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Abstract 

We consider temporal difference algorithms within the context of infinite-horizon finite-state 
dynamic programming problems with discounted cost, and linear cost function approximation. 
We show, under standard assumptions, that a least squares-based temporal difference method, 
proposed by Nedić and Bertsekas [NeB03], converges with a stepsize equal to 1. To our knowl-
edge, this is the first iterative temporal difference method that converges without requiring a 
diminishing stepsize. We discuss the connections of the method with Sutton’s TD(λ) and with 
various versions of least squares-based value iteration, and we show via analysis and experiment 
that the method is substantially and often dramatically faster than TD(λ), as well as simpler 
and more reliable. We also discuss the relation of our method with the LSTD method of Boyan 
[Boy02], and Bradtke and Barto [BrB96]. 
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1. INTRODUCTION 

In this paper, we analyze methods for approximate evaluation of the cost-to-go function of a 

stationary Markov chain within the framework of infinite-horizon discounted dynamic program-

ming. We denote the states by 1, . . . , n, the transition probabilities by pij , i, j = 1, . . . , n, and 

the corresponding costs by αtg(i, j), where α is a discount factor with 0 < α <  1. We want to 

evaluate the long-term expected cost corresponding to each initial state i, given by 

∞ �
J(i) =  E αtg(it, it+1) � i0 = i , ∀ i = 1, . . . , n,  

t=0 

where it denotes the state at time t. This problem arises as a subproblem in the policy iteration 

method of dynamic programming, and its variations, such as modified policy iteration, optimistic 

policy iteration, and λ-policy iteration (see Bertsekas and Tsitsiklis [BeT96], Bertsekas [Ber01], 

and Puterman [Put94] for extensive discussions of these methods). 

The cost function J(i) is  approximated by a linear function of the form 

J̃(i, r) =  φ(i) r, ∀ i = 1, . . . , n,  

where φ(i) is an  s-dimensional feature vector, associated with the state i, with components 

φ1(i), . . . , φs(i), while r is a weight vector with components r(1), . . . , r(s). (Throughout the 

paper, vectors are viewed as column vectors, and a prime denotes transposition.) 

Our standing assumptions are: 

(a) The Markov chain has steady-state probabilities π(1), . . . , π(n) which are positive, i.e., 

lim P [it = j | i0 = i] =  π(j) > 0, ∀ i, j. 
t→∞ 

(b) The matrix Φ given by   − φ(1)′ −
.  . Φ =   .  

− φ(n)′ − 

has rank s. 

The TD(λ) method with function approximation was originally proposed by Sutton [Sut88], 

and its convergence has been analyzed by several authors, including Dayan [Day92], Gurvits, Lin, 

and Hanson [GLH94], Pineda [Pin97], Tsitsiklis and Van Roy [TsV97], and Van Roy [Van98]. 

We follow the line of analysis and Tsitsiklis and Van Roy, who have also considered a discounted 

problem under the preceding assumptions on the existence of steady-state probabilities and rank 

of Φ. 
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The algorithm, described in several references, including the books by Bertsekas and Tsitsik-

lis [BeT96], and Sutton and Barto [SuB98], generates an infinitely long trajectory of the Markov 

chain (i0, i1, . . .) using a simulator, and at time t iteratively updates the current estimate rt using 

an iteration that depends on a fixed scalar λ ∈ [0, 1], and on the temporal differences 

dt(ik , ik+1) =  g(ik, ik+1) +  αφ(ik+1)′rt − φ(ik)′rt, ∀ t = 0, 1, . . . ,  ∀ k ≤ t. 

Tsitsiklis and Van Roy [TsV97] have introduced the linear system of equations 

Ar + b = 0, 

where A and b are given by 

∞ ∞
A = Φ′D(αP − I) (αλP )mΦ, b = Φ′D (αλP )m ̄g, (1.1) 

m=0 m=0 

P is the transition probability matrix of the Markov chain, D is the diagonal matrix with diagonal 

entries π(i), i = 1, . . . , n,  
π(1) 0 · · ·  0  

D = 
   0 π(2) · · ·  0    , (1.2)    · · ·   

0 0 · · ·  π(n) �nand g is the vector with components g(i) =  j=1 pij g(i, j). They have shown that TD(λ) 

converges to the unique solution r∗ = −A−1b of the system Ar + b = 0,  and that the error 

between the corresponding approximation Φr∗ and the true cost-to-go vector J satisfies 

1 − αλ ‖Φr∗ − J‖D ≤ 
1 − α 

‖ΠJ − J‖D , 

where ‖ · ‖D is the weighted norm corresponding to the matrix D (i.e., ‖x‖D = 
√

x′Dx), and Π 

is the matrix given by Π = Φ(Φ′DΦ)−1Φ′D. (Note that ΠJ − J is the difference between J and 

its projection, with respect to the weighted norm, on the range of the feature matrix Φ.) 

The essence of the Tsitsiklis and Van Roy analysis is to write the TD(λ) algorithm as 

rt+1 = rt + γt(Art + b) +  γt(Ξtrt + ξt), t = 0, 1, . . . ,  (1.3) 

where γt is a positive stepsize, and Ξt and ξt are some sequences of random matrices and vectors, 

respectively, that depend only on the simulated trajectory (so they are independent of rt), and 

asymptotically have zero mean. A key to the convergence proof is that the matrix A is negative 

definite, so it has eigenvalues with negative real parts, which implies in turn that the matrix 

I + γtA has eigenvalues within the unit circle for sufficiently small γt. However, in TD(λ) it is  
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essential that the stepsize γt be diminishing to 0, both because a small γt is needed to keep the 

eigenvalues of I + γtA within the unit circle, and also because Ξt and ξt do not converge to 0. 

