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Flow Lines

Flow Lines

... also known as a Production or Transfer Line.

M B M B M B M B M B M1 1 2 2 3 3 4 4 5 5 6

Machine Buffer

• Machines are unreliable.
• Buffers are finite.
• In many cases, the operation times are constant

and equal for all machines.
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Flow Lines Output Variability

Flow Lines
Output Variability
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Reliable Machines Single Reliable Machine

Reliable Machines
Single Reliable Machine

• If the machine is perfectly reliable, and its average
operation time is τ , then its maximum production
rate is µ = 1/τ .

• Note:
? Sometimes cycle time is used instead of operation

time, but BEWARE: cycle time has two meanings!
? The other meaning is the time a part spends in a

system. If the system is a single, reliable machine, the
two meanings are the same.
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Reliable Machines Two Reliable Machines

Reliable Machines
Two Reliable Machines

Production rate in a
two-machine reliable
transfer line.
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(Prime to be explained later.)
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Reliable Machines Two Reliable Machines

Reliable Machines
Two Reliable Machines

Inventory in a
two-machine reliable
transfer line.
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Reliable Machines Two Reliable Machines

Reliable Machines
Two Reliable Machines

Inventory in a
two-machine reliable
transfer line.
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Single Unreliable Machine Failures and Repairs

Single Unreliable Machine
Failures and Repairs

• Machine is either up or down .

• MTTF = mean time to fail.

• MTTR = mean time to repair

• MTBF = MTTF + MTTR
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Single Unreliable Machine Failures and Repairs

Single Unreliable Machine
Production rate

• If the machine is unreliable, and
? its average operation time is τ ,
? its mean time to fail is MTTF,
? its mean time to repair is MTTR,

then its maximum production rate is

1 MTTF
τ

(
MTTF + MTTR

)

Single-part-type, multiple stage systems 9 Copyright ©c 2016 Stanley B. Gershwin.



Single Unreliable Machine Failures and Repairs

Single Unreliable Machine
Proof

Machine DOWNMachine UP

• Average production rate, while machine is up, is 1/τ .

• Average duration of an up period is MTTF.

• Average production during an up period is MTTF/τ .

• Average duration of up-down period: MTTF + MTTR.

• Average production during up-down period: MTTF/τ .

• Therefore, average production rate is
(MTTF/τ)/(MTTF + MTTR).
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Single Unreliable Machine Geometric Up- and Down-Times

Single Unreliable Machine
Geometric Up- and Down-Times

• Assumptions: Operation time is constant (τ).
Failure and repair times are geometrically
distributed.

• Let p be the probability that a machine fails during
any given operation. Then p = τ/MTTF.
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Single Unreliable Machine Geometric Up- and Down-Times

Single Unreliable Machine
Geometric Up- and Down-Times

• Let r be the probability that M gets repaired
during any operation time when it is down. Then
r = τ/MTTR.

• Then the average production rate of M is

1 r

τ

(
.

r + p

)

• (Sometimes we forget to say “average.”)
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Single Unreliable Machine Geometric Up- and Down-Times

Single Unreliable Machine
Production Rates

• So far, the machine really has three production
rates:

? 1/τ when it is up (short-term capacity) ,

? 0 when it is down (short-term capacity) ,

? (1/τ)(r/(r + p)) on the average (long-term capacity) .
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Single Unreliable Machine Geometric Up- and Down-Times

Single Unreliable Machine
ODFs

• Operation-Dependent Failures

? A machine can only fail while it is working — not idle.

? (When buffers are finite, idleness also occurs due to
blockage.)

? IMPORTANT! MTTF must be measured in working
time!

? This is the usual assumption.
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Infinite-Buffer Lines

Infinite-Buffer Lines

M B1 1 M B2 2 B3 3 M B4 4 M B5 5 M6M

• Starvation: Machine Mi is starved at time t if
Buffer Bi is empty at time t.−1

Assumptions:
• A machine is not idle if it is not starved.

