
Case Study of 767 Horizontal Stabilizer


• Goals of this class 
– Carry through the topics of this course on one product 

• Look in detail at a real aircraft structural assembly 
• Define and flow down KCs 
• Compare different assembly methods 

– conventional one based on fixtures 
– proposed one based on part-to-part mating features 

• Draw datum flow chains for them 
• Study the economics 
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History of 767 Horizontal Stabilizer 

Project


•	 Fast/Flexible Manufacturing Project 1996 
•	 Coordinated Aircraft and Auto industry projects

•	 Vought Aircraft partner via LAI 
•	 Vought’s goal: cut costs, earn more Boeing 

business 
•	 Vought’s hypothesis: convert from fixed to 

flexible assembly tooling 
•	 Vought’s focus of project: 767 H. S. upper wing 

subassembly 
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Our Challenge: How To Do This


• Available data 
– Existing tooling 
– No history, people, drawings 
– Evidence of errors in tooling 

• Our process 
– Understand goals of existing process 
– Reverse engineer from the top down 
– Expand scope of study to complete horizontal stabilizer 
– Look up the supply chain to Boeing to get the 


requirements

– Generate new process to achieve agreed goals 
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Structure of Horizontal Stabilizer
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Top Level Key Characteristics
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Horizontal Stabilizer Subassemblies 

(current decomposition)
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PKCs for Horizontal Assembly


PKC #2 & #3: Aerodynamics affected
by these skin gaps 
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Current Total Process
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Top-Level KCs
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Product Decomposition Based on 

Independent KCs


FTB 

FTE 

Ribs PC 
SS 

FS 

AS 

F Spar 

A Spar 

767 Case Study 11/30/2004 © Daniel E Whitney 12 



FTB
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Sob
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Assembly Access Problem Eliminates an 

Attractive Assembly Sequence
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Actual Subassemblies


Ribs 
SS 

FS 

AS 

FTB 

FTE 

PC 

F Spar 

A Spar 

767 Case Study 11/30/2004 © Daniel E Whitney 16 



FTB


A
ctual D

ecom
position

Ribs 
SS 

FS 
ASPC 

F Spar 

FTE 

A Spar 

SS 
FS 
AS

PC 

FTB A Spar 

Ribs 

FTB 

F Spar 

FTE 

A Spar 

Ribs 
F Spar FTE 

767 Case Study 11/30/2004 © Daniel E Whitney 17 



Type 1 and Type 2 Methods for One 

Subassembly - KC Flowdown Seems OK
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Second Subassembly Has Lost Its KC 

Links to Higher Level Assemblies


• Any assembly process for 

this subassembly must 

provide proxies for the 
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FS
missing KCs, regardless of PKC #3 
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•	 These KCs will be coupled 
•	 Note that no drawing of this 

subassembly could be found 
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Possible Assembly Strategies
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Our Challenge


•	 Current assembly method relies on costly fixtures

•	 Can a process be devised that does not rely on 

fixtures other than for support against gravity? 
•	 Can such a process achieve the PKCs? 
•	 Would it be economical? 
•	 What new worker skills would be needed?

•	 Can we figure out what the old process was doing 

so we can reproduce its objectives using new 
methods? 
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Diagram of Assembly Analysis Process


Product 
Architecture 

Assembly Sequence 
Generation 

4 

PKCs 
2 

AKCs 
3 

Prune into 
Families 

5 
Analyze 

Sequences 

7 

Assembly 
Decomposition 

KC Flowdown 
1 

Identify most 
promising family 

6 

Process Selection 
and Planning 

10 
Equipment 

Requirements 

9 

Propose Assembly 
Features 

8 

Skin Gaps 

Joint Strength affected by this alignment. 

FTB 

FTE 

Forward Skin 

Aft Skin 

Plus 
Chord 

ORIGINAL PKCs 

ACHIEVE PKCs 
SEPARATELY 
(ASSEMBLY IMPOSSIBLE) 

ASSEMBLY POSSIBLE-
PKCs COUPLED 

CURRENT METHOD 
USING FIXTURES 

TWO ALTERNATE METHODS 
REQUIRING DIFFERENT AKCs 

using hole and slot featuresusing edge features 

1 
2 

1 
2 

ASSEMBLY LEVEL DATUMS 
PART LEVEL DATUMS 

FORWARD SKIN 

AFT SKIN 

SPLICE STRINGER 

MATING FEATURE (SLOT) 
MATING FEATURE (HOLE) 

PKC #1 PKC #2 PKC #3 

AKC #1 

PKCs 

AKCs 

Assembly 
Feature AKCs Plus Chord 

aft hole & 
forward slot 

Aft Skin 
aft hole & 

inboard slot 

Fwd Skin 
inboard slot 
& fwd slot 

Stringer #3 
inboard 

holes 

Stringer #3 
holes 

AFT SKINSTRINGER #3 

FORWARD SKIN 

STRINGER 

PLUS 
CHORD 

VSA RESULTS 

767 Case Study 11/30/2004 © Daniel E Whitney 24 



Liaison Diagram

Fwd

Skin


Str4-11


Plus 

Str1-2 

Splice
Chord Str3 

Aft 
Skin 

767 Case Study 11/30/2004 © Daniel E Whitney 25 



Current Skin Assembly Process
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Current Skin Assembly Process - 2
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Assembly KC #1 & #2


#1 #2 
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Datum Flow Chain for Current Skin Process
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New Process #1: Fixtureless (Type 1)
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PKC Delivery Map for New Process #1
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Datum Flow Chain for New Process #1
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New Process #2
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. 