In this paper, we focus on the λ-least squares policy evaluation method (λ-LSPE for short), 

proposed and analyzed by Nedić and Bertsekas [NeB03]. This algorithm was motivated as a 

simulation-based implementation of the λ-policy iteration method, proposed by Bertsekas and 

Ioffe [BeI96] (also described in Bertsekas and Tsitsiklis [BeT96], Section 2.3.1). In fact the method 

of this paper was also stated (without convergence analysis), and was used with considerable 

success by Bertsekas and Ioffe [BeI96] [see also Bertsekas and Tsitsiklis [BeT96], Eq. (8.6)] to 

train a tetris playing program – a challenging large-scale problem that TD(λ) failed to solve. 

In this paper, rather than focusing on the connection with λ-policy iteration, we emphasize a 

connection with (multistep) value iteration (see Section 4). 

The λ-LSPE method, similar to TD(λ), generates an infinitely long trajectory (i0, i1, . . .) 

using a simulator. At each time t, it  finds the solution r̃t of a least squares problem, 

� �2t t 

r̃t = arg min φ(im)′r − φ(im)′rt − (αλ)k−mdt(ik , ik+1) , (1.4) 
r 

m=0 k=m 

and computes the new vector rt+1 according to 

rt+1 = rt + γ(r̃t − rt), (1.5) 

where γ is a positive stepsize. The initial weight vector r0 is chosen independently of the trajectory 

(i0, i1, . . .). 

It can be argued that λ-LSPE is a “scaled” version of TD(λ). In particular, from the 

analysis of Nedić and Bertsekas ([NeB03], p. 101; see also Section 3), it follows that the method 

takes the form 

rt+1 = rt + γ(Φ DΦ)−1(Art + b) +  γ(Ztrt + ζt), t = 0, 1, . . . ,  (1.6) 

where γ is a positive stepsize, and Zt and ζt are some sequences of random matrices and vectors, 

respectively, that converge to 0 with probability 1. It was shown in [NeB03] that when the 

stepsize is diminishing rather than being constant, the method converges with probability 1 to 

the same limit as TD(λ), the unique solution r∗ of the system Ar + b = 0  (convergence for a 

constant stepsize was conjectured but not proved). 

One of the principal results of this paper is that the scaling matrix (Φ DΦ)−1 is “close” 

enough to −A−1 so that, based also on the negative definiteness of A, the stepsize γ = 1  leads 

to convergence for all λ ∈ [0, 1], i.e., the matrix I + (Φ′DΦ)−1A has eigenvalues that are within 
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the unit circle of the complex plane. In fact, we can see that A may be written in the alternative 

form 
∞

A = Φ′D(M − I)Φ, M = (1  − λ) λm(αP )m+1 , 
m=0 

so that for λ = 1,  the eigenvalues of I + (Φ DΦ)−1A are all equal to 0. We will also show that as 

λ decreases towards 0, the region where the eigenvalues of I +(Φ DΦ)−1A lie expands, but stays 

within the interior of the unit circle. 

By comparing the iterations (1.3) and (1.6), we see that TD(λ) and λ-LSPE have a common 

structure – a deterministic linear iteration plus noise that tends to 0 with probability 1. However, 

the convergence rate of the deterministic linear iteration is geometric in the case of λ-LSPE, while 

it is slower than geometric in the case of TD(λ), because the stepsize γt must be diminishing. 

This indicates that λ-LSPE has a significant rate of convergence advantage over TD(λ). At the 

same time, with a recursive Kalman filter-like implementation discussed in [NeB03], λ-LSPE does 

not require much more overhead per iteration than TD(λ) [the associated matrix inversion at 

each iteration requires only O(s2) computation using the results of the inversion at the preceding 

iteration, where s is the dimension of r]. 

For some further insight on the relation of λ-LSPE with γ = 1  and TD(λ), let us focus on 

the case where λ = 0.  TD(0) has the form 

rt+1 = rt + γtφ(it)dt(it, it+1), (1.7) 

while 0-LSPE has the form 

t 

rt+1 = arg min φ(im)′r − φ(im)′rt − dt(im, im+1) 
�2 (1.8) 

r 
m=0 

[cf. Eq. (1.4)]. We note that the gradient of the least squares sum above is 

t 

−2 φ(im)dt(im, im+1). 
m=0 

Asymptotically, in steady-state, the expected values of all the terms in this sum are equal, and 

each is proportional to the expected value of the term φ(it)dt(it, it+1) in  the TD(0) iteration (1.7). 

Thus, TD(0) updates rt along the gradient of the least squares sum of 0-LSPE, plus stochastic 

noise that asymptotically has zero mean. This interpretation also holds for other values of λ = 0,  

as will be discussed in Section 4. 

Another class of temporal difference methods, parameterized by λ ∈ [0, 1], has been intro-

duced by Boyan [Boy02], following the work by Bradtke and Barto [BrB96] who considered the 

case λ = 0.  These methods, known as Least Squares TD (LSTD), also employ least squares and 
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have guaranteed convergence to the same limit as TD(λ) and λ-LSPE, as shown by Bradtke and 

Barto [BrB96] for the case λ = 0,  and by Nedić and Bertsekas [BeN03] for the case λ ∈ (0, 1]. 

