13.002 Introduction to Numerical Methods for Engineers Take Home Exam Issued: Thursday, Mar. 10, 2005 Due: Friday, Mar. 18, 2005

Problem 1.

A =	10	7	8	7]	
	7	5	6	5	
	8	6	10	9	
	7	5	9	7 5 9 10	ĺ

- a) Compute the inverse A^{-1} and determine the solution to Ax = b when $b = (4 \ 3 \ 3 \ 1)^T$.
- b) Assume that the right-hand side b is perturbed by a vector $\delta \mathbf{b}$ such that $\|\delta \mathbf{b}\|_{\infty} \leq 0.01$ Give an upper bound for $\|\delta \mathbf{x}\|_{\infty}$, where $\delta \mathbf{x}$ is the corresponding perturbation in the solution.
- c) Compute the condition number $\kappa(A)$ and compare it with the bound for the quotient between $\frac{\|\delta \mathbf{x}\|}{\|\mathbf{x}\|}$ and $\frac{\|\delta \mathbf{b}\|}{\|\mathbf{b}\|}$ which can be derived from (b).

Problem 2.

a. Make algorithms for finding the roots of the equation

$$x\tan(x)=2, \qquad (1)$$

in the interval $x \in [0, \pi/2]$, using:

- 1. Newton-Ralphson Iteration
- 2. The Secant Method
- b. Make a graph of the relative errors vs iteration step for the two algorithms and compare their convergence behavior to that of a *quadratic* convergence.