Rigid Part Mating

- Goals of this class
 - understand the phases of a typical part mate
 - determine the basic scaling laws
 - understand basic physics of part mating for simple geometries
 - relate forces and motions arising from geometric errors
 - compare logic branching and direct error-feedback part mating strategies

Basic Bandwidth Issues and Time-Mass-Distance Scaling Laws

- Torque required to move a mass M at the end of an arm of length L in time T is proportional to $M L^2/T^2$
- This implies that really fast motions must be really small or use a small arm with small mass
- I estimated
 - my hand's mass = 250g, effective length = 10cm
 - my arm + hand's mass = 1700g, effective length = 35 cm
 - ratio arm:hand of $ML^2 = T^2 = 85$
- Don't forget: arm mass+payload mass=M

© Daniel E Whitney 2000

Main Phases of a Part Mating Event

Required Bandwidth for Chamfer Crossing

Fourier coefficient = $2 \pi T / (n^2 \pi^2 \tau) \sin (2 n \pi \tau / T)$ T = 20 E / V; $\tau = E / 2 V$; T / $\tau = 40$ Period = $2\pi = \omega T = \omega 20E/V$ $\omega = \pi V / 10 E$ f = V / 20 E If V = 10 in/s and E = 0.05", f = 10 Hz

If 5th harmonic must be adhered to, bandwidth needed = 50Hz

9/13/2004 © Daniel E Whitney 2000

Trapezoidal Wave Harmonics

Image removed for copyright reasons.

Source:

Figure 9-7 in [Whitney 2004] Whitney, D. E. *Mechanical Assemblies: Their Design, Manufacture, and Role in Product Development*. New York, NY: Oxford University Press, 2004. ISBN: 0195157826.

Conclusions

- Gross motions can be (must be) done by large arms that necessarily will move slowly
- No robot arm with practical reach can make fine motion error removal adjustments at 50 Hz
- Fine motions can be fast if they are done by small arms, and must be fast to absorb typical errors at economical speeds
- Big tasks with big parts will take a long time compared to small tasks with small parts
- What we see: small parts cycle times are ~5s while big parts cycle times are ~ 60s.

Essentials of Part Mating Theory for Fine Motions

- Quasi-static assumption
- Geometry of pegs and holes
- Applied forces
- Normal reaction forces and friction reaction forces
- Entry geometry limits
- Wedging conditions
- Jamming conditions
- Alternate strategies for accomplishing fine motion

The Basic Idea

- In gross motions, it pays to pre-plan to prevent errors
- In fine motion, it does not pay to try to prevent errors
- So the principle is to anticipate errors and figure out how to make assembly happen anyway
- This requires us to understand three factors:
 - Geometry
 - Compliance
 - Friction

Geometry of Peg-Hole Mates

New York, NY: Oxford University Press, 2004. ISBN: 0195157826.

Source:

© Daniel E Whitney 2000

Dimensioning Practice

Image removed for copyright reasons.

Source:

Figure 10-16 in [Whitney 2004] Whitney, D. E. *Mechanical Assemblies: Their Design, Manufacture, and Role in Product Development*. New York, NY: Oxford University Press, 2004. ISBN: 0195157826.

Life Cycle of a Part Mate

Image removed for copyright reasons.

Source:

Figure 10-12 in [Whitney 2004] Whitney, D. E. *Mechanical Assemblies: Their Design, Manufacture, and Role in Product Development*. New York, NY: Oxford University Press, 2004. ISBN: 0195157826.

Model of a Compliant Support

Images removed for copyright reasons. Source: Figure 10-10 in [Whitney 2004] Whitney, D. E. *Mechanical Assemblies: Their Design, Manufacture, and Role in Product Development.* New York, NY: Oxford University Press, 2004. ISBN: 0195157826. All support is assumed concentrated at one point and consists of one lateral stiffness and one angular stiffness

How Compliance Center Reacts to Force

Images removed for copyright reasons.

Source:

Figure 10-11 in [Whitney 2004] Whitney, D. E. *Mechanical Assemblies: Their Design, Manufacture, and Role in Product Development.* New York, NY: Oxford University Press, 2004. ISBN: 0195157826.