Konda [Kon02] has derived the asymptotic mean squared error of a class of recursive and non-

recursive temporal difference methods [including TD(λ) and LSTD, but not including LSPE], 

and has found that LSTD has optimal asymptotic convergence rate within this class. The LSTD 

method is not iterative, but instead it evaluates the simulation-based estimates At and bt of 

(t + 1)A and (t + 1)b, given by 

t t m 

At = zm αφ(im+1)′ − φ(im)′ , bt = zmg(im, im+1), zm = (αλ)m−k φ(ik ), 
m=0 m=0 k=0 

(see Section 3), and estimates the solution r∗ of the system Ar + b = 0  by  

r̂t+1 = −A−1bt.t 

We argue in Section 5 that LSTD and λ-LSPE have comparable asymptotic performance, al-

though there are significant differences in the early iterations. In fact, the iterates of LSTD and 

λ-LSPE converge to each other faster than they converge to r∗. Some insight into the compara-

bility of the two methods can be obtained by verifying that the LSTD estimate r̂t+1 is also the 

unique vector r̂ satisfying 

� �2t t 

r̂ = arg min φ(im)′r − φ(im)′r̂ − (αλ)k−md̂(ik, ik+1; r̂) , (1.9) 
r 

m=0 k=m 

where 

d̂(ik, ik+1; ˆ ˆ r.̂r) =  g(ik , ik+1) +  αφ(ik+1)′r − φ(ik )′ 

While finding r̂ that satisfies Eq. (1.9) is not a least squares problem, its similarity with the least 

squares problem solved by LSPE [cf. Eq. (1.4)] is evident. 

We note, however, that LSTD and LSPE may differ substantially in the early iterations. 

Furthermore, LSTD is a pure simulation method that cannot take advantage of a good initial 

choice r0. This is a significant factor in favor of λ-LSPE in a major context, namely optimistic 

policy iteration [BeT96], where the policy used is changed (using a policy improvement mech-

anism) after a few simulated transitions. Then, the use of the latest estimate of r to start the 

iterations corresponding to a new policy, as well as a small stepsize (to damp oscillatory behavior 

following a change to a new policy) is essential for good overall performance. 

The algorithms and analysis of the present paper, in conjunction with existing research, 

support a fairly comprehensive view of temporal difference methods with linear function approx-

imation. The highlights of this view are as follows: 
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(1) Temporal difference methods fundamentally emulate value iteration methods that aim to 

solve a Bellman equation that corresponds to a multiple-transition version of the given 

Markov chain, and depends on λ (see Section 4). 

(2) The emulation of the kth value iteration is approximate through linear function approx-

imation, and solution of the least squares approximation problem (1.4) that involves the 

simulation data (i0, i1, . . . , it) up to  time t. 

(3) The least squares problem (1.4) is fully solved at time t by λ-LSPE, but is solved only 

approximately, by a single gradient iteration (plus zero-mean noise), by TD(λ) (see Section 

4). 

(4) LSPE and LSTD have similar asymptotic performance, but may differ substantially in the 

early iterations. Furthermore, LSPE can take advantage of good initial estimates of r∗, 

while LSTD, as presently known, cannot. 

The paper is organized as follows. In Section 2, we derive a basic lemma regarding the 

location of the eigenvalues of the matrix I + (Φ DΦ)−1A. In  Section 3, we use this lemma 

to show convergence of λ-LSPE with probability 1 for any stepsize γ in a range that includes 

γ = 1. In  Section 4, we derive the connection of λ-LSPE with various forms of approximate value 

iteration. Based on this connection, we discuss how our line of analysis extends to other types 

of dynamic programming problems. In Section 5, we discuss the relation between λ-LSPE and 

LSTD. Finally, in Section 6 we present computational results showing that λ-LSPE is dramatically 

faster than TD(λ), and also simpler because it does not require any parameter tuning for the 

stepsize selection method. 

2. PRELIMINARY ANALYSIS 

In this section we prove some lemmas relating to the transition probability matrix P , the feature 

matrix Φ, and the associated matrices D and A of Eqs. (1.2) and (1.1). We denote by R 

and C the set of real and complex numbers, respectively, and by Rn and Cn the spaces of n-

dimensional vectors with real and with complex components, respectively. The complex conjugate 

of a complex number z is denoted ẑ. The complex conjugate of a vector z ∈ Cn, is  the vector 

whose components are the complex conjugates of the components of z, and is denoted ẑ. The 

modulus 
√

ẑz of a complex number z is denoted by |z|. We  consider two norms on Cn, the 
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standard norm, defined by 

n 
�1/2 

‖z‖ = (ẑ′z)1/2 = |zi|2 , ∀ z = (z1, . . . , zn) ∈ Cn , 
i=1 

and the weighted norm, defined by � �1/2n 

z‖z‖D = ( ′̂Dz)1/2 = p(i)|zi|2 , ∀ z = (z1, . . . , zn) ∈ Cn. 
i=1 

The following lemma extends, from �n to Cn, a  basic result of Tsitsiklis and Van Roy [TsV97]. 

Lemma 2.1: For all z ∈ Cn, we have ‖Pz‖D ≤ ‖z‖D . 

nProof: For any z = (z1, . . . , zn) ∈ Cn, we have, using the defining property i=1 p(i)pij = p(j) 

of the steady-state probabilities, 

z‖Pz‖2 = ′̂P ′DPz D     
n n n  = p(i)  pij ẑj   pij zj 

i=1 j=1 j=1  2 
n n  ≤ p(i) pij zj ||

i=1 j=1 

n n 

p(i) pij zj |2≤ |
i=1 j=1 

n n 

= p(i)pij |zj |2 
j=1 i=1 

n 

= p(j)|zj |2 
j=1 

‖z‖2= D , 

where the first inequality follows since x̂y + xŷ ≤ 2|x| |y| for any two complex numbers x and y, 

and the second inequality follows by applying Jensen’s inequality. Q.E.D. 

The next lemma is the key to the convergence proof of the next section. 

Lemma 2.2: The eigenvalues of the matrix I + (Φ DΦ)−1A lie within the circle of radius 

α(1 − λ)/(1 − αλ). 

Proof: We have 

A = Φ′D(M − I)Φ, 

where 
∞

M = (1  − λ) λm(αP )m+1 , 
m=0 
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so that 

(Φ′DΦ)−1A = (Φ′DΦ)−1Φ′DMΦ − I.  

Hence 

I + (Φ DΦ)−1A = (Φ DΦ)−1Φ DMΦ. 

