Key Characteristics

- Goals of this class
 - Introduce Key Characteristics (KCs)
 - Define the notions of KC delivery and KC delivery chain
 - Understand the relationship between KC delivery chains and partto-part location
 - Appreciate how many KCs an assembly can have, including the concept of KC conflict
 - See some examples

Key Characteristics (KCs)

- Key characteristics are product requirements that demand attention because
 - they are critical for performance, safety, or regulations
 - AND
 - they are at risk of not being achieved due to process variations
- Usually, KCs are geometric relationships between features on non-adjacent parts
- Two basic issues for KCs are
 - priorities
 - flowdown

"Chain of Delivery" of Quality

Image removed for copyright reasons.

Source:

Figure 2-1 in [Whitney 2004] Whitney, D. E. *Mechanical Assemblies: Their Design, Manufacture, and Role in Product Development*. New York, NY: Oxford University Press, 2004. ISBN: 0195157826.

No single part "delivers" the KC.

9/13/2004 © Daniel E Whitney

Chains Deliver KCs

- KCs are delivered by chains that must operate repeatibly
- Chains are made up of:
 - μ physical elements: parts, sub-assemblies, tools, and fixtures
 - μ the associated organizations (supply chain)
 - the capability of the processes (technology) μ
- Each KC is delivered when its chain is complete

KC Priorities

- Everything is important to someone
- KCs should be confined to things that are not only important but are at some risk of not being achieved
- Usually, manufacturing or assembly variation are considered to be the main threat
- So there is a direct link between KCs and assembly tolerances
- If there is no systematic process for identifying KCs, and if priorities are not assigned, then KCs tend to proliferate

When Can Key Characteristics Be Used?

- During concept design, to capture customer req'mts
- During system engineering, to flow down req'mts to lower levels of the design process
- During detail design, to deliver req'mts via tolerances and process planning
- During supplier selection and preparation of specs, to define deliverables
- During program management, to track and assure achievement of requirements

Desktop Stapler

Image removed for copyright reasons.

Source:

Figure 1-1 in [Whitney 2004] Whitney, D. E. *Mechanical Assemblies: Their Design, Manufacture, and Role in Product Development*. New York, NY: Oxford University Press, 2004. ISBN: 0195157826.

Stapler Parts

Image removed for copyright reasons. Source:

Figure 1-2 in [Whitney 2004] Whitney, D. E. *Mechanical Assemblies: Their Design, Manufacture, and Role in Product Development*. New York, NY: Oxford University Press, 2004. ISBN: 0195157826.

Stapler KCs

Each KC is Delivered by a Chain

KCs_04.ppt

Key Characteristics and the Liaison Diagram

Image removed for copyright reasons. Source: Figure 1-3 in [Whitney 2004] Whitney, D. E. *Mechanical Assemblies: Their Design, Manufacture, and Role in Product Development.* New York, NY: Oxford University Press, 2004. ISBN: 0195157826. Image removed for copyright reasons. Source: Figure 1-4 in [Whitney 2004] Whitney, D. E. *Mechanical Assemblies: Their Design, Manufacture, and Role in Product Development.* New York, NY: Oxford University Press, 2004. ISBN: 0195157826.

Liaison Diagram

KCs

Only Some Liaisons Matter in KC Delivery

Image removed for copyright reasons.

Source:

Figure 1-5 in [Whitney 2004] Whitney, D. E. *Mechanical Assemblies: Their Design, Manufacture, and Role in Product Development.* New York, NY: Oxford University Press, 2004. ISBN: 0195157826.

The Delivery Path for Each Stapler KC

Image removed for copyright reasons.

Source:

Figure 1-6 in [Whitney 2004] Whitney, D. E. *Mechanical Assemblies: Their Design, Manufacture, and Role in Product Development*. New York, NY: Oxford University Press, 2004. ISBN: 0195157826.

Optical Disk Drive KCs

Images removed for copyright reasons.

Source:

Figure 2-7 in [Whitney 2004] Whitney, D. E. *Mechanical Assemblies: Their Design, Manufacture, and Role in Product Development*. New York, NY: Oxford University Press, 2004. ISBN: 0195157826.

