Approximate Dynamic Programming (Via Linear Programming) For Stochastic Scheduling

Mohamed and Nelson 2.997 Project

May 12, 2004

Outline

- Scheduling and stochastic scheduling problems
- Problem statement and formulation as an MDP
- Reformulation into a stochastic shortest path problem
- LP approach to approximate DP Quick review
- Main result and outline of proof
- Questions and open issues

Scheduling Problems

- Given a set of tasks and limited resources, we need to efficiently use the resources so that a certain performance measure is optimized
- Scheduling is everywhere: manufacturing, project management, computer networks, etc.
- Almost all interesting scheduling problems are computationally intractable
- Have to settle for near-optimal or approximate solutions

Simple Example - 2 Machines

- n jobs
- Processing time of job $i: p_i$, deterministic
- Objective: minimize the sum of completion times on 2 identical parallel machines
- \bullet Number of states is exponential \Rightarrow Can't solve this problem by enumeration
- In fact, no polynomial algorithm is known
- Note that the problem is deterministic and yet remains quite hard

Stochastic Scheduling - An example

Stochastic Scheduling

- Many scheduling problems are plagued with uncertainties
- Stochastic scheduling problem: p_i 's follow some probability distribution
- Uncertainty ⇒ Larger state space

Problem Definition

- Set of jobs $N = \{1, \dots, n\}$
- 1 machine
- Processing time of job i: discrete probability distribution p_i

- p_i and p_j pairwise stochastically independent for all $i \neq j$

- The jobs have to be scheduled *nonpreemptively*
- Objective: minimize

$$\gamma\left(C^{(1)},\ldots,C^{(n)}\right) = \frac{1}{n}\sum_{i=0}^{n-1}h\left(R_i\right)\left(C^{(i+1)} - C^{(i)}\right)$$

Problem Definition - Continued

Objective: minimize

$$\gamma\left(C^{(1)},\ldots,C^{(n)}\right) = \frac{1}{n}\sum_{i=0}^{n-1}h\left(R_i\right)\left(C^{(i+1)} - C^{(i)}\right)$$

 $C^{(i)}$ = time of the *i*th job completion, $C^{(0)} = 0$ R_i = set of jobs remaining to be processed at the time of the *i*th job completion

h is a set function such that $h(\emptyset) = 0$

Such an objective function is said to be *additive*.

MDP formulation

- Finite horizon, finite state space
- State of the system:

$$x = (C_{max}(x), R_x) \in \mathcal{S}$$

 $C_{max}(x)$ is the completion time of the last job completed R_x is the set of jobs remaining to be scheduled at state xNote that the size of the state space is exponential in the number of jobs.

• Action at state x is the next job to be processed: $a \in A_x \subset R_x$

MDP formulation - Continued

• Time stage costs:

$$g_a(x,y) = \frac{1}{n}h(R_x)(C_{max}(y) - C_{max}(x)).$$

• Transition probabilities:

$$P_{a}(x,y) = \begin{cases} p_{a}(t) & \text{if } R_{y} = R_{x} \setminus \{a\} \text{ and } C_{max}(y) = C_{max}(x) + t \\ 0 & \text{otherwise.} \end{cases}$$

MDP formulation - Continued

• Solve for the finite-horizon cost-to-go function

$$J^{*}(x,n) = 0$$

$$J^{*}(x,t) = \min_{a \in \mathcal{A}_{x}} \left\{ \sum_{y \in \mathcal{S}} P_{a}(x,y) \left(g_{a}(x,y) + J^{*}(y,t+1) \right) \right\}, \quad t = 0, 1, \dots, n-1$$

- Exponential state space \Rightarrow exact DP hopeless
- Approximate DP methods consider infinite horizon problems
 - \Rightarrow Recast our problem as stochastic shortest path problem

Reformulation into SSP

• Introduce a terminating state \bar{x}

Only states with $R_x = \emptyset$ can reach \bar{x} in one step

• Transition probabilities involving \bar{x} :

$$P_a(x,\bar{x}) = \begin{cases} 1 & \forall x \text{ such that } R_x = \emptyset \\ 1 & \text{if } x = \bar{x} \\ 0 & \text{otherwise} \end{cases}$$

• Time-stage costs involving \bar{x} :

$$g_a(x,\bar{x}) = \begin{cases} 0 & \forall x \text{ such that } R_x = \emptyset \\ 0 & \text{if } x = \bar{x}. \end{cases}$$

Reformulation into SSP - Continued

• Cost-to-go function for SSP formulation:

$$J^{*}(x) = \min_{u} E\left[\sum_{t=0}^{T(x)} g_{u}(x_{t}, x_{t+1}) \middle| x_{0} = x\right].$$