Let β be an eigenvalue of I + (Φ DΦ)−1A and let z be a corresponding eigenvector, so that 

(Φ DΦ)−1Φ DMΦz = βz. 

Letting 

W = 
√

DΦ, 

we have 

(W ′W )−1W ′
√

DMΦz = βz, 

from which, by left-multiplying with W , we  obtain 

W (W ′W )−1W ′
√

DMΦz = βW z. (2.1) 

The norm of the right-hand side of Eq. (2.1) is 

‖βW z‖ = |β| ‖Wz‖ = |β|
√

ẑΦ′DΦz = D . (2.2)|β| ‖Φz‖

To estimate the norm of the left-hand side of Eq. (2.1), first note that 

‖W (W ′W )−1W ′ ′W )−1W ′‖ ‖
√

DMΦz‖ = ‖W (W ′W )−1W D ,
√

DMΦz‖ ≤ ‖W (W ′‖ ‖MΦz‖

and then note also that W (W ′W )−1W ′ is a projection matrix [i.e., for x ∈ �n, W (W ′W )−1W ′x is 

the projection of x on the subspace spanned by the columns of W ], so that ‖W (W ′W )−1W ′x‖ ≤  

x‖, from which 

‖W (W ′W )−1W ′‖ ≤ 1. 

Thus we have 

‖W (W ′W )−1W ′ D

√
DMΦz‖ ≤ ‖MΦz‖ � � ∞

λmαm+1P m+1Φz= �(1 − λ) � 
m=0 D 
∞

≤ (1 − λ) λmαm+1‖P m+1Φz‖D (2.3) 
m=0 

∞
λmαm+1≤ (1 − λ) ‖Φz‖D 

m=0 

α(1 − λ)
= D ,1 − αλ 

‖Φz‖
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where the last inequality follows by repeated use of Lemma 2.1. By comparing Eqs. (2.3) and 

(2.2), and by taking into account that Φz = 0  (since Φ has full rank), we see that 

α(1 − λ) 
.|β| ≤  

1 − αλ 

Q.E.D. 

3. CONVERGENCE ANALYSIS 

We will now use Lemma 2.2 to prove the convergence of λ-LSPE. It is shown in Nedić and 

Bertsekas [NeB03] that the method is given by 

rt+1 = rt + γB−1(Atrt + bt), ∀ t, (3.1)t 

where 
t t 

Bt = φ(im)φ(im)′, At = zm αφ(im+1)′ − φ(im)′ , (3.2) 
m=0 m=0 

t m 

bt = zmg(im, im+1), zm = (αλ)m−kφ(ik ). (3.3) 
m=0 k=0 

[Note that if in the early iterations, 
�t is not invertible, we may add to it a m=0 φ(im)φ(im)′ 

small positive multiple of the identity, or alternatively we may replace inverse by pseudoinverse. 

Such modifications are inconsequential and will be ignored in the subsequent analysis; see also 

[NeB03].] We can rewrite Eq. (3.1) as 

rt+1 = rt + γB
−
t 

1
(Atrt + bt), ∀ t, 

where 
Bt At bt

Bt = 
t + 1  

, At = 
t + 1  

, bt = 
t + 1  

. 

Using the analysis of [NeB03] (see the proof of Prop. 3.1, p. 108), it follows that with probability 

1, we have 

Bt → B, At → A, bt → b, 

where


B = Φ′DΦ,


and A and b are given by Eq. (1.1). 

Thus, we may write iteration (3.1) as 

rt+1 = rt + γ(Φ DΦ)−1(Art + b) +  γ(Ztrt + ζt), t = 0, 1, . . . ,  (3.4) 
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where 

Zt = B
−
t 

1 
At − B−1A, ζt = B

−
t 

1 
bt − B−1b. 

Furthermore, with probability 1, we have 

Zt 0, ζt 0.→ →

We are now ready to prove our convergence result. 

Proposition 3.1: The sequence generated by the λ-LSPE method converges to r∗ = −A−1b 

with probability 1, provided that the constant stepsize γ satisfies 

2 − 2αλ
0 < γ  <  

1 +  α − 2αλ
. 

Proof: If we write the matrix I + γ(Φ DΦ)−1A as 

(1 − γ)I + γ I + (Φ′DΦ)−1A , 

we see, using Lemma 2.2, that its eigenvalues lie within the circle that is centered at 1 − γ and 

has radius 
γα(1 − λ) 

1 − αλ 
. 

It follows by a simple geometrical argument that this circle is strictly contained within the unit 

circle if and only if γ lies in the range between 0 and (2 − 2αλ)/(1 + α − 2αλ). Thus for each γ 

within this range, the spectral radius of I + γ(Φ DΦ)−1A is less than 1, and there exists a norm 

w over �n and an ε >  0 (depending on γ) such that ‖ · ‖

‖I + γ(Φ′DΦ)−1A‖w < 1 − ε. 

Using the equation b = −Ar∗, we  can write the iteration (3.4) as 

rt+1 − r∗ = I + γ(Φ′DΦ)−1A + γZt (rt − r∗) +  γ(Ztr∗ + ζt), t = 0, 1, . . . .  

For any simulated trajectory such that Zt 0 and ζt 0, there exists an index t such that → →

‖I + γ(Φ′DΦ)−1A + γZt‖w < 1 − ε, ∀ t ≥ t. 

Thus, for sufficiently large t, we have 

rt+1 − r∗‖w ≤ (1 − ε)‖rt − r∗‖w + γ‖Ztr∗ + ζt‖w. 

Since Ztr∗ + ζt → 0, it follows that rt − r∗ → 0. Since the set of simulated trajectories such that 

Zt → 0 and ζt → 0 is a  set of probability 1, it follows that rt r∗ with probability 1. Q.E.D.→

Note that as λ decreases, the range of stepsizes γ that lead to convergence is reduced. 