• The first machine is never starved.
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Infinite-Buffer Line Bottleneck

Infinite-Buffer Lines
Bottleneck

M B1 1 M B2 2 B3 3 M B4 4 M B5 5 M6M

• The production rate of the line is the production
rate of the slowest machine in the line — called
the bottleneck .

• Slowest means least average production rate ,
where average production rate is calculated from
one of the previous formulas.
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Infinite-Buffer Line Bottleneck

Infinite-Buffer Lines
Bottleneck

M B1 1 M B2 2 B3 3 M B4 4 M B5 5 M6M

• Production rate is therefore

1
P = min

i τi

(
MTTFi

MTTFi + MTTRi

)

• and Mi is the bottleneck.
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Infinite-Buffer Line Bottleneck

Infinite-Buffer Lines
Bottleneck

M B1 1 M B2 2 B3 3 M4 4 M B5 5 M6M B

• The system is not in steady state.

• An increasing amount of inventory accumulates in
the buffer upstream of the bottleneck.

• A finite amount of inventory appears downstream
of the bottleneck.
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Infinite-Buffer Line Bottleneck

Infinite-Buffer Lines
Example 1

M8 8 M B9 9 M10BM B5 5 M B6 6 B7 7MM B3 3 B4 4MM B2 2M B1 1

• Parameters:
ri = .1, pi = .01, i = 1, ..., 9; r10 = .1, p10 = .03.

• Therefore, ei = .909, i = 1, ..., 9; e10 = .769.
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Infinite-Buffer Line Bottleneck

Infinite-Buffer Lines
Example 1

M8 8 M B9 9 M10BM B5 5 M B6 6 B7 7MM B3 3 B4 4MM B2 2M B1 1
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Infinite-Buffer Line Bottleneck

Infinite-Buffer Lines
Example 1

• Estimate the rate of growth of n9(t), the inventory
in B9.
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Infinite-Buffer Line Second Bottleneck

Infinite-Buffer Lines
Second Bottleneck

M8 8 M B9 9 M10BM B5 5 M B6 6 B7 7MM B3 3 B4 4MM B2 2M B1 1

• The second bottleneck is the slowest machine
upstream of the bottleneck. An increasing amount
of inventory accumulates just upstream of it.

• A finite amount of inventory appears between the
second bottleneck and the machine upstream of
the first bottleneck.

• A finite amount of inventory appears downstream
of the first bottleneck.
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Infinite-Buffer Line Second Bottleneck

Infinite-Buffer Lines
Example 2

M8 8 M B9 9 M10BM B5 5 M B6 6 B7 7MM B3 3 B4 4MM B2 2M B1 1

• Parameters: ri = .1, pi = .01, i = 1, ..., 4, 6, ..., 9;
r5 = .1, p5 = .02, r10 = .1, p10 = .03.

• Therefore, ei = .909, i = 1, ..., 4, 6, ..., 9;
e5 = .833, e10 = .769.
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Infinite-Buffer Line Second Bottleneck

Infinite-Buffer Lines
Example 2

M8 8 M B9 9 M10BM B5 5 M B6 6 B7 7MM B3 3 B4 4MM B2 2M B1 1
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Infinite-Buffer Line Second Bottleneck

Infinite-Buffer Lines
Example 2

• Estimate the rates of growth of n4(t) and n9(t).
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Infinite-Buffer Line Second Bottleneck

Infinite-Buffer Lines
Example 2

• Note that when t is large enough, n4(t) > n9(t).

• Manufacturing people sometimes say that the
easiest way to find the bottleneck of a line is to
look for the greatest accumulation of inventory. Is
that correct?
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Infinite-Buffer Line Second Bottleneck

Infinite-Buffer Lines
Improvements

Questions:

• If we want to increase production rate, which
machine should we improve?

• What would happen to production rate if we
improved any other machine?
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Simulation

Simulation Note

• The simulations shown here were time-based
rather than event-based .

• Time-based simulations are easier to program, but
less general, less accurate, and slower, than
event-based simulations.

