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Outline 

• Scheduling and stochastic scheduling problems 

• Problem statement and formulation as an MDP 

• Reformulation into a stochastic shortest path problem


• LP approach to approximate DP - Quick review 

• Main result and outline of proof 

• Questions and open issues 
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Scheduling Problems


•	 Given a set of tasks and limited resources, we need to efficiently use the 
resources so that a certain performance measure is optimized 

•	 Scheduling is everywhere: manufacturing, project management, 
computer networks, etc. 

•	 Almost all interesting scheduling problems are computationally intractable


•	 Have to settle for near-optimal or approximate solutions 
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Simple Example - 2 Machines 

•	 n jobs 

•	 Processing time of job i: pi, deterministic 

•	 Objective: minimize the sum of completion times on 2 identical parallel 
machines 

•	 Number of states is exponential ⇒ Can’t solve this problem by 
enumeration 

•	 In fact, no polynomial algorithm is known 

•	 Note that the problem is deterministic and yet remains quite hard
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Stochastic Scheduling - An example
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Stochastic Scheduling


• Many scheduling problems are plagued with uncertainties 

• Stochastic scheduling problem: pi’s follow some probability distribution 

• Uncertainty ⇒ Larger state space 
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Problem Definition 

• Set of jobs N = {1, . . . , n} 

• 1 machine 

• Processing time of job i: discrete probability distribution pi 

– pi and pj pairwise stochastically independent for all i �= j 

• The jobs have to be scheduled nonpreemptively 

• Objective: minimize 

γ C(1) , . . . , C(n) 
� 

=
1 

n−1 

h (Ri) C(i+1) − C(i) 

n 
i=0 
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Problem Definition - Continued 

Objective: minimize 

γ C(1) , . . . , C(n) 
� 

=
1 

n−1 

h (Ri) C(i+1) − C(i) 

n 
i=0 

C(i) = time of the ith job completion, C(0) = 0 

Ri = set of jobs remaining to be processed at the time of the ith job 
completion 

h is a set function such that h (∅) = 0 

Such an objective function is said to be additive. 
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MDP formulation 

• Finite horizon, finite state space 

• State of the system: 

x = (Cmax (x) , Rx) ∈ S 

Cmax (x) is the completion time of the last job completed 

Rx is the set of jobs remaining to be scheduled at state x 

Note that the size of the state space is exponential in the number of 
jobs. 

• Action at state x is the next job to be processed: a ∈ Ax ⊂ Rx 
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MDP formulation - Continued 

• Time stage costs: 

1 
ga (x, y) = h (Rx) (Cmax (y) − Cmax (x)) . 

n 

• Transition probabilities: 

� 

Pa (x, y) = 
pa (t) if Ry = Rx\ {a} 

0 otherwise. 

and Cmax (y) = Cmax (x) + t 
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MDP formulation - Continued 

• Solve for the finite-horizon cost-to-go function 

∗ J (x, n) = 0 
⎧ ⎫


⎨ ⎬


∗ ∗ J (x, t) = min Pa (x, y) (ga (x, y) + J (y, t + 1)) , 
a∈Ax ⎩ ⎭ 

y∈S 

• Exponential state space ⇒ exact DP hopeless 

• Approximate DP methods consider infinite horizon problems


⇒ Recast our problem as stochastic shortest path problem


t = 0, 1, . . . , n − 1


10




� 

Mohamed and Nelson May 12, 2004


Reformulation into SSP 

• Introduce a terminating state x̄ 

Only states with Rx = ∅ can reach x̄ in one step 

¯• Transition probabilities involving x: 

⎧ 

⎪1 ∀x such that Rx = ∅ 
⎨ 

Pa (x, ¯ ¯x) = 1 if x = x 
⎪ 

⎩

0 otherwise 

¯• Time-stage costs involving x: 

0 ∀x such that Rx = ∅ 
ga (x, x̄) = 

0 if x = x. ¯
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Reformulation into SSP - Continued


• Cost-to-go function for SSP formulation: 

