Assembly Sequence Analysis

- Goals of this class
 - Understand one algorithmic approach to finding all feasible assembly sequences
 - Make connection between algorithm and assembly feature models
 - See how assembly sequences can be designed
 - Look at some examples
 - See a video of computer-aided assembly analysis

History

- Assembly sequence analysis applied to line balancing (Prenting and Battaglin, 1964)
- Heuristics such as "the fastener method" (1978)
- Bourjault method (1984)
- De Fazio/Whitney method (1987)
- Gustavson exploded view method SPM (1989)
- Baldwin onion skin method (1989)
- Sukhan Lee method (force paths, subassemblies, 1989 +)
- Wilson method (free directions, 1992+)

Role of Sequence Analysis in Concurrent Engineering

- Line balancing applies sequence analysis *after* the product is designed
- Our goal is to push assembly sequence analysis to the *beginning* of the development process
- It can be an important lever in concept design
- It interacts with architecture and affects supply chain, build to order processes, JIT, etc.
- To keep up with designers during fluid concept design, the assembly engineers need a tool that gives fast turnaround

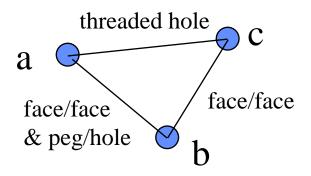
Analysis Alternatives

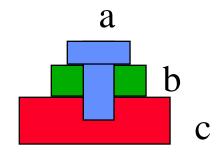
- Find all feasible sequences
- Find all linear feasible sequences
 - add one part at a time
- Find one feasible sequence
- Find one linear feasible sequence
- The first one is of the most interest to assembly line designers

Process Phases

- Eliminate all truly impossible sequences
 - parts physically block other parts
 - sequences dead end before completion
- What remain are called "feasible" = not impossible
 - the good, the bad, and the ugly
- By various criteria, throw out bad and ugly – Criteria include technical and business issues
- This is traditional design:
 - generate requirements
 - generate alternatives
 - use requirements to narrow the alternatives

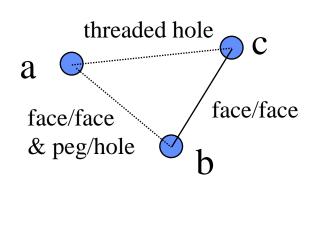
Classes of Approaches

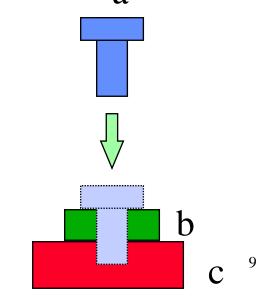

- Most methods assume "one hand"
 - Forbids joining 3 things at one step
- Graph theory analysis of liaison diagram
- Systematic textual analysis of lists of liaisons that contain blockers
- Cut-set methods applied to the liaison diagram
- "Onion-skin" methods that peel off outside parts
- Most of these methods utilize disassembly as the paradigm but it is not necessary
 - "can you remove part X from parts Y,Z,...?" is the same as "can you put part X onto parts Y, Z,...?" under most circumstances


Non-Assembly Steps Can be Included

- Reorientation
- Tests, lubrication
- Temporary disassembly
- These can all be handled one way or another if you are creative

The Liaison Diagram


- A simple graph that denotes parts as nodes and connections as arcs
- Can be augmented with information about the connection



Rules of Liaison Diagrams

- Each part is a node, each arc is a liaison
- Each part has no more than one liaison with any other part
- In a loop of n liaisons, if n-2 arcs are closed, then attempting to close 1 of the 2 remaining will automatically close the whole loop:

Generating Sequences

Image removed for copyright reasons.

Source:

Figure 7-3 in [Whitney 2004] Whitney, D. E. *Mechanical Assemblies: Their Design, Manufacture, and Role in Product Development*. New York, NY: Oxford University Press, 2004. ISBN: 0195157826.

Selecting Sequences

Image removed for copyright reasons.

Source:

Figure 7-4 in [Whitney 2004] Whitney, D. E. *Mechanical Assemblies: Their Design, Manufacture, and Role in Product Development.* New York, NY: Oxford University Press, 2004. ISBN: 0195157826.

Image removed for copyright reasons.

