � − 1. 

Simpler unconstrained problem (Schor’s problem) 

max 
N 

�(N) = �� (N) − 
�−1∑ 

�=1 

���� − 
�−1∑ 

�=1 

�� ̄��(N) 

s.t. �� ≥ �min, ∀� = 1, ⋅ ⋅ ⋅ , � − 1. 
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An example for algorithm derivation 

Data 
�1 = .1, �1 = .01, �2 = .11, �2 = .01, �3 = .1, �3 = .009, �̂ = .88 
Cost function 
�(N) = 2000� (N) − �1 − �2 − �̄1(N) − �̄2(N) 
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An example for algorithm derivation 
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Figure 5: �(N) vs. �1 and �2 
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Algorithm derivation 

Two cases 
Case 1 
The solution of the unconstrained problem is N� s.t. � (N�) ≥ �̂ . In this 
case, the solution of the constrained problem is the same as the solution 
of the unconstrained problem. We are done. 

Unconstrained problem 

max 
N 

�(N) = �� (N) − 
�−1∑ 

�=1 

���� 

− 
�−1∑ 

�=1 

�� ̄��(N) 

s.t. �� ≥ �min, ∀� = 1, ⋅ ⋅ ⋅ , � − 1. 

( N1   , N2   ) 
u            u

P(N1,N2) > P
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Algorithm derivation 

Two cases (continued) 
Case 2 
N� satisfies � (N�) < �̂ . This is not the solution of the constrained 
problem. 
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Algorithm derivation 

Two cases (continued) 

Case 2 (continued)
 

In this case, we consider the following unconstrained problem:
 

�−1 �−1∑ ∑ 
max �(N) = �′� (N) − ���� − ���̄�(N)
N 

�=1 �=1 

s.t. �� ≥ �min, ∀� = 1, ⋅ ⋅ ⋅ , � − 1. 

in which � is replaced by �′ . Let N★(�′) be the solution to this problem 
and � ★(�′) = � (N★(�′)). 
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Assertion 

The constrained problem 
�−1 �−1∑ ∑ 

max �(N) = �′� (N) − ���� − ���̄�(N) 
N 

�=1 �=1 

s.t. � (N) � , ≥ ˆ 

�� ≥ �min, ∀� = 1, ⋅ ⋅ ⋅ , � − 1. 

has the same solution for all �′ in which the solution of the corresponding 
unconstrained problem ∑�−1 �−1∑ 

max �(N) = �′� (N) − ���� − ���̄�(N)
N 

�=1 �=1 

s.t. �� ≥ �min, ∀� = 1, ⋅ ⋅ ⋅ , � − 1. 

has � ★(�′) ≤ �̂ . 
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⋅ ⋅ ⋅ 
⋅ ⋅ ⋅ 

s.t.

s.t.

� (� 

Interpretation of the assertion 

We claim 
If the optimal solution of the unconstrained problem is not that of the constrained 

−1 
★
�

★problem, then the solution of the constrained problem, (� 

−1 
★
�

, � ), satisfies 1 , 

) = �̂ . ★ , � 1 , 
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N 

s.t.	 � (�) ≥ �̂  

� ≥ �min 

max �(N) = 500�̂  − � − �̄(�) 
N 

s.t.	 � (� ) ≥ �̂  ⇒ � (�) = �̂ 
 

� ≥ �min
 

We formally prove this by the Karush-Kuhn-Tucker (KKT) conditions of nonlin-
ear programming. 
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Interpretation of the assertion 
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A = 1500 (Original Problem)
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⋅ ⋅ ⋅ 
⋅ ⋅ ⋅ 

⋅ ⋅ ⋅ 
⋅ ⋅ ⋅ 

⋅ ⋅ ⋅ 

⋅ ⋅ ⋅ 

Karush-Kuhn-Tucker (KKT) conditions 
Let �★ be a local minimum of the problem 

min �(�) 
s.t.	 ℎ1(�) = 0, , ℎ�(�) = 0, 

�1(�) ≤ 0, , ��(�) ≤ 0, 

where � , ℎ�, and �� are continuously differentiable functions from ℜ� 

to Then there exist unique Lagrange multipliers �★ , �★ andℜ. 1, � 
�★ 
1, , �★

� , satisfying the following conditions: 