However, this range always contains the stepsize γ = 1.  
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4. RELATIONS BETWEEN λ-LSPE AND VALUE ITERATION 

In this section, we will discuss a number of value iteration ideas, which underlie the structure of 

λ-LSPE. These connections become most apparent when the stepsize is constant and equal to 1 

(γ ≡ 1), which we will assume in our discussion. 

The Case λ = 0  

The classical value iteration method for solving the given policy evaluation problem is 

n 

Jt+1(i) =  pij g(i, j) +  αJt(j) , i = 1, . . . , n,  (4.1) 
j=1 

and by standard dynamic programming results, it converges to the cost-to-go function J(i). We 

will show that approximate versions of this method are connected with three methods that are 

relevant to our discussion: TD(0), 0-LSPE, and the deterministic portion of the 0-LSPE iteration 

(3.4). 

Indeed, a version of value iteration that uses linear function approximation of the form 

Jt(i) ≈ φ(i)′rt is to recursively select rt+1 so that φ(i)′rt+1 is uniformly (for all states i) “close” 
nto j=1 pij g(i, j) +  αJt(j) ; for example by solving a corresponding least squares problem 

 2 
n n rt+1 = arg min w(i) φ(i)′r − pij g(i, j) +  αφ(j)′rt , t = 0, 1, . . . ,  (4.2) 

r 
i=1 j=1 

where w(i), i = 1, . . . , n, are some positive weights. This method is considered in Section 6.5.3 of 

Bertsekas and Tsitsiklis [BeT96], where it is pointed out that divergence is possible if the weights 

w(i) are not properly chosen; for example if w(i) = 1  for  all i. It  can be seen that the TD(0) 

iteration (1.7) may be viewed as a one-sample approximation of the special case of iteration (4.2) 

where the weights are chosen as w(i) =  π(i), for all i, as  discussed in Section 6.5.4 of [BeT96]. 

Furthermore, Tsitsiklis and Van Roy [TsV97] show that for TD(0) convergence, it is essential 

that state samples are collected in accordance with the steady-state probabilities π(i). By using 

the definition of temporal difference to write the 0-LSPE iteration (1.8) as 

t 

rt+1 = arg min φ(im)′r − g(im, im+1) − αφ(im+1)′rt 
�2 

, (4.3) 
r 

m=0 

we can similarly interpret it as a multiple-sample approximation of iteration (4.2) with weights 

w(i) =  π(i). Of course, when w(i) =  π(i), the iteration (4.2) is not implementable since the π(i) 

are unknown, and the only way to approximate it is through the on-line type of state sampling 

used in 0-LSPE and TD(0). 
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These interpretations suggest that the approximate value iteration method (4.2) should 

converge when the weights are chosen as w(i) =  π(i). Indeed for these weights, the method takes 

the form 
2rt+1 = arg min ‖Φr − P (g + αΦrt)‖D , (4.4) 

r 

which after some calculation, is written as 

rt+1 = rt + (Φ DΦ)−1(Art + b), t = 0, 1, . . . ,  (4.5) 

where A and b are given by Eq. (1.1), for the case where λ = 0. In  other words the deterministic 

linear iteration portion of the 0-LSPE method with γ = 1  is equivalent to the approximate value 

iteration (4.2) with weights w(i) =  π(i). Thus, we can view 0-LSPE as the approximate value 

iteration method (4.2), plus noise that asymptotically tends to 0 . 

Note that the approximate value iteration method (4.4) can be interpreted as a mapping 

from the feature subspace 

S = {Φr | r ∈ �s} 

to itself: it maps the vector Φrt to its value iterate P (g + αΦrt), and then projects [with respect 

to the norm ‖ · ‖D corresponding to the steady-state probabilities/weights π(i)] the result on 

S, as  discussed by Tsitsiklis and Van Roy [TsV97], who give an example of divergence when 

nonlinear function approximation is used. Related issues are discussed by de Farias and Van 

Roy [FaV00], who consider approximate value iteration with linear function approximation, but 

multiple policies. 

Figure 4.1 illustrates the approximate value iteration method (4.4) together with 0-LSPE, 

which is the same iteration plus asymptotically vanishing simulation error. 

Connection with Multistep Value Iteration 

In the case where λ ∈ (0, 1), a similar connection with approximate value iteration can be derived, 

except that each value iteration involves multiple state transitions (see also the corresponding 

discussion by Bertsekas and Ioffe [BeI96], and also Bertsekas and Tsitsiklis [BeT96], Section 2.3). 

In particular, for M ≥ 1, let us consider the M -transition Bellman’s equation 

M −1 � 
J(i) =  E αM J(iM ) +  αk g(ik , ik+1)) � i0 = i , i = 1, . . . , n.  (4.6) 

k=0 

This equation has the cost-to-go function J as its unique solution, and in fact may be viewed 

as Bellman’s equation for a modified policy evaluation problem, involving a Markov chain where 

each transition corresponds to M transitions of the original, and the cost is calculated using a 
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Figure 4.1. Geometric interpretation of 0-LSPE as the sum of the approximate 

value iterate (4.4) plus asymptotically vanishing simulation error. 

�M −1discount factor αM and a cost per (M -transition) stage equal to αk g(ik , ik+1). The value k=0 

iteration method corresponding to this modified problem is 

M −1 � 
Jt+1(i) =  E αM Jt(iM ) +  αk g(ik, ik+1) � i0 = i , i = 1, . . . , n,  

k=0 

and can be seen to be equivalent to M iterations of the value iteration method (4.1) for the 

original problem. The corresponding simulation-based least-squares implementation is 

� �2 t � M −1 

rt+1 = arg min φ(im)′r − αM φ(im+M )′rt − αkg(im+k, im+k+1) , t = 0, 1, . . . ,  
r 

m=0 k=0 

or equivalently, using the definition of temporal difference, 

� �2 t m+M −1 

rt+1 = arg min φ(im)′r − φ(im)′rt − αk−mdt(ik, ik+1) , t = 0, 1, . . . .  (4.7) 
r 

m=0 k=m 

This method, which is identical to 0-LSPE for the modified policy evaluation problem described 

above, may be viewed as intermediate between 0-LSPE and 1-LSPE for the original policy eval-

uation problem; compare with the form (1.4) of λ-LSPE for λ = 0  and λ = 1.  