Assembly Features for Process #2
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Datum Flow Chain for New Process #2
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KC Deliverability Map - Process #2
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Rib-Spar as a Type 2 Assembly
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Rib-Spar Assembly - 2
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DFC for Rib-Spar as a Type-2
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DFC for Wing Assembly as a Type 2


conflict 

Aft 
Skin 

Str1-2 

Plus 
Chord 

Str4-11 

Fwd 
Skin 

Plus Chord
Angle AKC 

S
kin G

ap A
K

C

S
K

IN
 G

A
P

 P
K

C
 

FTB 

RIBS 

Skin Gap PKC 

Skin Gap PKC 

Plus Chord 
Alignment PKC 

Plus Chord 
Alignment PKC 

Two KCs in 

FIXTURE Splice 
Str3 

FTE 

767 Case Study 11/30/2004 © Daniel E Whitney 40 



Tolerance Analysis of KC Delivery 

Using VSA


• VSA was used to on each • Process 2 is able to deliver 

candidate new process all 3 PKCs 100% of the 


•	 Results show that process 
1 is unable to deliver AKC 
& PKC 1 all the time 
because the holes in the 
splice stringer can’t be 
placed accurately enough 

•	 This also hurts PKC 2 and 

time 
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)Matlab(TM Analysis 

•	 Assumed assemblers could maneuver the wing 
skin laterally and angularly 

•	 Assumed smaller variation in hole and slot 
placement 

•	 Assumed that the rest of the wing was error-free


•	 Determined that only a few assemblies would fail
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Sample Space for Tolerance Analysis
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Matlab(TM) Results
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Pros & Cons of Proposed Processes


Current Process Proposed Process #1 Proposed Process #2 
Pros • Delivers all AKCs • Delivers AKC #2 • Delivers all AKCs 

and PKCs and PKC #3 and PKCs 
repeatably repeatably 

• Completely flexible 
method 

repeatably 
• Completely flexible 

method 
• No dedicated 

fixtures 
• Uses existing fab 

equipment 
• Least costly 

• Uses existing fab 
equipment 

• Controls critical 
interfaces 

• Controls critical 
interfaces 

Cons • Inflexible fixtures • Fails to deliver • Requires higher
• Variation absorbed AKC #1 on a few functionality tack 

at stringer-plus 
chord interface 

assemblies 
• PKC #1 & #2 not 

fixture (higher 
cost) 

delivered • Requires a limited 
on those same number of small 
assembies fixtures 
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Rib-Spar as a Type 1 Assembly
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DFC for Rib-Spar as a Type-1
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DFC for Wing Assembly as a Type 1
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“Impossible” as a Type 2

FTB KCs do not conflict 
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“Impossible” as a Type 1
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Cost Analysis -1


•	 The basis for analysis was the KC-driven 
Precision Assembly (PA) process for the 767 
horizontal upper skin assy. 

•	 PA time and cost were estimated for the 767 skin


•	 The 767 cost/time analysis was scaled for the 
remaining 747 & 767 assemblies Vought makes 
for Boeing. 

• PA assumed to be accomplished in three distinct 

cells: Tack, CNC Auto-Rivet, Final Assembly


•	 These cells all require new investment 
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Cost Analysis - 2


•	 Baseline times for each step were taken from 
Vought’s estimates for its process. 

•	 Required cell time for MIT’s processes was 
estimated based on Vought’s times and a 
distribution of realization factors applied to obtain 
an assembly time for each cell. 

•	 A computer simulation was conducted to 
determine the necessary capital equipment. 

767 Case Study 11/30/2004 © Daniel E Whitney 55 



Simulation Scenarios


•	 Three PA processes were developed and 
analyzed. 

•	 The 3 processes are “Vought,” “MIT 1,” and “MIT 2” 
•	 “Vought” is Vought’s proposed PA process 
•	 “MIT 1” uses holes and slots. It was derived from “Vought” by applying the KC flowdown 

method.  “MIT 2” uses NC tack cell 

•	 Three scenarios were studied: 
- All Boeing assemblies, all programs 
- Four representative assemblies 
- Introduction of a new assembly 
- New assembly would require new fixed tool but not new PA equipment 

•	 One and Two shift operations 
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Results - 1


•	 PA estimated to reduce process time by 
approximately 50%.  At current demand this 
results in approximately XX hours saved 
annually.* Value of flexibility, “image,” and 
freed-up floor space not included. 

•	 Annual savings = $X Million (assumes all 
assemblies converted to PA at a rate of 
$XX/hour.) 
–	 VOUGHT TO BE = 54% OF AS IS TIME

–	 MIT 1 = 43% OF AS IS 
– MIT 2 = 42% OF AS IS

– *ACTUAL NUMBERS ARE PROPRIETARY
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Results - 2


•	 Estimated equipment investment to implement PA  
(example for MIT 1) 

All Parts 4 Parts 
One Shift $21.4M $14.1 
Two Shifts $14.1M $7.3 

(assumes cost per cell is  Tack $2M, A-R 

$4.8M, Final Assembly $0.5M)
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Results - 3


• Current economics did not justify the new process

• The new process becomes economical if Vought 


gains new business for which it can use the new 

cells, thus saving the cost of new hard fixtures


• Training and cultural issues remain to be evaluated

– Adjusting by hand becomes adjusting via computer

– Ad hoc process becomes a preplanned and designed 

one requiring more manufacturing knowledge during 
design 

– More communication between fab and assembly shops 
needed 
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