• Primarily for systems where all event times are
geometrically distributed.

Single-part-type, multiple stage systems 28 Copyright ©c 2016 Stanley B. Gershwin.



Simulation

Simulation Note

Assume that some event occurs according to a
geometric probability distribution and it has a mean
time to occur of T time steps. Then the probability
that it occurs in any time step is 1/T .

• At each time step , choose a U[0,1] random number.

• If the number is less than or equal to 1/T , the event has
occurred. Change the state accordingly.

• If the number is greater than 1/T , the event has not
occurred. Change the state accordingly.

Single-part-type, multiple stage systems 29 Copyright ©c 2016 Stanley B. Gershwin.



Zero-Buffer Lines

Zero-Buffer Lines

M1 M2 M3 4M M5 M6

• If any one machine fails, or takes a very long time
to do an operation, all the other machines must
wait.

• Therefore the production rate is usually less —
possibly much less – than the slowest machine.
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Zero-Buffer Lines

Zero-Buffer Lines

M1 M2 M3 4M M5 M6

• Example: Constant, unequal operation times,
perfectly reliable machines.

? The operation time of the line is equal to the operation
time of the slowest machine, so the production rate of
the line is equal to that of the slowest machine.
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Zero-Buffer Lines Geometric Failures and Repairs

Zero-Buffer Lines
Constant, equal operation times, unreliable
machines

M1 M2 M3 4M M5 M6

• Assumption: Failure and repair times are
geometrically distributed.

• Define pi = τ/MTTFi = probability of failure
during an operation.

• Define ri = τ/MTTRi probability of repair during
an interval of length τ when the machine is down.

Single-part-type, multiple stage systems 32 Copyright ©c 2016 Stanley B. Gershwin.



Zero-Buffer Lines Geometric Failures and Repairs

Zero-Buffer Lines
Production Rate

M1 M2 M3 4M M5 M6

Buzacott’s Zero-Buffer Line Formula:

Let k be the number of machines in the line. Then

1
P =

τ

1∑k
1 + pi

i=1
ri
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Zero-Buffer Lines Geometric Failures and Repairs

Zero-Buffer Lines
Production Rate

M1 M2 M3 4M M5 M6

• Same as the earlier formula (Slides 9 and 12) when
k = 1. The isolated production rate of a single
machine Mi is

1
τ

(
1

1 + pi

ri

)
= 1
τ

(
ri

.
ri + pi

)
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Zero-Buffer Lines Geometric Failures and Repairs

Zero-Buffer Lines
Proof of formula

• Let τ (the operation time) be the time unit.
• Approximation: At most, one machine can be

down.
• Consider a long time interval of length Tτ during

which Machine Mi fails mi times (i = 1, . . . k).
M3 M3M5 2 M1 M4M

All up Some machine down

• Without failures, the line would produce T parts.
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Zero-Buffer Lines Geometric Failures and Repairs

Zero-Buffer Lines
Proof of formula

• The average repair time of Mi is τ/ri each time it
fails, so the total system down time is close to

k

Dτ =
∑miτ

i=1
ri

where D is the number of operation times in which
a machine is down.
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Zero-Buffer Lines Geometric Failures and Repairs

Zero-Buffer Lines
Proof of formula

• The total up time is approximately

k

Uτ = Tτ −
∑miτ

i=1
ri

• where U is the number of operation times in which
all machines are up.
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Zero-Buffer Lines Geometric Failures and Repairs

Zero-Buffer Lines
Proof of formula

• Since the system produces one part per time unit
while it is working, it produces U parts during the
interval of length Tτ .

• Note that, approximately,

mi = piU

because Mi can only fail while it is operational.
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Zero-Buffer Lines Geometric Failures and Repairs

Zero-Buffer Lines
Proof of formula

• Thus,

k

Uτ = Tτ − Uτ
∑ pi

i=1
ri
,

or,

U 1= EODF =
T ∑k

1 + pi

i=1
ri
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Zero-Buffer Lines Geometric Failures and Repairs

Zero-Buffer Lines
pi and ri and pi/ri

and
1

P =
τ

1∑k
1 + pi

i=1
ri

• Note that P is a function of the ratio pi/ri and
not pi or ri separately.