Source:

Figure 7-5 in [Whitney 2004] Whitney, D. E. *Mechanical Assemblies: Their Design, Manufacture, and Role in Product Development*. New York, NY: Oxford University Press, 2004. ISBN: 0195157826.

Image removed for copyright reasons. Source:

Figure 7-11 in [Whitney 2004] Whitney, D. E. *Mechanical Assemblies: Their Design, Manufacture, and Role in Product Development*. New York, NY: Oxford University Press, 2004. ISBN: 0195157826.

Image removed for copyright reasons. Source: Figure 7-12 in [Whitney 2004] Whitney, D. E. *Mechanical Assemblies: Their Design, Manufacture, and Role in Product Development*. New York, NY: Oxford University Press, 2004. ISBN: 0195157826.

Rules of Sequence Analysis

- Parts are rigid
- Liaisons (connections between parts) are also "rigid"
- Once a liaison is made, it stays made

Ask and Address Precedence Questions

- Goal of questions is to find out what moves are forbidden
- This is done various ways by different methods:
 - Computer searches for free paths, using local escape directions and checking for interference
 - Person detects these
- Typical questions:
 - can this part be added to those parts
 - can this set of parts be added to that set of parts
 - must these parts be present/absent in order to add that/those parts

Subset and Superset Rules Cut the Number of Required Questions

- These are true only if parts and liaisons are "rigid"
- Subset rule:
 - if you can add part X to parts {Y} then you can add part X to any subset of {Y}
 - fewer parts can't contain blockers that aren't in the original set
- Superset rule:
 - if you can't add part X to parts {Y} then you can't add part X to a superset of {Y}
 - adding parts can't remove blockers that are in {Y}
 - counter-example in Sony tape deck with motor

Local and Global Freedom

- Local freedom means that the combined escape directions of all liaisons in the query have a common direction (dot product of escape vectors = 1)
- Global freedom means that there is a long range escape path that completely separates the parts in the query
- Local freedom can be detected by the computer just by inspecting the escape directions easy
- Global freedom requires solving the "piano mover's problem" difficult or impossible

Finding Local Freedoms

- Use escape direction vectors:
 - Look at escape direction vectors for each feature
 - Look for common vector for them all
- Conventional screw theory will not work
 It's too hard to distinguish one-sided motion limits
- "Dr. Whitney, what do you do about the facets?"

Generate Precedence Relations

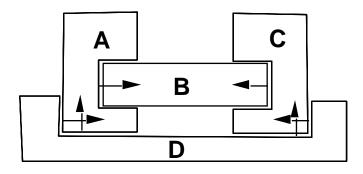
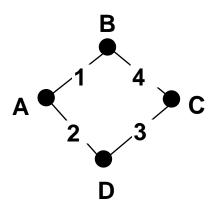
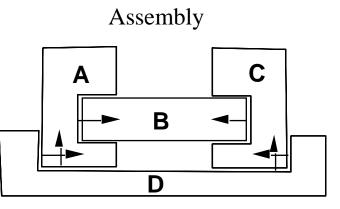

- Example of cookie jar and cookies
 - Can you put the cookies in the jar if the lid is on?
 - "No."
 - Therefore: cookies to jar > lid to jar

Diagram Feasible Sequences

- Network of sequences represents
 - States of assembly = feasible subassemblies showing which liaisons have been completed
 - Transitions between states
- A path through the network is a feasible sequence
 - Cookies to jar, then lid to jar
 - Cookies to lid upside down, then jar to lid, then flip
- We decide later which is better


Simple Assembly Sequence Example

Assembly


Local escape directions shown by arrows

Liaison Diagram

Bourjault's Process as Textual Analysis

- Analysis question:
- R(a; b, c, d)=Can you make liaison a when
 b, c and d are already made?
- Ask this question for every liaison a combined with every other liaison b, c, d
- Bourjault's original process uses graphical analysis based on circuit theory

- R(1;2,3,4) Can't answer because 2,3,4 forces 1 Eliminate 2, 3, or 4 Eliminate 2: R(1;3,4) = No (need to know why)
 - Eliminate 3: R(1;4) = Yes (so 4 is not why) Eliminate 4: R(1;3) = Yes (so 3 is not why) So 1>= 3,4 (i.e., 3,4 together is why)