Let us also mention the incremental gradient version of the iteration (4.7), given by 

t+M −1 

rt+1 = rt + γt φ(it) αk−tdt(ik , ik+1), t = 0, 1, . . . .  (4.8) 
k=t 
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This method, which is identical to TD(0) for the modified (M -step) policy evaluation problem 

described above, may be viewed as intermediate between TD(0) and TD(1) [it is closest to TD(0) 

for small M , and to TD(1) for large M ]. Note that temporal differences do not play a fundamental 

role in the above iterations; they just provide a convenient shorthand notation that simplifies the 

formulas. 

The Case 0 < λ <  1 

The M -transition Bellman’s equation (4.6) holds for a fixed M , but it is also possible to consider 

a version of Bellman’s equation where M is random and geometrically distributed with parameter 

λ, i.e., 

Prob(M = m) = (1  − λ)λm−1, m = 1, 2, . . .  

This equation is obtained by multiplying both sides of Eq. (4.6) with (1 − λ)λm−1, for each m, 

and adding over m: 

m−1 �∞ �
J(i) =  (1 − λ)λm−1E αmJ(im) +  αk g(ik, ik+1)) � i0 = i , i = 1, . . . , n.  (4.9) 

m=1 k=0 

Tsitsiklis and Van Roy [TsV97] provide an interpretation of TD(λ) as a  gradient-like method for 

minimizing a weighted quadratic function of the error in satisfying this equation. 

We may view Eq. (4.9) as Bellman’s equation for a modified policy evaluation problem. 

The value iteration method corresponding to this modified problem is 

m−1 �∞ �
Jt+1(i) =  (1 − λ)λm−1E αmJt(im) +  αk g(ik , ik+1)) � i0 = i , i = 1, . . . , n,  

m=1 k=0 

which can be written as 

� m−1∞ � � 
Jt+1(i) =  Jt(i) + (1  − λ) λm−1αkE g(ik, ik+1) +  αJt(ik+1) − Jt(ik ) i0 = i|

m=1 k=0 

∞ ∞ � � 
= Jt(i) + (1  − λ) λm−1 αk E g(ik , ik+1) +  αJt(ik+1) − Jt(ik) i0 = i|

k=0 m=k+1 

and finally, 

∞ � � 
Jt+1(i) =  Jt(i) +  (αλ)k E g(ik , ik+1) +  αJt(ik+1) − Jt(ik) i0 = i , i = 1, . . . , n.|

k=0 

By using the linear function approximation φ(i) rt for the costs Jt(i), and by replacing the terms 

g(ik , ik+1) +  αJt(ik+1) − Jt(ik) in  the above iteration with temporal differences 

dt(ik , ik+1) =  g(ik, ik+1) +  αφ(ik+1)′rt − φ(ik )′rt, 
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we obtain the simulation-based least-squares implementation 

� �2t t 

rt+1 = arg min φ(im)′r − φ(im)′rt − (αλ)k−mdt(ik , ik+1) , (4.10) 
r 

m=0 k=m 

which is in fact λ-LSPE with stepsize γ = 1.  

Let us now discuss the relation of λ-LSPE with γ = 1  and TD(λ). We note that the gradient 

of the least squares sum of λ-LSPE is 

t t 

−2 φ(im) (αλ)k−mdt(ik, ik+1). 
m=0 k=m 

This gradient after some calculation, can be written as 

+ ztdt(it, it+1) , (4.11)−2 z0dt(i0, i1) +  · · ·

where 
k 

zk = (αλ)k−mφ(im), k = 0, . . . , t,  
m=0 

[cf. Eq. (3.3)]. On the other hand, TD(λ) has the form 

rt+1 = rt + γtztdt(it, it+1). 

Asymptotically, in steady-state, the expected values of all the terms zmdt(im, im+1) in  the gradi-

ent sum (4.11) are equal, and each is proportional to the expected value of the term ztdt(it, it+1) 

in the TD(λ) iteration. Thus, TD(λ) updates rt along the gradient of the least squares sum of 

λ-LSPE, plus stochastic noise that asymptotically has zero mean. 

In conclusion, for all λ <  1, we can view λ-LSPE with γ = 1  as a least squares-based 

approximate value iteration with linear function approximation. However, each value iteration 

implicitly involves a random number of transitions with geometric distribution that depends on 

λ. The limit r∗ depends on λ because the underlying Bellman’s equation also depends on λ. 

Furthermore, TD(λ) and λ-LSPE may be viewed as stochastic gradient and Kalman filtering 

algorithms, respectively, for solving the least squares problem associated with approximate value 

iteration. 

Generalizations Based on Other Types of Value Iteration 

The connection with value iteration described above provides a guideline for developing other 

least squares-based approximation methods, relating to different types of dynamic programming 

problems, such as stochastic shortest path, average cost, and semi-Markov decision problems, 
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or to variants of value iteration such as for example Gauss-Seidel methods. To this end, we 

generalize the key idea of the convergence analysis of Sections 2 and 3. A proof of the following 

proposition is embodied in the argument of the proof of Prop. 6.9 of Bertsekas and Tsitsiklis 

[BeT96] (which actually deals with a more general nonlinear iteration), but for completeness, we 

give an independent argument that uses the proof of Lemma 2.2. 