• The same statement is true for the infinite-buffer
line.

• However, the same statement is not true for a line
with finite, non-zero buffers.

Single-part-type, multiple stage systems 40 Copyright ©c 2016 Stanley B. Gershwin.



Zero-Buffer Lines Geometric Failures and Repairs

Zero-Buffer Lines
Improvements

Questions:

• If we want to increase production rate, which
machine should we improve?

• What would happen to production rate if we
improved any other machine?
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Zero-Buffer Lines P as a function of pi

Zero-Buffer Lines
P as a function of pi

All machines are the same except Mi. As pi increases,
the production rate decreases.
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Zero-Buffer Lines P as a function of k

Zero-Buffer Lines
P as a function of pi

All machines are the same. As the line gets longer, the
production rate decreases.
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Finite-Buffer Lines

Finite-Buffer Lines

M B1 1 M B2 2 M B3 3 M B4 4 M B5 5 M6

• Motivation for buffers: recapture some of the lost
production rate.

• Cost

? in-process inventory/lead time

? floor space

? material handling mechanism
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Finite-Buffer Lines

Finite-Buffer Lines
M B1 1 M B2 2 M B3 3 M B4 4 M B5 5 M6

• Infinite buffers: delayed downstream propagation of
disruptions(starvation ) and no upstream propagation.

• Zero buffers: instantaneous propagation in both directions.

• Finite buffers: delayed propagation in both directions.

? New phenomenon: blockage .

• Blockage: Machine M is blocked at time t if Buffer B is full
at time

i i

t.
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Finite-Buffer Lines

Finite-Buffer Lines

M B1 1 M B2 2 M B3 3 M B4 4 M B5 5 M6

• Difficulty:
? No simple formula for calculating production rate or

inventory levels.

• Solution:
? Simulation

? Analytical approximation

? Exact analytical solution for two-machine lines only.
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Two Machine, Finite-Buffer Lines Markov Chain Model

Two Machine, Finite-Buffer Lines
Markov Chain Model

• Exact solution is available to Markov process
model of a two-machine line.

• Discrete time-discrete state Markov process:

prob{X(t+ 1) = x(t+ 1)|X(t) = x(t),
X(t− 1) = x(t− 1), X(t− 2) = x(t− 2), ...} =

prob{X(t+ 1) = x(t+ 1)|X(t) = x(t)}
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Two Machine, Finite-Buffer Lines Markov Chain Model

Two Machine, Finite-Buffer Lines
State Space

Here, X(t) = (n(t), α1(t), α2(t)), where

• n is the number of parts in the buffer;
n = 0, 1, ..., N.

• αi is the repair state of Mi; i = 1, 2.

? αi = 1 means the machine is up or operational ;

? αi = 0 means the machine is down or under repair.
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Two Machine, Finite-Buffer Lines Markov Chain Model

Two Machine, Finite-Buffer Lines
Simulations
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Two Machine, Finite-Buffer Lines Markov Chain Model

Two Machine, Finite-Buffer Lines
Simulations

 0

 20

 40

 60

 80

 100

 0  2000  4000  6000  8000  10000

n
(t

)

t

r1 = .1, p1 = .01, r2 = .1, p2 = .01, N = 100

Single-part-type, multiple stage systems 50 Copyright ©c 2016 Stanley B. Gershwin.