Eliminate 3:
$$R(1;2,4) = No$$

Eliminate 2: R(1;4) already answered Y Eliminate 4: R(1;2) = Y

So 1 >= 2,4

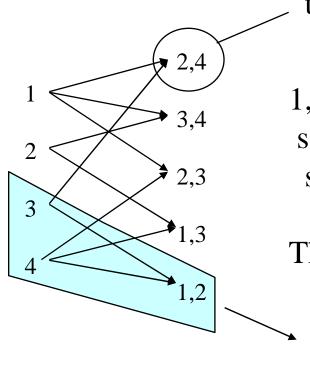
assy seq anal

Eliminate 4:
$$R(1;2,3) = No$$

Eliminate 2: R(1;3) already answered Y Eliminate 3: R(1;2) already answered Y So $1 \ge 2.3$

10/6/2004

© Daniel E Whitney

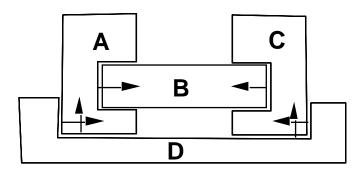

Liaison Diagram A A C C A

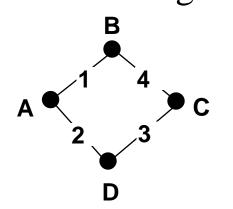
R(2;1,3,4) Can't answer Eliminate 1: R(2;3,4) = No Eliminate 3: R(2;4) = Yes Eliminate 4: R(2;3) = Yes So 2>=3,4Eliminate 3: R(2;1,4) = Yes Eliminate 4: R(2;1,3) = No Eliminate 1: R(2;3) = aaY Eliminate 3: R(2;1) = Yes So 2>=1,3

Done by symmetry:

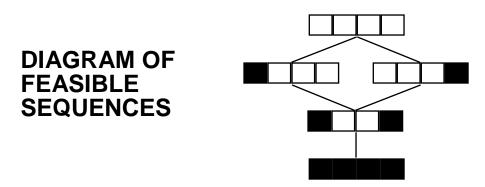
4>=1,2	3>=1,2
4>=1,3	3>=1,2 3>=2,4
4>=2,3	<i>37 2</i> , 1

Results of Bourjault Method

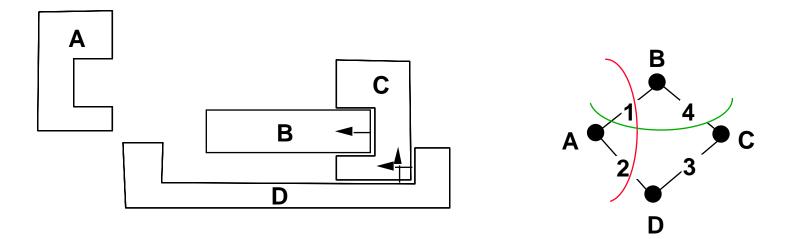

these two together can't be first


1,4 do not appear on the RHS, so they are unprecedented, so they can be first, in either order

Then 2 and/or 3 can be next


$$\begin{array}{rl} 1,2>=3,4\\ 1,3>=2,4\\ 1,4>=2,3\\ 2,4>=1,3 \end{array}$$

Simple Assembly Sequence ResultsAssemblyLiaison Diagram



PRECEDENCE RULE: 1 & 4 > 2 & 3

Portion of Cutset Method

All questions except the last are answered by inspecting local freedom

R(1,2;3,4)? No: 1,2 >=3,4R(1,4;2,3)? No: 1,4 >=2,3R(3,4;1,2)? No: 3,4 >=1,2R(2,3;1,4)? Yes: 1,4 unprecedented so they can be first.