 $T\left(x
ight)=$ time stage when the system reaches the terminating state

- Every policy reaches the terminating state in a finite number of steps with probability 1
- $\bullet \Rightarrow$ The cost-to-go function for the SSP problem is the unique solution to Bellman's equation

Approximate DP Via ALP

• Exact linear program (ELP):

 $\begin{array}{ll} \mbox{maximize} & c^T J & (c>0) \\ \mbox{subject to} & TJ \geq J \end{array}$

- Approximate linear program (ALP):
 - $\begin{array}{ll} \mbox{maximize} & c^T \Phi r & (c>0) \\ \mbox{subject to} & T \Phi r \geq \Phi r \end{array}$
- \tilde{r} is optimal solution to ALP \Rightarrow obtain a (hopefully) good policy by using the greedy policy with respect to $\Phi \tilde{r}$

Approximate DP Via ALP - Continued

Error bound for the ALP approach for discounted cost problems:

Theorem 1. (de Farias and Van Roy 2003) Let \tilde{r} be a solution of the approximate LP. Then, for any $v \in \mathbb{R}^K$ such that $(\Phi v)(x) > 0$ for all $x \in S$ and $\alpha H \Phi v < \Phi v$,

$$||J^* - \Phi \tilde{r}||_{1,c} \le \frac{2c^T \Phi v}{1 - \beta_{\Phi v}} \min_r ||J^* - \Phi r||_{\infty, 1/\Phi v}$$

where

$$(H\Phi v)(x) = \max_{a \in \mathcal{A}_x} \left\{ \sum_{y \in \mathcal{S}} P_a(x, y) (\Phi v)(y) \right\}$$

and

$$\beta_{\Phi v} = \max_{x} \frac{\alpha \left(H\Phi v\right)(x)}{\left(\Phi v\right)(x)}.$$

14

Relaxed Stochastic Shortest Path Problem

- Relaxation: introduce discount factor $\alpha \in (0,1)$ at each time stage
- Call this formulation the α -relaxed SSP formulation
- Cost-to-go function for relaxed formulation:

$$J^{*,\alpha}(x) = \min_{u} E\left[\sum_{t=0}^{T(x)} \alpha^{t} g_{u}(x_{t}, x_{t+1}) \middle| x_{0} = x\right]$$

• For this relaxation, we show that the error of the ALP solution is uniformly bounded over the number of jobs to be scheduled.

Main Result

Theorem 2. Assume that the holding cost $h(S) \leq M$ for all subsets S of N. Let \tilde{r} be the ALP solution to the α -relaxed SSP formulation of the stochastic scheduling problem. For $\alpha \in (0, 1)$,

$$\left\|J^{*,\alpha} - \Phi \tilde{r}\right\|_{1,c} \le \frac{2M \max_{i \in N} E\left[p_i\right]}{1 - \alpha}$$

- The error is uniformly bounded over the number of jobs
- How amazing is that?

Outline of Proof

The cost-to-go function is

$$J^{*,\alpha}(x) = \min_{u} E\left[\sum_{t=0}^{T(x)} \alpha^{t} g_{u(x_{t})}(x_{t}, x_{t+1}) \middle| x_{0} = x\right]$$

where

$$g(x_t, x_{t+1}) = \frac{1}{n} h(R_x) (C_{max}(x_{t+1}) - C_{max}(x_t))$$

Recall h is bounded from above by M. After some algebraic manipulation, this quantity is found to be

$$\leq \frac{M}{n} \sum_{i \in R_x} E\left[p_i\right]$$

Outline of Proof - Continued

Let

$$V(x) = \frac{k}{n} \sum_{i \in R_x} E[p_i]$$

 \boldsymbol{V} is a Lyapunov function

 $\exists \ \beta < 1 \ {\rm independent} \ {\rm of} \ n \ {\rm such} \ {\rm that} \ \alpha HV \leq \beta V$

Also,

$$\min_{r} \|J^{*,\alpha} - \Phi r\|_{\infty,1/V} \le \frac{M}{k}$$

Outline of Proof - Continued

Consider $c^T V$, c some probability distribution over \mathcal{S}

We have the following uniform bound

$$\sum_{x \in \mathcal{S}} c(x) V(x) \le k \max_{i \in N} E[p_i]$$

Combining these results,

$$\left\|J^{*,\alpha} - \Phi \tilde{r}\right\|_{1,c} \le \frac{2M \max_{i \in N} E\left[p_i\right]}{1 - \alpha}$$

Conclusions and Remarks

- ALP approach has an error bound for our relaxed stochastic scheduling problem that does not grow with the number of jobs to be scheduled
- What about $\alpha = 1$? (original SSP formulation)
- Multiple machines?
- Computational experiments: how does ALP perform in practice?

Mohamed and Nelson

May 12, 2004

Questions?