Quiz

(closed-book)

Hydrostatic, Small and Large Angle Stability

Problem 1

Consider a box shaped barge that is 100 m long, 20 m in total breadth, 10 m tall and with a draft of 4 m. The center of gravity is at amidships and on centerline at a height of 6 m above the keel. The barge is floating in water with a mass density of 1025 kg/m^3 .

- A. Determine the heeling moment to heel the barge by 10 degrees.
- B. At what angle of heel, ϕ_c does one of the lower long edges of the barge come into contact with the water surface.
- C. Determine the exact righting moment of the fluid on the barge based on the actual position of the center of gravity and the center of buoyancy at 25° of heel (Hint: ϕ_c is less than 25°, which means that the lower corner is out of the water and the immersed shape looks like a triangle...).
- D. If 10^6 Kg are placed in the center of the deck of the upright barge, how much does the barge sink?
- E. If the 10^6 Kg on the deck are moved 2 m athwartships, what is the barge heel angle?

	Results					
Α.	Heeling Moment(10 deg) =	Nm				
В.	Heel angle ϕ_{C} =	deg				
C.	Exact Righting Moment(25 deg) =	Nm				
D.	Sinkage =	m				
Е.	Heel angle =	deg				

Report your result in the following table

Table 1 Results.

Problem 2

In this problem you are asked to calculate hydrostatic parameters and small angle stability for a sailing yacht starting from the data in Table 2, which contains the sectional areas A_S , vertical position of each section Z_0 with respect to the DWL (a negative value means below), and half-beam Y_0 at DWL for 11 equally spaced stations (x is positive forward). Do all the integrations with a hand calculator using Simpson's rule.

- A. For a canoe body draft $T_c = 0.47$ m, which is achieved considering the weight of the canoe body and the keel, find the waterline length L_{wL} , the waterline beam B_{wL} , the canoe body volume ∇_c , the canoe body displacement Δ_c (consider salt water with density $\rho = 1025$ Kg/m³), the block coefficient C_B , and the prismatic coefficient C_p .
- B. Determine the waterplane area A_{WP} , the transverse moment of inertia I_{XX} of the waterplane, the vertical center of buoyancy VCB_C , and the metacentric height GM_C for the canoe body. The vertical center of gravity of the canoe body VCG_C 0.1 m above DWL.

	Position X	Sect. Area A _s	Center Z ₀	Y₀ @ DWL
	[m]	[m²]	[m]	[m]
Station 0	6.40	0.000	0.000	0
Station 1	5.12	0.113	-0.092	0.347
Station 2	3.84	0.384	-0.139	0.773
Station 3	2.56	0.736	-0.171	1.187
Station 4	1.28	1.080	-0.191	1.53
Station 5	0	1.308	-0.197	1.763
Station 6	-1.28	1.338	-0.194	1.828
Station 7	-2.56	1.175	-0.178	1.774
Station 8	-3.84	0.830	-0.134	1.655
Station 9	-5.12	0.370	-0.074	1.379
Station 10	-6.4	0.000	0.000	0

 Table 2 Canoe Body data.

C. Let's now add a keel to the design (for simplicity the rudder is neglected). The data for the lead-filled keel are given in Table 3.

Keel Data					
Mass	4015.0 kg				
Δ	374.45 kg				
Volume	0.365 m ³				
LCB	0.462 m				
VCB	-1.784 m				
VCG	-1.784 m				

Table 3 Keel Data.

Now for the appended boat, calculate the total displacement Δ_{Tot} , the vertical position of the center of gravity VCG_{Tot} , the vertical position of the center of buoyancy VCB_{Tot} , and the metacentric height GM_{Tot} .

D. Report your results in the following table

Results								
$\Delta_{\mathbf{C}}$	Kg	C _B		A _{WP}	m²			
Vol _c	m ³	C _P		Δ_{Tot}	Kg			
Tc	m	I _{XX}	m ⁴	Vol _{Tot}	m ³			
L _{WL}	m	VCG _c	m	VCB _{Tot}	m			
B _{WL}	m	GM _c	m	GM _{Tot}	m			
VCBc	m							

Table 4 Results.