Other Methods

- Randall Wilson checks global freedom using the "weighted blocking graph"
- This is essentially a search for unidirectional escape paths along any of the local escape directions
- The escape directions are generated by inspecting individual surfaces on adjacent parts that touch each other, essentially rediscovering the mating features

Other Methods, cont'd

- Gustavson and Wolter each generate exploded views by different methods and then generate precedence relations from the order along major explosion directions
- A reasonable assumption is that unless there is some blockage, all moves along one such direction will be done before starting on another
- Gustavson finds a heuristic sequence along major explosion directions using part c.g.s and asks the user to fix any errors

SPAS and Onion Skin Methods

- All local freedoms are checked by the computer
- All global freedoms are queried to the user
- This has two benefits
 - the computer does the easy part without attempting the impossible part or pretending to do it
 - the user must confront the design and become very familiar with it
 - Ref: Daniel Baldwin SM Thesis, MIT, Feb, 1990
 - Ref: Russ Whipple SM Thesis, MIT, June 1990

Stability Checking (Simplified)

- Start with the base part or the part in the fixture
- By definition, it is stable
- Check each of its liaisons
 - compare local escape direction to gravity
 - if part can't slide out then mark it "stable"
- Check the liaisons of each of the newly defined stable parts the same way
- If all parts in the liaison diagram can be marked "stable" then the assembly is stable
- Screw theory can be used to find mobility assy seq anal 10/6/2004 © Daniel E Whitney

G

Real Assembly Sequence Analysis Example

Images removed for copyright reasons.

PARTS OF REAR AXLE

Source:

Figure 7-21 in [Whitney 2004] Whitney, D. E. *Mechanical Assemblies: Their Design, Manufacture, and Role in Product Development*. New York, NY: Oxford University Press, 2004. ISBN: 0195157826.

ASSEMBLY DATA MODEL

PARTS	LIAISONS	PRECEDENCE RELATIONS
A = CARRIER ASSY	1 = C TO A	2 > 1
B = BACKING PLATE	2 = B TO A	5 > 4
C = SHAFT	3 = J TO B	1 & 2 & 6 > 5
D = BRAKE DRUM AND T'NUT	4 = D TO C	5 > 7
E = WITHDRAWN PINION SHAFT & BOLT	5 = G TO C	11 > 8
F = INSERTED " "	6 = E TO A	10 > 9
G = (PUSH IN SHAFT &) C-WASHER &	7 = F TO A	12 > 10
PUSH SHAFT OUT	8 = L TO A	12 > 11
H = OIL	9 = I TO A	3 > 1 & 4 & 5
I = COVER	10 = H TO A	7 > 10
J = BRAKE CABLE, COILED	11 = K TO A	9 > 11
K = FINAL PRESS TEST	12 = M TO A	
L = AIR TEST PLUG		

Rear Axle

Image removed for copyright reasons.

Source:

Figure 7-18 in [Whitney 2004] Whitney, D. E. *Mechanical Assemblies: Their Design, Manufacture, and Role in Product Development*. New York, NY: Oxford University Press, 2004. ISBN: 0195157826.

Rear Axle Differential Subassembly After Liaison 1 Shaft to Carrier

Image removed for copyright reasons.

Source:

Figure 7-19 in [Whitney 2004] Whitney, D. E. *Mechanical Assemblies: Their Design, Manufacture, and Role in Product Development*. New York, NY: Oxford University Press, 2004. ISBN: 0195157826.

Image removed for copyright reasons.

Source: Figure 7-20 in [Whitney 2004] Whitney, D. E. *Mechanical Assemblies: Their Design, Manufacture, and Role in Product Development*. New York, NY: Oxford University Press, 2004. ISBN: 0195157826.

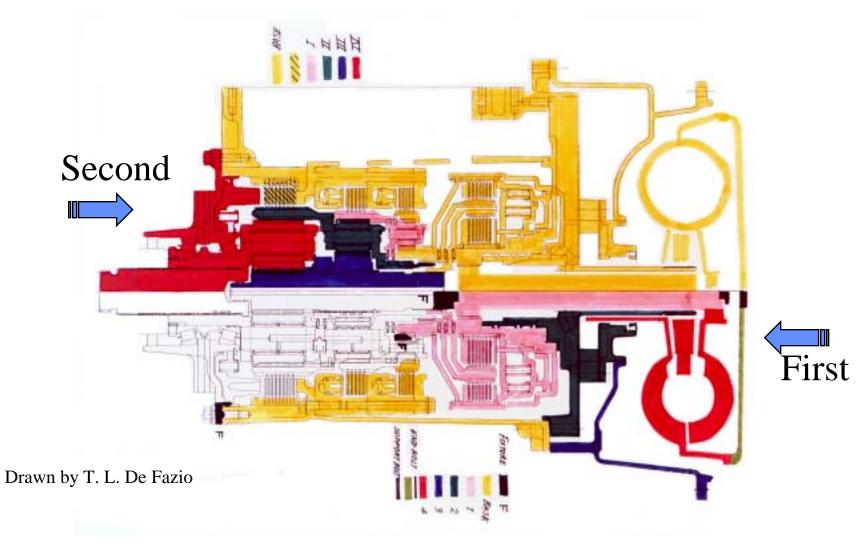
Isert Vasher alson 36

Image removed for copyright reasons.