∇��(�
★, �★, �★) = 0, 

�★
� ≥ 0, � = 1, , �, 

�★
� �� (�

★) = 0, � = 1, , �. ∑� ∑�where �(�, �, �) = �(�) + �=1 ��ℎ�(�) + �=1 �� ��(�) is called the 
Lagrangian function. 
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Convert the constrained problem to minimization form 

Minimization form 

The constrained problem 

min 
N 

−�(N) = −�� (N) + 
�−1∑ 

�=1 

���� + 
�−1∑ 

�=1 

�� ̄��(N) 

s.t. �̂ − � (N) ≤ 0 

�min − �� ≤ 0, ∀� = 1, ⋅ ⋅ ⋅ , � − 1 

We have argued that we treat �� as continuous variables, and � (�) and 
�(�) as continuously differentiable functions. 
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⋅ ⋅ ⋅ 

Applying KKT conditions 

The Slater constraint qualification for convex inequalities guarantees the 
existence of Lagrange multipliers for our problem. So, there exist unique 
Lagrange multipliers �★

� , � = 0, , � − 1 for the constrained problem to 
satisfy the KKT conditions: 

�−1∑ 
−∇�(N★) + �★ 

0∇(�̂  − � (N★)) + ��
★∇(�min − ��) = 0 (1) 

�=1 

or ⎛ ⎛⎞ ⎞⎛⎞⎛⎞⎛ 

⎞ 
∂�(N★) ∂� (N★) ⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

− �★ 
0 

⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

∂�1 
∂�(N★) 
∂�2 
... 

∂�(N★) 

∂�1
 
∂� (N★ 1 0 0 

)
 ⎜⎜⎜⎝ 

0 
... 

⎟⎟⎟⎠−⋅ ⋅ ⋅− �★ 
�−1 

⎜⎜⎜⎝ 

0 
... 

⎟⎟⎟⎠ 
= 

⎜⎜⎜⎝ 

0 
... 

⎟⎟⎟⎠ 
∂�2 
... 

∂� (N★) 

★ − �− ,1 

0 1 0 

∂��−1 ∂��−1 

(2) 
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⋅ ⋅ ⋅ 

haha

haha
⋅ ⋅ ⋅ 

⋅ ⋅ ⋅ 

�
 

Applying KKT conditions 

★ 
�

and
 
≥ 0, ∀� = 0, , � − 1, (3)
 

�0
 (�̂  − � (N★)) = 0, ★ (4)
 

where N★ is the optimal solution of the constrained problem. Assume 

★�
�

★that �
�
★�
�

★
�(�min − � ) = 0, ∀� = 1, , � − 1, (5)
 

> �min for all �. In this case, by equation (5), we know that 
= 0, ∀� = 1, , � − 1.
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Applying KKT conditions 

The KKT conditions are simplified to
 ⎛
 ⎞
 ⎛
 
∂�(N★) ∂� (N★) ⎞⎛ 

⎞ 

−
 


 

⎜⎜⎜⎜⎜⎜⎜⎜⎝
∂�1 

∂�(N★) 
∂�2 
.
 .
 .
 

∂�(N★) 

⎟⎟⎟⎟⎟⎟⎟⎟⎠


⎜⎜⎜⎜⎜⎜⎜⎜⎝

 

∂�1
 
∂� (N★)
 
∂�2 
.
 .
 .
 

∂� (N★) 

⎟⎟⎟⎟⎟⎟⎟⎟⎠


0
 

=
 
⎜⎜⎜⎝

 

⎟⎟⎟⎠


0
 
.
. .


− �★ 
0 (6)
,
 


 

0

 
 

∂��−1 ∂��−1 

�★ 
0(�̂

 − � (N★)) = 0, (7) 

where �★ 
0 ≥ 0. Since N★ is not the optimal solution of the unconstrained 

problem, ∇�(N★) =∕ 0. Thus, �★ =∕ 0 since otherwise condition (6) 0 
would be violated. By condition (7), the optimal solution N★ satisfies 
� (N★) = �̂ . 
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Applying KKT conditions 

The KKT conditions are simplified to
 ⎛
 ⎞
 ⎛
 
∂�(N★) ∂� (N★) ⎞⎛ 

⎞ 

−
 


 

⎜⎜⎜⎜⎜⎜⎜⎜⎝
∂�1 

∂�(N★) 
∂�2 
.
 .
 .
 