Force away from C. C. causes rotation and translation

Force on C. C. causes only translation

rigid part mating

© Daniel E Whitney 2000

Forces and Moments - Two Point Contact Case

Images removed for copyright reasons.

Source:

Figure 10-18 in [Whitney 2004] Whitney, D. E. *Mechanical Assemblies: Their Design, Manufacture, and Role in Product Development*. New York, NY: Oxford University Press, 2004. ISBN: 0195157826.

All applied and reaction forces are expressed in coordinates at peg's tip

Forces Applied During Two-point Contact When $L_g >> 0$ When $L_g \sim 0$ Lg Big ĸ_θ 0 **S**mall Big

rigid part mating

9/13/2004

© Daniel E Whitney 2000

24

Making L_g Small is Good

- How to do it?
- Active Robot Force Feedback
 - Costly
 - Slow
- Some way that acts by itself
- It was invented almost 30 years ago
- Called Remote Center Compliance
- Reduces assembly force
- Avoids one of two main failure modes

Insertion Force History

Assembly Failure Modes

- Both occur during two-point contact
- Wedging sets up compressive forces inside the parts
- Jamming results from incorrect insertion forces
- We can derive the requirements to avoid both of these failure modes

Wedging: Compressive Friction Forces Prevent Insertion Regardless of Insertion

Wedging can happen if $\theta > c/\mu$ when two-point contact occurs Wedging can be avoided if μ is small enough or if two-point contact occurs deep enough in the hole

rigid part mating

9/13/2004

© Daniel E Whitney 2000

Sliding will occur if $F_T > \mu F_N$ $F_T / F_N = \tan \theta$ So, sliding will occur if $\tan \theta > \mu$ and F will lie on the boundary of the cone

If F is inside the cone then sliding will not happen because $F_T < \mu F_N$ and F can be *any* value

Conditions for Avoiding Wedging $S = \frac{L_g}{L_g^2 + K_{\theta} / K_x}$

Images removed for copyright reasons.

Source:

Figure 10-20 in [Whitney 2004] Whitney, D. E. *Mechanical Assemblies: Their Design, Manufacture, and Role in Product Development.* New York, NY: Oxford University Press, 2004. ISBN: 0195157826.

Jamming: Insertion Force Directed the Wrong Way - Can't Overcome Friction

Conditions for Avoiding Jamming

Image removed for copyright reasons.

Source:

Figure 10-21 in [Whitney 2004] Whitney, D. E. *Mechanical Assemblies: Their Design, Manufacture, and Role in Product Development*. New York, NY: Oxford University Press, 2004. ISBN: 0195157826.

Jamming Examples

Target Expands as Depth Increases

9/13/2004 © D

© Daniel E Whitney 2000

Experimental Data -2

Test Your Understanding

• Why does insertion force rise and then fall during two-point contact?

Experimental Data - 3

When $L_g = 0$ there is barely any insertion force. All that's left is chamfer crossing force.

Test Your Understanding Again

• Why does the insertion force not rise after chamfer-crossing is finished?

Review of Force Feedback Strategy

- Create a coordinate frame at the "working point" of the part or tool
- Separate lateral and angular sensing and response motions in that frame
- Devise a response strategy
- The Remote Center Compliance is a purely passive implementation of one such strategy

Simplified Explanation of the Remote Center Compliance (RCC)

Images removed for copyright reasons.

Source:

Figure 9-8 in [Whitney 2004] Whitney, D. E. *Mechanical Assemblies: Their Design, Manufacture, and Role in Product Development.* New York, NY: Oxford University Press, 2004. ISBN: 0195157826.

RCC Response to External Loads

(f) LINKAGE RCC UNDER LATERAL AND ANGULAR DEFORMATION

© Daniel E Whitney 2000

(d) RCC UNDER LATERAL LOAD

(d) RCC UNDER LATERAL LOAD

(e) RCC UNDER ANGULAR LOAD

(e) RCC UNDER ANGULAR LOAD

First RCC Experiment

rigid part mating

First RCC Experiment - 2

rigid part mating

Commercial Remote Center Compliances

Images removed for copyright reasons.

Source:

Figure 9-9 in [Whitney 2004] Whitney, D. E. *Mechanical Assemblies: Their Design, Manufacture, and Role in Product Development.* New York, NY: Oxford University Press, 2004. ISBN: 0195157826.