⎡ ⎤ 

T (x) � 

∗ J (x) = min E ⎣ gu (xt, xt+1)� x0 = x⎦ . 
u 

t=0 � 

T (x) = time stage when the system reaches the terminating state 

• Every policy reaches the terminating state in a finite number of steps

with probability 1 

• ⇒ The cost-to-go function for the SSP problem is the unique solution 
to Bellman’s equation 
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Approximate DP Via ALP 

•	 Exact linear program (ELP): 

maximize c TJ (c > 0) 

subject to TJ ≥ J 

•	 Approximate linear program (ALP):


maximize c TΦr (c > 0) 

subject to TΦr ≥ Φr 

•	 r̃ is optimal solution to ALP ⇒ obtain a (hopefully) good policy by using 
the greedy policy with respect to Φr̃
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Approximate DP Via ALP - Continued 

Error bound for the ALP approach for discounted cost problems:


Theorem 1. (de Farias and Van Roy 2003) Let r̃ be a solution of the 
approximate LP. Then, for any v ∈ R

K such that (Φv) (x) > 0 for all x ∈ S 
and αHΦv < Φv, 

2cTΦv	 ∗∗�J − Φr̃� ≤	 min �J − Φr�
1,c 1 − βΦv r	 ∞,1/Φv 

where	
⎧ ⎫ 

⎨ ⎬ 

(HΦv) (x) = max Pa (x, y) (Φv) (y) 
a∈Ax ⎩	 ⎭ 

y∈S 

and 
α (HΦv) (x)

βΦv = max	 . 
x (Φv) (x) 
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Relaxed Stochastic Shortest Path Problem 

•	 Relaxation: introduce discount factor α ∈ (0, 1) at each time stage


•	 Call this formulation the α-relaxed SSP formulation 

•	 Cost-to-go function for relaxed formulation: 

⎡	 ⎤ 

T (x)	 � 

J ∗,α (x) = min E ⎣ αt gu (xt, xt+1)� x0 = x⎦ 

u 
t=0	 � 

•	 For this relaxation, we show that the error of the ALP solution is 
uniformly bounded over the number of jobs to be scheduled. 
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Main Result


Theorem 2. Assume that the holding cost h (S) ≤ M for all subsets S 

of N . Let r̃ be the ALP solution to the α-relaxed SSP formulation of the 
stochastic scheduling problem. For α ∈ (0, 1), 

�J ∗,α − Φ˜
2M maxi∈N E [pi] 

r� ≤ .1,c 1 − α 

• The error is uniformly bounded over the number of jobs


• How amazing is that? 
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Outline of Proof 

The cost-to-go function is 

⎡ 
� 

⎤ 

T (x) � 

� 

J ∗,α (x) = min 
u 

E ⎣ αt gu(xt) (xt, xt+1) 
� 

� 

� 

x0 = x⎦ 

t=0 � 

where 
1 

g (xt, xt+1) = h (Rx) (Cmax (xt+1) − Cmax (xt)) 
n 

Recall h is bounded from above by M . After some algebraic manipulation, 
this quantity is found to be 

M 
≤ E [pi] 

n 
i∈Rx 
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Outline of Proof - Continued 

Let 
k


V (x) = E [pi] 
n


i∈Rx 

V is a Lyapunov function 

∃ β < 1 independent of n such that αHV ≤ βV 

Also, 

min �J ∗,α − Φr� ≤ 
M 

∞,1/V r k 
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Outline of Proof - Continued


Consider cTV , c some probability distribution over S 

We have the following uniform bound 

c (x) V (x) ≤ k max E [pi] 
i∈N 

x∈S 

Combining these results, 

�J ∗,α − Φ˜
2M maxi∈N E [pi] 

r� ≤1,c 1 − α 
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Conclusions and Remarks


• ALP approach has an error bound for our relaxed stochastic scheduling

problem that does not grow with the number of jobs to be scheduled


• What about α = 1? (original SSP formulation) 

• Multiple machines? 

• Computational experiments: how does ALP perform in practice?
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Questions?
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