Two Machine, Finite-Buffer Lines Markov Chain Model

Two Machine, Finite-Buffer Lines
Simulations
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Two Machine, Finite-Buffer Lines Markov Chain Model

Two Machine, Finite-Buffer Lines
Simulations
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Two Machine, Finite-Buffer Lines Markov Chain Model

Two Machine, Finite-Buffer Lines

Several models available:

• Deterministic processing time , or Buzacott model:
deterministic processing time, geometric failure and
repair times; discrete state, discrete time.
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Two Machine, Finite-Buffer Lines Markov Chain Model

Two Machine, Finite-Buffer Lines

out of transient states

transitions

out of non−transient states

to increasing buffer level

to decreasing buffer level

unchanging buffer level
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Two Machine, Finite-Buffer Lines Markov Chain Model

Two Machine, Finite-Buffer Lines

• Exponential processing time: exponential
processing, failure, and repair time; discrete state,
continuous time.

• Continuous material, or fluid: deterministic
processing, exponential failure and repair time;
mixed state, continuous time.
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Two Machine, Finite-Buffer Lines Production rate vs. Buffer Size

Two Machine, Finite-Buffer Lines

τ = 1.
p1 = .01
r2 = .1
p2 = .01

r  =  .06
1

r  =  .12
1

r  =  .14
1

N

P

1
r  =  .08

r  =  .1
1

 0.78

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0  20  40  60  80  100  120  140  160  180  200

Single-part-type, multiple stage systems 56 Copyright ©c 2016 Stanley B. Gershwin.



Two Machine, Finite-Buffer Lines Production rate vs. Buffer Size

Two Machine, Finite-Buffer Lines
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Discussion:

• What is P when N = 0?

• Why are the curves increasing?

• Why do they reach an asymptote?

• What is the limit of P as N → ∞?

• Why are the curves with smaller r1
lower?
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Two Machine, Finite-Buffer Lines Average Inventory vs. Buffer Size

Two Machine, Finite-Buffer Lines
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Discussion:

• Why are the curves increasing?

• Why different asymptotes?

• What is n̄ when N = 0?

• What is the limit of n̄ as N → ∞?

• Why are the curves with smaller r1
lower?
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Two Machine, Finite-Buffer Lines Line Design

Two Machine, Finite-Buffer Lines
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Problem: Select M1 and N to maximize profit (revenue-[capital
cost+inventory cost])

• What can you say (qualitatively) about the optimal buffer
size for a given M1?

• How should it be related to ri, pi?
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Two Machine, Finite-Buffer Lines Line Design

Two Machine, Finite-Buffer Lines
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Problem: Select M1 and N so that P = .88 and profit is
maximized

• Observation: If M1 is better, N can be smaller.

Single-part-type, multiple stage systems 60 Copyright ©c 2016 Stanley B. Gershwin.



Two Machine, Finite-Buffer Lines Line Design

Two Machine, Finite-Buffer Lines

Should we prefer short, frequent, disruptions or long,
infrequent, disruptions?
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• r2 = 0.8, p2 = 0.09, N = 10

• r1 and p1 vary together and
r1 .

r1+p1
= 9

• Answer: evidently, short,
frequent failures.

• Why?
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Two Machine, Finite-Buffer Lines Line Design

Two Machine, Finite-Buffer Lines
Improvements

Questions:

• If we want to increase production rate, which
machine should we improve?

• What would happen to production rate if we
improved any other machine?
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Two Machine, Finite-Buffer Lines Production rate vs. storage space

Two Machine, Finite-Buffer Lines

Improvements to
non-bottleneck
machine.
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Two Machine, Finite-Buffer Lines Average inventory vs. storage space

Two Machine, Finite-Buffer Lines
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• Inventory increases as the
(non-bottleneck)
upstream machine is
improved and as the
buffer space is increased.