Proposition 4.1: Consider a linear iteration of the form 

xt+1 = Gxt + g, t = 0, 1, . . . ,  (4.12) 

where xt
n, and G and g are given n × n matrix and n-dimensional vector, respectively. ∈ �

Assume that D is a positive definite symmetric matrix such that 

D = max ‖Gz‖D < 1,‖G‖
‖z‖D≤1 

z∈Cn 

where ‖z‖D = 
√

ˆ Dz, for all z ∈ Cn. Let Φ be an  n × s matrix of rank s. Then the iteration z′

rt+1 = arg min D , t = 0, 1, . . .  (4.13) 
r∈�s 

‖Φr − GΦrt − g‖

converges to the vector r∗ satisfying 

r∗ = arg min D , (4.14) 
r∈�s 

‖Φr − GΦr∗ − g‖

sfrom every starting point r0 ∈ � . 

Proof: The iteration (4.13) can be written as 

rt+1 = (Φ DΦ)−1(Φ DGΦrt + Φ Dg), (4.15) 

so it is sufficient to show that the matrix (Φ DΦ)−1Φ DGΦ has eigenvalues that lie within the 

unit circle. The proof of this follows nearly verbatim the corresponding steps of the proof of 

Lemma 2.2. If r∗ is the limit of rt, we have by taking limit in Eq. (4.15), 

r∗ = I − (Φ′DΦ)−1Φ′DG 
−1(Φ DΦ)−1Φ Dg. 

It can be verified that r∗ as given by the above equation, also satisfies Eq. (4.14). Q.E.D. 

The above proposition can be used within various dynamic programming/function approxi-

mation contexts. In particular, starting with a value iteration of the form (4.12), we can consider 

a linear function approximation version of the form (4.13), as long as we can find a weighted Eu-

clidean norm ‖ · ‖D such that ‖G‖D < 1. We may then try to devise a simulation-based method 
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that emulates approximately iteration (4.13), similar to λ-LSPE. This method will be an itera-

tive stochastic algorithm, and its convergence may be established along the lines of the proof of 

Prop. 3.1. Thus, Prop. 4.1 provides a general framework for deriving and analyzing least-squares 

simulation-based methods in approximate dynamic programming. An example of such a method, 

indeed the direct analog of λ-LSPE for stochastic shortest path problems, was stated and used 

by Bertsekas and Ioffe [BeI96] to solve the tetris training problem [see also [BeT96], Eq. (8.6)]. 

5. RELATION BETWEEN λ-LSPE AND LSTD 

We now discuss the relation between λ-LSPE and the LSTD method that estimates r∗ = −A−1b 

based on the portion (i0, . . . , it) of  the simulation trajectory by 

r̂t+1 = −A−1bt,t 

rt −r∗)(ˆ[cf. Eqs. (3.2) and (3.3)]. Konda [Kon02] has shown that the error covariance E (ˆ rt −r∗)′ 

of LSTD goes to zero at the rate of 1/t. Similarly, it was shown by Nedić and Bertsekas [NeB03] 

that the covariance of the stochastic term Ztrt + ζt in Eq. (4.5) goes to zero at the rate of 1/t. 

Thus, from Eq. (4.5), we see that the error covariance E (rt − r∗)(rt − r∗)′ of λ-LSPE also goes 

to zero at the rate of 1/t. 

We will now argue that a stronger result holds, namely that rt “tracks” r̂t in the sense that 

the difference rt − r̂t converges to 0 faster than r̂t − r∗. Indeed, from Eqs. (3.2) and (3.3), we 

see that the averages Bt, At, and bt are generated by the slow stochastic approximation-type 

iterations

1 � �


Bt+1 = Bt + φ(it+1)φ(it+1)′ − Bt ,

t + 2  

1 � � � � 
At+1 = At + zt+1 αφ(it+2)′ − φ(it+1)′ − At , (5.1)

t + 2  
1 � � 

bt+1 = bt + zt+1g(it+1, it+2) − bt+1 . (5.2)
t + 2 


Thus, they converge at a slower time scale than the λ-LSPE iteration


rt+1 = rt + B
−
t 

1
(Atrt + bt), (5.3) 

where, for sufficiently large t, the matrix I+B
−
t 

1 
At has eigenvalues within the unit circle, inducing 

much larger relative changes of rt. This means that the λ-LSPE iteration (5.3) “sees Bt, At, and 

bt as essentially constant,” so that, for large t, rt+1 is essentially equal to the corresponding limit 

of iteration (5.3) with Bt, At, and bt held fixed. This limit is −A
−
t 

1 
bt or r̂t+1. It  follows that the 
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difference rt − r̂t converges to 0 faster than r̂t − r∗. The preceding argument can be made precise 

by appealing to the theory of two-time scale iterative methods (see e.g., Benveniste, Metivier, 

and Priouret [BMP90]), but a detailed analysis is beyond the scope of this paper. 

Despite their similar asymptotic behavior, the methods may differ substantially in the early 

iterations, and it appears that the iterates of LSTD tend to fluctuate more than those of λ-LSPE. 

Some insight into this behavior may be obtained by noting that the λ-LSPE iteration consists of a 

deterministic component that converges fast, and a stochastic component that converges slowly, 

so in the early iterations, the deterministic component dominates the stochastic fluctuations. 

On the other hand, At and bt are generated by the slow iterations (5.1) and (5.2), and the 

corresponding estimate −A
−
t 

1 
bt of LSTD fluctuates significantly in the early iterations. 

Another significant factor in favor of LSPE is that LSTD cannot take advantage of a good 

initial choice r0. This is important in contexts such as optimistic policy iteration, as discussed in 

the introduction. Figure 5.1 shows some typical computational results for two 100-state problems 

with four features, and the values λ = 0  and λ = 1.  The four features are 

φ1(i) = 1, φ2(i) =  i, φ3(i) =  I([81, 90]), φ4(i) =  I([91, 100]), 

where I(S) denotes the indicator function of a set S [I(i) = 1  if  i ∈ S, and I(i) = 0  if  i /∈ S]. 