∂�(N★) 

⎟⎟⎟⎟⎟⎟⎟⎟⎠


⎜⎜⎜⎜⎜⎜⎜⎜⎝

 

∂�1
 
∂� (N★)
 
∂�2 
.
 .
 .
 

∂� (N★)

⎟⎟⎟⎟⎟⎟⎟⎟⎠


0
 

=
 
⎜⎜⎜⎝

 

⎟⎟⎟⎠


0
 
.
. .


− �★ 
0 ,
 


 

0

 
 

∂��−1 ∂��−1 

�★ 
0(�̂

 − � (N★)) = 0, 

In addition, conditions (6) and (7) reveal how we could find �★ 
0 and N★ . 

For every �★ 
0, condition (6) determines N★ since there are � − 1 equations 

and � − 1 unknowns. Therefore, we can think of N★ = N★(�0 
★). We 

search for a value of �★ 
0 such that � (N★(�★

0)) = �̂ . As we indicate in the 
following, this is exactly what the algorithm does. 
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Applying KKT conditions 

Replacing �★ 
0 by �0 > 0 in constraint (6) gives ⎛
 ⎞
 ⎛
 

∂�(N�) ∂� (N�) ⎞⎛ 

⎞ 

−
 


 

⎜⎜⎜⎜⎜⎜⎜⎜⎝
∂�1 

∂�(N�) 
∂�2 
.
 .
 .
 

∂�(N�) 

⎟⎟⎟⎟⎟⎟⎟⎟⎠


⎜⎜⎜⎜⎜⎜⎜⎜⎝



∂�1 
∂� (N�) 
∂�2 
.
 .
 .
 

∂� (N�)

⎟⎟⎟⎟⎟⎟⎟⎟⎠


0
 

=

⎜⎜⎜⎝

 

⎟⎟⎟⎠


0
 
.
. .


− �0 (8)
,
 

 

0

 
 

∂��−1 ∂��−1 

where N� is the unique solution of (8). Note that N� is the solution of 
the following optimization problem: 

min 
N 

− �̄(N) = −�(N) + �0( �̂ − � (N)) 

(9) 

s.t. �min − �� ≤ 0, ∀� = 1, ⋅ ⋅ ⋅ , � − 1. 
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⋅ ⋅ ⋅ 

⋅ ⋅ ⋅ 

⋅ ⋅ ⋅ 

Applying KKT conditions 
The problem above is equivalent to
 

max �̄(N) = �(N) − �0(�̂ − � (N)) 
N 

(10) 

s.t. �min − �� ≤ 0, ∀� = 1, , � − 1. 

or 

�−1 �−1∑ ∑ 
max �̄(N) = �� (N) − ���� − ���̄� − �0(�̂ − � (N)) 
N 

�=1 �=1 (11) 

s.t. �min − �� ≤ 0, ∀� = 1, , � − 1. 

or 
�−1 �−1∑ ∑ 

max �̄(N) = (� + �0)� (N) − ���� − ���̄� 
N (12)

�=1 �=1 
s.t. �� ≥ �min, ∀� = 1, , � − 1. 
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⋅ ⋅ ⋅ 

Applying KKT conditions 

or, finally,
 

�−1 �−1∑ ∑ 
max �̄(N) = �′� (N) − ���� − ���̄� 
N 

�=1 �=1 (13) 

s.t. �� ≥ �min, ∀� = 1, , � − 1. 

where �′ = � + �0. This is exactly the unconstrained problem, and N� 

is its optimal solution. Note that �0 > 0 indicates that �′ > �. 

In addition, the KKT conditions indicate that the optimal solution of the 
constrained problem N★ satisfies � (N★) = �̂ . This means that, for every 
�′ > � (or �0 > 0), we can find the corresponding optimal solution N� 

satisfying condition (8) by solving problem (13). We need to find the 
�′ such that the solution to problem (13), denoted as N★(�′), satisfies 
� (N★(�′)) = �̂ . 
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or, finally,
 

�−1 �−1∑ ∑ 
max �̄(N) = �′� (N) − ���� − ���̄� 
N 

�=1 �=1 (13) 

s.t. �� ≥ �min, ∀� = 1, , � − 1. 

where �′ = � + �0. This is exactly the unconstrained problem, and N� 

is its optimal solution. Note that �0 > 0 indicates that �′ > �. 