• If the downstream
machine were improved,
the inventory would be
less and it would increase
much less as the space
increases.
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Two Machine, Finite-Buffer Lines Other models

Two Machine, Finite-Buffer Lines
Exponential — discrete material, continuous time

• µiδt = the probability that Mi completes an
operation in (t, t+ δt);

• piδt = the probability that Mi fails during an
operation in (t, t+ δt);

• riδt = the probability that Mi is repaired, while it
is down, in (t, t+ δt);
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Two Machine, Finite-Buffer Lines Other models

Two Machine, Finite-Buffer Lines
Continuous — continuous material, continuous time

• µiδt = the amount of material that Mi processes,
while it is up, in (t, t+ δt);

• piδt = the probability that Mi fails, while it is up,
in (t, t+ δt);

• riδt = the probability that Mi is repaired, while it
is down, in (t, t+ δt);
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Two Machine, Finite-Buffer Lines Other models

Two Machine, Finite-Buffer Lines

• r1 = 0.09, p1 = 0.01,
µ1 = 1.1

• r2 = 0.08, p2 = 0.009

• N = 20

• Explain the shapes of the
graphs.

Exponential and Continuous Two−Machine Lines
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Two Machine, Finite-Buffer Lines Other models

Two Machine, Finite-Buffer Lines

• Explain the shapes of the
graphs.
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Two Machine, Finite-Buffer Lines Other models

Two Machine, Finite-Buffer Lines
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No-variability limit: a continuous model where both machines are reliable, and
processing rate µ′i of machine i in the no-variability is the same as the isolated
production rate of machine i in the other cases. That is, µ′i = µiri/(ri + pi).
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Long Lines

Long Lines

• Difficulty:

? No simple formula for calculating production rate or
inventory levels.

? State space is too large for exact numerical solution.

I If all buffer sizes are N and the length of the line is k, the
number of states is 1S = 2k(N + 1)k− .

I if N = 10 and k = 20, S = 6.41× 1025.

? Decomposition seems to work successfully.
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Long Lines Decomposition

Decomposition

• Decomposition breaks up systems and then reunites them.

• Conceptually: put an observer in a buffer, and tell him that
he is in the buffer of a two-machine line.

• Question: What would the observer see, and how can he be
convinced he is in a two-machine line? Construct the
two-machine line. Construct all the two-machine lines.
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Long Lines Decomposition

Decomposition

• Consider an observer in Buffer Bi.
? Imagine the material flow process that the observer sees

entering and the material flow process that the
observer sees leaving the buffer.

• We construct a two-machine line L(i)

? ie, we find machines Mu(i) and Md(i) with parameters
ru(i), pu(i), rd(i), pd(i), and N(i) = Ni)

such that an observer in its buffer will see almost the same
processes.

• The parameters are chosen as functions of the behaviors of
the other two-machine lines.

Single-part-type, multiple stage systems 72 Copyright ©c 2016 Stanley B. Gershwin.



Long Lines Decomposition

Decomposition

M
i

M  (i) M  (i)
u d

M B M B B M B M B M
i−2 i−2 i−1 i−1 i i+1 i+1 i+2 i+2 i+3

Line L(i)
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Long Lines Decomposition

Decomposition

There are 4(k − 1) unknowns. Therefore, we need

• 4(k − 1) equations, and

• an algorithm for solving those equations.

Single-part-type, multiple stage systems 74 Copyright ©c 2016 Stanley B. Gershwin.



Long Lines Decomposition

Decomposition
Equations

• Conservation of flow, equating all production
rates.

• Flow rate/idle time, relating production rate to
probabilities of starvation and blockage.

• Resumption of flow, relating ru(i) to upstream
events and rd(i) to downstream events.

• Boundary conditions, for parameters of Mu(1) and
Md(k − 1).
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Long Lines Decomposition

Decomposition
Equations

• This is a set of 4(k − 1) equations.

• All the quantities in these equations are

? specified parameters, or

? unknowns, or

? functions of parameters or unknowns derived from the
two-machine line analysis.
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Long Lines Algorithm

Decomposition
Algorithm

DDX algorithm : due to Dallery, David, and Xie (1988).