Source:

Figure 7-19 in [Whitney 2004] Whitney, D. E. *Mechanical Assemblies: Their Design, Manufacture, and Role in Product Development*. New York, NY: Oxford University Press, 2004. ISBN: 0195157826.

Example assembly sequence graph


Images removed for copyright reasons.

Source:

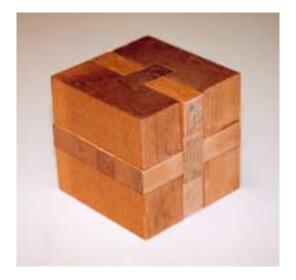
Figure 7-22 in [Whitney 2004] Whitney, D. E. *Mechanical Assemblies: Their Design, Manufacture, and Role in Product Development*. New York, NY: Oxford University Press, 2004. ISBN: 0195157826.

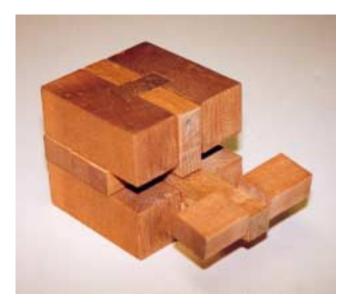
Each path from top to bottom is a valid sequence. Each box is a valid intermedia assembly state.

Six Speed Truck Transmission

Juicer

Image removed for copyright reasons.


Source:


Figure 7-16 in [Whitney 2004] Whitney, D. E. *Mechanical Assemblies: Their Design, Manufacture, and Role in Product Development.* New York, NY: Oxford University Press, 2004. ISBN: 0195157826.

Network Complexity Metric

- The liaison diagram is a network
- How complex is an assembly?
- Network complexity metric k: (#arcs) / (#nodes)
 Node = part, arc = connection between 2 parts
- If n = # parts, then
 - Min k = (n-1)/n
 - Max k = n(n-1)/2n = (n-1)/2
- Which product will have more assembly sequences?
 - Product with big complexity metric
 - Product with small complexity metric

Chinese Puzzle

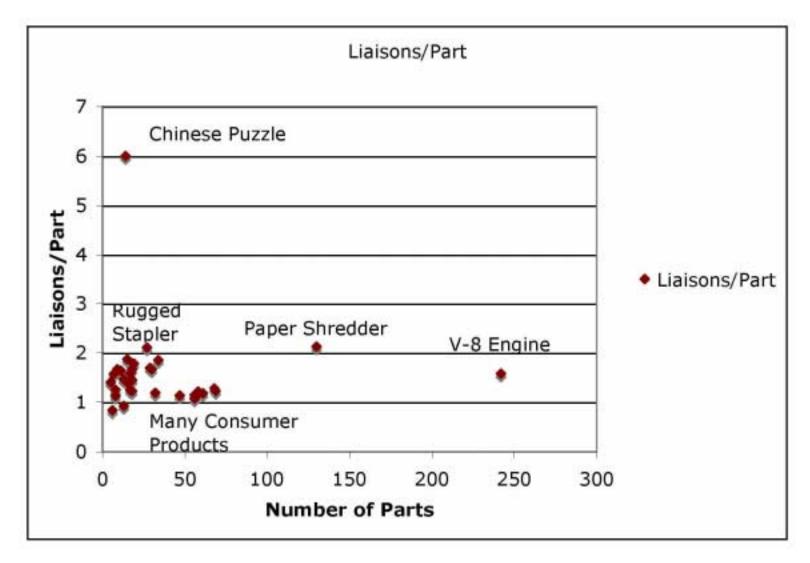

Some Data on Liaisons per Part

Image removed for copyright reasons.