In addition, the KKT conditions indicate that the optimal solution of the 
constrained problem N★ satisfies � (N★) = �̂ . This means that, for every 
�′ > � (or �0 > 0), we can find the corresponding optimal solution N� 

satisfying condition (8) by solving problem (13). We need to find the 
�′ such that the solution to problem (13), denoted as N★(�′), satisfies 
� (N★(�′)) = �̂ . 
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d

Applying KKT conditions 

Then, �0 = �′ − � and N★(�′) satisfy conditions (6) and (7): 

−∇�(N★(�′)) + �★ 
0∇(�̂  − � (N★(�′))) = 0, 

�★ 
0(�̂  − � (N★(�′))) = 0. 

Hence, �★ = �′ −� is exactly the Lagrange multiplier satisfying the KKT 0 
conditions of the constrained problem, and N★ = N★(�′) is the optimal 
solution of the constrained problem. 

Consequently, solving the constrained problem through our algorithm is 
essentially finding the unique Lagrange multipliers and optimal solution 
of the problem. 
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Algorithm summary for case 2 

Solve unconstrained problem 

Solve, by a gradient method, the unconstrained prob-
lem for fixed �′ 

max 
N 

�(N) = �′� (N) − 
�−1∑ 

�=1 

���� − 
�−1∑ 

�=1 

�� ̄��(N) 

s.t. �� ≥ �min, ∀� = 1, ⋅ ⋅ ⋅ , � − 1. 

Search 

Do a one-dimensional search on �′ > � to find �′ 

such that the solution of the unconstrained problem, 
N★(�′), satisfies 

� (N★(�′)) = �̂ . 

P(N*(A'))=P?

Solve unconstrained problem

Search: Choose A'

Yes

No

Quit
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⋅ ⋅ ⋅ 

Numerical results 

Numerical experiment outline 

Experiments on short lines.
 

Experiments on long lines.
 

Computation speed.
 

Method we use to check the algorithm 

�̂  surface search in (�1, , ��−1) space. All buffer size allocations, N, 
such that � (N) = �̂  compose the �̂  surface. 
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�̂ surface search 
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Figure 6: �̂  Surface search 
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Experiment on short lines (4-buffer line) 

Line parameters: �̂ = .88
 

machine �1 �2 �3 �4 �5 

� .11 .12 .10 .09 .10 
� .008 .01 .01 .01 .01 

Machine 4 is the least reliable machine (bottleneck) of the line. 

Cost function 

4 4∑ ∑ 
�(N) = 2500� (N) − �� − �̄�(N) 

�=1 �=1 
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Experiment on short lines (4-buffer line) 

Results 

Optimal solutions 

�̂ Surface Search The algorithm Error Rounded �★ 

Prod. rate .8800 .8800 .8800 
�★ 

1 28.85 28.8570 0.02% 29.0000 
�★ 

2 58.46 58.5694 0.19% 59.0000 
�★ 

3 92.98 92.9068 0.08% 93.0000 
�★ 

4 87.39 87.4415 0.06% 87.0000 
�̄1 19.0682 19.0726 0.02% 19.1791 
�̄2 34.3084 34.3835 0.23% 34.7289 
�̄3 48.7200 48.6981 0.04% 48.9123 
�̄4 31.9894 32.0063 0.05% 31.9485 

Profit ($) 1798.2 1798.1 0.006% 1797.4000 

The maximal error is 0.23% and appears in �̄2. 

Computer time for this experiment is 2.69 seconds. 
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Experiment on long lines (11-buffer line) 

Line parameters: �̂ = .88
 

machine �1 �2 �3 �4 �5 �6 

� .11 .12 .10 .09 .10 .11 
� .008 .01 .01 .01 .01 .01 

machine �7 �8 �9 �10 �11 �12 

� .10 .11 .12 .10 .12 .09 
� .009 .01 .009 .008 .01 .009 

Cost function 

11 11∑ ∑ 
�(N) = 6000� (N) − �� − �̄�(N) 

�=1 �=1 
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Experiment on long lines (11-buffer line) 

Results 

Optimal solutions, buffer sizes: 