The figure shows the sequence of the parameter values r(1) over 1,000 iterations/simulated 

transitions, for three methods: LSTD, LSPE with a constant stepsize γ = 1,  and LSPE with a 

time-varying stepsize given by 
t 

γt = 
500 + t

. 

While all three methods asymptotically give the same results, it appears that LSTD oscillates 

more that LSPE in the initial iterations. The use of the time-varying stepsize “damps” the noisy 

behavior in the early iterations. 

6. COMPUTATIONAL COMPARISON OF λ-LSPE AND TD(λ) 

We conducted some computational experimentation to compare the performance of λ-LSPE and 

TD(λ). Despite the fact that our test problems were small, the differences between the two 

methods emerged strikingly and unmistakably. The methods performed as expected from the 

existing theoretical analysis, and converged to the same limit. In summary, the major observed 

differences between the two methods are: 

(1) The number of iterations (length of simulation) to converge within the same small neigh-

borhood of r∗ was dramatically smaller for λ-LSPE than for TD(λ). Interestingly, not only 
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Figure 5.1. The sequence of the parameter values r(1) over 1,000 itera-

tions/simulated transitions, for three methods: LSTD, LSPE with a constant 

stepsize γ = 1,  and LSPE with a time-varying stepsize. The top figures corre-

spond to a “slow-mixing” Markov chain (high self-transition probabilities) of the 

form 

P = 0.9 ∗ Prandom + 0.1I,  

where I is the identity and Prandom is a matrix whose row elements were generated 

as uniformly distributed random numbers within [0, 1], and were normalized so 

that they add to 1. The bottom figures correspond to a “fast-mixing” Markov 

chain (low self-transition probabilities): 

P = 0.1 ∗ Prandom + 0.9I.  

The cost of a transition was randomly chosen within [0, 1] at every state i, plus 

i/30 for self-transitions for i ∈ [90, 100]. 
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was the deterministic portion of the λ-LSPE iteration much faster, but the noisy portion 

was faster as well, for all the stepsize rules that we tried for TD(λ). 

(2) While in λ-LSPE there is no need to choose any parameters (we fixed the stepsize to γ = 1), 

in TD(λ) the choice of the stepsize γt was λ-dependent, and required a lot of trial and error 

to obtain reasonable performance. 

(3) Because of the faster convergence and greater resilience to simulation noise of λ-LSPE, it is 

possible to use values of λ that are closer to 1 than with TD(λ), thereby obtaining vectors 

Φr∗ that more accurately approximate the true cost vector J . 

The observed superiority of λ-LSPE over TD(λ) is  based on the much faster convergence 

rate of its deterministic portion. On the other hand, for many problems the noisy portion of the 

iteration may dominate the computation, such as for example when the Markov chain is “slow-

mixing,” and a large number of transitions are needed for the simulation to reach all the important 

parts of the state space. Then, both methods may need a very long simulation trajectory in 

order to converge. Our experiments suggest much better performance for λ-LSPE under these 

circumstances as well, but were too limited to establish any kind of solid conclusion. However, 

in such cases, the optimality result for LSTD of Konda (see Section 1), and comparability of the 

behavior of LSTD and λ-LSPE, suggest a substantial superiority of λ-LSPE over TD(λ). 

We will present representative results for a simple test problem with three states i = 1, 2, 3, 

and two features, corresponding to a linear approximation architecture of the form 

J̃(i, r) =  r(1) + ir(2), i = 1, 2, 3, 

where r(1) and r(2) were the components of r. Because the problem is small, we can state it 

precisely here, so that our experiments can be replicated by others. We obtained qualitatively 

similar results with larger problems, involving 10 states and two features, and 100 states and four 

features. We also obtained similar results in limited tests involving the M -step methods (4.7) 

and (4.8). 

We tested λ-LSPE and TD(λ) for a variety of problem data, experimental conditions, and 

values of λ. Figure 5.1 shows some results where the transition probability and cost matrices are 

given by  0.01 0.99 0   1 2  0   
[pij ] =    0.55 0.01 0.44   , [g(i, j)] =   1 2  −1   . 

0 0.99 0.01 0 1  0  

The discount factor was α = 0.99. The initial condition was r0 = (0, 0). The stepsize for λ-LSPE 

was chosen to be equal to 1 throughout. The stepsize choice for TD(λ) required quite a bit of 
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trial and error, aiming to balance speed of convergence and stochastic oscillatory behavior. We 

obtained the best results with three different stepsize rules 

16(1 − αλ)
γt = 

500(1 − αλ) +  t
, (6.1) 

16(1 − αλ) log(t) 
,γt = 

500(1 − αλ) +  t 
(6.2) 

16(1 − αλ) log(t)
γt = 

500(1 − αλ) +  t
. (6.3) 

Rule (6.1) led to the slowest convergence with least stochastic oscillation, while rule (6.3) led to 

the fastest convergence with most stochastic oscillation. 

It can be seen from Fig. 5.2 that TD(λ) is  not settled after 20,000 iterations/simulated 

transitions, and in the case where λ = 1, it does not even show signs of convergence. By contrast, 

λ-LSPE essentially converges within no more than 500 iterations, and with small subsequent 

stochastic oscillation. Generally, as λ becomes smaller, both TD(λ) and λ-LSPE converge faster 

at the expense of a worse bound on the error Φr∗ − J . The qualitative behavior, illustrated in 

Fig. 5.2, was replicated for a variety of transition probability and cost matrices, initial conditions, 

and other experimental conditions. This behavior is consistent with the computational results 

of Bertsekas and Ioffe [BeI96] for the tetris training problem (see also Bertsekas and Tsitsiklis 

[BeT96], Section 8.3). Furthermore, in view of the similarity of performance of λ-LSPE and 

LSTD, our computational experience is also consistent with that of Boyan [Boy02]. 
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