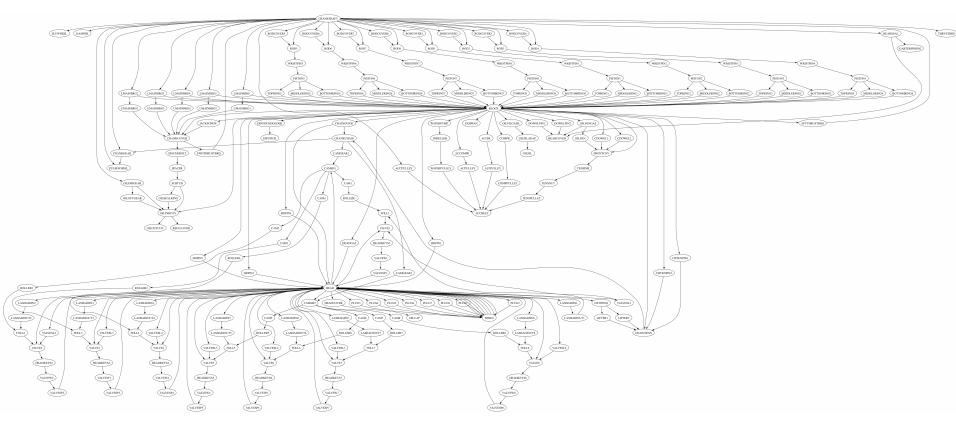

Source:

Figure 7-29 in [Whitney 2004] Whitney, D. E. *Mechanical Assemblies: Their Design, Manufacture, and Role in Product Development*. New York, NY: Oxford University Press, 2004. ISBN: 0195157826.

More Data: 34 Products

V-8 Engine Liaison Diagram

Constraint Limits Liaisons/Part

IJ

 $M = 3(n - g - 1) + \sum \text{joint freedoms} f_i$

where

n = number of parts

g = number of joints

 f_i = degrees of freedom of joint i

 $\alpha = liaisons / part$ $\psi = average dof per joint$ $g = \alpha n$

$$\sum f_i = g \, \mathscr{V} = \alpha \, \mathscr{V}_n$$

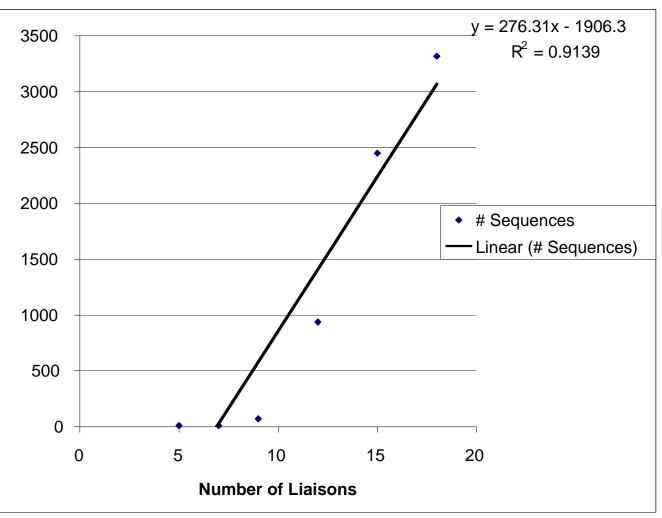
and

$$M = 3(n - \alpha n - 1) + \alpha \sqrt[n]{n}$$

If $M = 0$
 $\alpha = \frac{3 - 3n}{n(\sqrt[n]{n} - 3)}$. $\frac{3}{3 - \sqrt[n]{n}}$ as *n* gets large

0	1	1	
1	1.5	1.2	
2	3	1.5	

 α planar


~

 α spatial

A

.

#	Parts	# Liaisons		Liaisons/Part	# Sequences
Throttlebody	5		7	1.4	10
Ballpoint Pen	6		5	0.83333333	12
Juicer	8		9	1.125	71
Rear Axle	13		12	0.92307692	938
Transaxle	9		15	1.66666667	2450
6 Speed Transn	11		18	1.63636364	3318
Chinese Puzzle	14		84	6	1
assy seq anal	10/6/2004		© Daniel E Whitney		

Video

- Made by Randy Wilson and co-workers at Sandia National Labs in 1996
- Obtains one feasible sequence by using feasible escape cones derived from local escape directions
- Permits user to edit this sequence