�̂ Surface Search The algorithm Error Rounded �★ 

Prod. rate .8800 .8800 .8799 
�★ 

1 29.10 29.1769 0.26% 29.0000 
�★ 

2 59.20 59.2830 0.14% 59.0000 
�★ 

3 97.80 97.7980 0.002% 98.0000 
�★ 

4 107.50 107.4176 0.08% 107.0000 
�★ 

5 84.50 84.4804 0.02% 84.0000 
�★ 

6 70.80 70.6892 0.17% 71.0000 
�★ 

7 63.10 63.1893 0.14% 63.0000 
�★ 

8 53.10 52.9274 0.33% 53.0000 
�★ 

9 47.20 47.2232 0.05% 47.0000 
� ★ 

10 47.90 47.7967 0.22% 48.0000 
� ★ 

11 48.80 48.7716 0.06% 49.0000 
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Experiment on long lines (11-buffer line) 

Results (continued) 

Optimal solutions, average inventories: 

�̂ Surface Search The algorithm Error Rounded �★ 

�̄1 19.2388 19.2986 0.31% 19.1979 
�̄2 34.9561 35.0423 0.25% 34.8194 
�̄3 52.5423 52.6032 0.12% 52.6833 
�̄4 45.1528 45.1840 0.07% 45.0835 
�̄5 34.4289 34.4770 0.14% 34.2790 
�̄6 30.7073 30.7048 0.01% 30.8229 
�̄7 28.0446 28.1299 0.30% 28.0902 
�̄8 21.5666 21.5438 0.11% 21.5932 
�̄9 21.5059 21.5442 0.18% 21.4299 
�̄10 22.6756 22.6496 0.11% 22.7303 
�̄11 20.8692 20.8615 0.04% 20.9613 

Profit ($) 4239.3 4239.2 0.002% 4239.5000 

Computer time is 91.47 seconds.
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Experiments for Tolio, Matta, and Gershwin (2002) model 

Consider a 4-machine 3-buffer line with constraints �̂ = .87. In addition, � = 
2000 and all �� and �� are 1. 

machine �1 �2 �3 �4 

��1 .10 .12 .10 .20 
��1 .01 .008 .01 .007 
��2 – .20 – .16 
��2 – .005 – .004 

�̂ Surf. Search The algorithm Error 
� (N★) .8699 .8699 
�★ 

1 29.8600 29.9930 0.45% 
�★ 

2 38.2200 38.0206 0.52% 
�★ 

3 20.6800 20.7616 0.39% 
�̄1 17.2779 17.3674 0.52% 
�̄2 17.2602 17.1792 0.47% 
�̄3 6.1996 6.2121 0.20% 

Profit ($) 1610.3000 1610.3000 0.00% 
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Experiments for Levantesi, Matta, and Tolio (2003) model 

Consider a 4-machine 3-buffer line with constraints �̂ = .87. In addition, � = 
2000 and all �� and �� are 1. 

machine �1 �2 �3 �4 

�� 1.0 1.02 1.0 1.0 
��1 .10 .12 .10 .20 
��1 .01 .008 .01 .012 
��2 – .20 – .16 
��2 – .005 – .006 

� ★ Surf. Search The algorithm Error 
� (N★) .8699 .8700 
�★ 

1 27.7200 27.9042 0.66% 
�★ 

2 38.7900 38.9281 0.34% 
�★ 

3 34.0700 34.1574 0.26% 
�̄1 15.4288 15.5313 0.66% 
�̄2 19.8787 19.9711 0.46% 
�̄3 13.8937 13.9426 0.35% 

Profit ($) 1590.0000 1589.7000 0.02% 
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Computation speed 

Experiment 

Run the algorithm for a series of experiments for lines having iden
-

tical machines to see how fast the algorithm could optimize longer
 
lines.
 

Length of the line varies from 4 machines to 30 machines.
 

Machine parameters are � = .01 and � = .1.
 

In all cases, the feasible production rate is �̂ = .88.
 

The objective function is
 

�−1 �−1∑ ∑ 
�(N) = �� (N) − �� − �̄�(N). 

�=1 �=1 

where � = 500� for the line of length �. 
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Computation speed 
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Algorithm reliability 

We run the algorithm on 739 randomly generated 4-machine 3-buffer lines. 
98.92% of these experiments have a maximal error less than 6%. 
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Algorithm reliability 

Taking a closer look at those 98.92% experiments, we find a more accurate 
distribution of the maximal error. We find that, out of the total 739 experiments, 
83.90% of them have a maximal error less than 2%. 
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