KC Flowdown

- Product KCs can be defined for customer requirements and then decomposed into lower level Assembly and Manufacturing KCs
- Achievment of the PKCs requires achievement of the AKCs and MKCs
- Full implementation requires that each AKC and MKC meet a specific tolerance or Cpk
- Suppliers' capability may limit AKCs and MKCs, requiring *flow-up* and negotiation

Some "Statistics"

- A person at GM said
 - 60% of body sheet metal tolerances can be met
 - 40% must be altered to meet shop capabilities
- A patent from Boeing on tolerancing says that typically 8 parts are involved in a tolerance chain (probably similar to the length of a KC chain for us)
- A survey of 600 consumer products by Ulrich and Ellison reveals that about 6 parts are involved in delivering functions that differentiate the product in the marketplace
- You don't get real numbers like this every day

How Parts Locate Each Other to Deliver Quality at the Customer Level

KCs_04.ppt

Image removed for copyright reasons.

Source:

KCs_04.ppt

Figure 2-8 in [Whitney 2004] Whitney, D. E. *Mechanical Assemblies: Their Design, Manufacture, and Role in Product Development*. New York, NY: Oxford University Press, 2004. ISBN: 0195157826.

Door Assembly

Image removed for copyright reasons.

Source:

Figure 2-10 in [Whitney 2004] Whitney, D. E. *Mechanical Assemblies: Their Design, Manufacture, and Role in Product Development*. New York, NY: Oxford University Press, 2004. ISBN: 0195157826.

How Doors are Built

Images removed for copyright reasons.

Source:

Figure 2-10 in [Whitney 2004] Whitney, D. E. *Mechanical Assemblies: Their Design, Manufacture, and Role in Product Development*. New York, NY: Oxford University Press, 2004. ISBN: 0195157826.

Door Hem

© Daniel E Whitney

Car Door Design KCs

Two Door Methods - There Are Many

KC Conflict in Door Assembly

Ford Hinge Mounting

Image removed for copyright reasons.

Source:

Figure 2-12 in [Whitney 2004] Whitney, D. E. *Mechanical Assemblies: Their Design, Manufacture, and Role in Product Development*. New York, NY: Oxford University Press, 2004. ISBN: 0195157826.

Ford Hinge Mounting Fixture

Photo removed due to copyright restrictions. (Detail of car door front and rear locator pins and holders for hinges.)

Door on Hinge-Mounting Fixture

Photo removed due to copyright restrictions. (Detail of front and rear car door mounting locators.)

Ford Door Mounting to Car

Images removed for copyright reasons.

Source:

Figure 2-12 in [Whitney 2004] Whitney, D. E. *Mechanical Assemblies: Their Design, Manufacture, and Role in Product Development*. New York, NY: Oxford University Press, 2004. ISBN: 0195157826.

Mustang Body in White

Photo removed due to copyright restrictions. (Detail of car door front and rear locators.)

Image removed for copyright reasons.

Source:

Figure 8-48 in [Whitney 2004] Whitney, D. E. *Mechanical Assemblies: Their Design, Manufacture, and Role in Product Development*. New York, NY: Oxford University Press, 2004. ISBN: 0195157826.

An Interesting Wrinkle

- Doors are usually installed on a car before painting and removed for trim installation
 - you can grab a door rigidly (accurately) when there is no paint to scratch
 - it is easier to install stuff on/in the door and in the car if the doors are separate
- The challenge is to get them back on in the right place without the benefit of assembly tooling
- It is done cleverly with the hinges
 - install door+hinges to car, remove door from hinges
 - remove a temporary hinge pin, reinstall a final one
 - check which bolts have paint to see how it was done

KCs_04.ppt

GM Hinge Mounting

Image removed for copyright reasons.

Source:

Figure 2-12 in [Whitney 2004] Whitney, D. E. *Mechanical Assemblies: Their Design, Manufacture, and Role in Product Development*. New York, NY: Oxford University Press, 2004. ISBN: 0195157826.

GM Method

9/13/2004 © Daniel E Whitney

GM Take-apart Car Door Hinges

Photo removed due to copyright restrictions. (Detail of car door hinges and locator cone.)

GM Door Mounting to Car

Images removed for copyright reasons.

Source:

Figure 8-47 in [Whitney 2004] Whitney, D. E. *Mechanical Assemblies: Their Design, Manufacture, and Role in Product Development*. New York, NY: Oxford University Press, 2004. ISBN: 0195157826.

Ford Locator Drawing

Image removed for copyright reasons.

Source:

Figure 2-13 in [Whitney 2004] Whitney, D. E. *Mechanical Assemblies: Their Design, Manufacture, and Role in Product Development.* New York, NY: Oxford University Press, 2004. ISBN: 0195157826.

Conclusions

- KCs are the link between functional customer needs and physical realizations at the assembly level
- KCs are delivered by chains of parts
- KCs can be delivered in more than one way
- Design of KC delivery requires definition of location schemes by which parts are related to each other in 6 dof
- Assemblies typically have many KCs, and they can conflict