1. Guess the downstream parameters of L(1) (rd(1), pd(1)). Set
i = 2.

2. Use the equations to obtain the upstream parameters of L(i)
(ru(i), pu(i)). Increment i.

3. Continue in this way until L(k − 1). Set i = k − 2.

4. Use the equations to obtain the downstream parameters of
L(i). Decrement i.

5. Continue in this way until L(1).

6. Go to Step 2 or terminate.
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Long Lines Examples

Examples

Three-machine line – production rate.
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Long Lines Examples

Examples

Three-machine line – total average inventory
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Long Lines Examples

Examples
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50 Machines; r=0.1; p=0.01; mu=1.0; N=20.0

Distribution of
material in a line
with identical
machines and buffers.
Explain the shape.
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Long Lines Examples

Examples

0

5

10

15

20

0 5 10 15 20 25 30 35 40 45 50

A
v
e
ra

g
e
 B

u
ff
e
r 

L
e
v
e
l

Buffer Number

50 Machines; r=0.1; p=0.01; mu=1.0; N=20.0 EXCEPT p(10)=0.0375

Effect of a
bottleneck. Identical
machines and buffers,
except for M10.
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Long Lines Examples

Examples
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Continuous material model.

• Eight-machine,
seven-buffer line.

• For each machine,
r = .075, p = .009,
µ = 1.2.

• For each buffer
(except Buffer 6),
N = 30.
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Long Lines Examples

Examples
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• Which n̄i are
decreasing and which
are increasing?

• Why?
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Long Lines Examples

Examples

Which has a higher production rate?

• 9-Machine line with two buffering options:

? 8 buffers equally sized; or

M1 B4 M B5 5 M6 B6 M B7 M B8 8 M9B1 M B2 2 M B3 3 M4 7

? 2 buffers equally sized.

M5 M6B3 M7 M8 M9M1 M3M2 M4 B6
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Long Lines Examples

Examples
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• Continuous model; all
machines have r = .019,
p = .001, µ = 1.

• What are the
asymptotes?

• Is 8 buffers always
faster?
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Long Lines Optimal buffer space distribution

Optimal buffer space distribution

• Design the buffers for a 20-machine production
line.

• The machines have been selected, and the only
decision remaining is the amount of space to
allocate for in-process inventory.

• The goal is to determine the smallest amount of
in-process inventory space so that the line meets a
production rate target.
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Long Lines Optimal buffer space distribution

Optimal buffer space distribution

• The common operation time is one operation per
minute.

• The target production rate is .88 parts per minute.
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Long Lines Optimal buffer space distribution

Optimal buffer space distribution

• Case 1 MTTF= 200 minutes and MTTR = 10.5
minutes for all machines (P = .95 parts per
minute).

• Case 2 Like Case 1 except Machine 5. For
Machine 5, MTTF = 100 and MTTR = 10.5
minutes (P = .905 parts per minute).

• Case 3 Like Case 1 except Machine 5. For
Machine 5, MTTF = 200 and MTTR = 21
minutes (P = .905 parts per minute).
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Long Lines Optimal buffer space distribution

Optimal buffer space distribution

Are buffers really needed?

Line Production rate with no buffers,
parts per minute

Case 1 .487
Case 2 .475
Case 3 .475

Yes.

How were these numbers calculated?
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Long Lines Optimal buffer space distribution

Optimal buffer space distribution

Solution
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Long Lines Optimal buffer space distribution

Optimal buffer space distribution

• Observation from studying buffer space allocation
problems:

? Buffer space is needed most where buffer level
variability is greatest!
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Long Lines Profit as a function of buffer sizes

Profit as a function of buffer sizes
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Profit • Three-machine,
continuous material line.

• ri = .1, pi = .01,µi = 1.
• Π = 1000P (N1, N2)

−(n̄1 + n̄2).
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Long Lines Assembly

Assembly

• Decomposition can be extended to assembly systems.

• Propagation of disturbances is more complex:
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Long Lines Assembly

Assembly

Question: How should an assembly system be
structured?

• Add parts to a growing assembly or form
subassemblies and then assemble them?

• Production rates are roughly the same, but
inventories can be affected.
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Long Lines Assembly

Assembly
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Long Lines Assembly

Assembly
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Long Lines Assembly

Assembly
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Long Lines Assembly

Assembly
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Long Lines Assembly

Assembly
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