Economics of Environment

Positive Economics	What is / was / will be	(description)	
Normative Economics	What ought to be	(optimization)	

Environment treated as an asset:

- inputs of raw materials & energy
- source of benefits & amenities
- sink for wastes

1. Efficient Use of Environmental Resources

How much of an environmental asset should be used? (normative)

Criterion 1: static efficiency: MAX net social benefit from utilization

- like efficient production decision

Net benefit = willingness to pay (utility) – social cost Maximum net benefit = Pareto optimal decision

Marginal Benefit = Marginal Cost

Criterion 2: dynamic efficiency

¥

takes account of changes over time (timing of B + C)
→ present value

$$PV(B_n) = \frac{B_n}{(1+r)^n}$$
 r = discount rate

Dynamic efficiency: max PV of net benefits over time \rightarrow implies PV(marginal net benefit from last unit in each period) equal Positive discount rate \rightarrow 1 unit of benefit is more valuable today than tomorrow

Scarcity

Constraints on "depletable" supply -> present consumption affects future consumption (not necessarily "non-renewable")

"marginal user cost" = PV(forgone opportunities at the margin)

Fossil fuel example: market must consider extraction & MU costs

Sustainability

"What level of fossil fuel consumption is sustainable?"

Sustainability criterion (Rawls): future generations should be left no worse off than present

How can this be if dynamic efficiency allocation \rightarrow more consumption now? \rightarrow Need to transfer (save) some present benefit for future. How? <u>Invest.</u>

Property Rights

For market mech. to achieve efficient outcome (allocation), need property rights structure that conveys:

- 1. universality (all resources privately owned)
- 2. exclusivity (all B + C accrue to owner only)
- 3. transferability
- 4. enforceability (secure from seizure/encroachment)

Self interest \rightarrow max surplus \rightarrow efficient allocation

1 = variable cost 2 = producer surplus Revenue = $P \times Q = R$ Profit = R - TC = R - 1 - fixed cost = 2 - f.c.Short run: prod. surplus = 2 = profit + f.c. Long run: no f.c. (all costs variable), so prod. surplus = profit Perfectly competitive, no scarcity: L.R. profit = L.R. producer surplus = 0 With scarcity, ownership: L.R. prod. surplus = profit + scarcity rent $\neq 0$

Scarcity rent arises from:

- 1. Nature of resource (land)
- 2. Marginal user cost in depletable resources

Ρ

2. Failures

fishing effort

2.964: Economics of Marine Transportation Industries Lecture Notes: Environmental Economics

MP

Q*

 \mathbf{Q}_{m}

stocks drawn down

Public goods

- Consumption indivisibility
- Fully accessible to all

National defense example:

- "free rider" problem
- Private supply not necessarily zero, but less than efficient

What price? Varies among consumers – no way of knowing \rightarrow "complexity"

Imperfect market structure

Monopoly/cartel - inefficient allocation, production, pricing

Discount Rates

/ Private discount rate may be > social discount rate. Why? Discount rate = cost of capital = risk free + risk premium

- risk free is the same
- risk premium > for private
 - Why? Risk <u>caused</u> by government

Private decisions -> faster exploitation than socially optimal

Government Failure

Interest groups – protective legislation "rent seeking"

- increasing net benefits to group at expense of society
- Regulation/liability