
Journal of Artificial Intelligence Research 15 (2001) 351-381 Submitted 9/00; published 11/01

Experiments with Infinite-Horizon, Policy-Gradient Estimation

Jonathan Baxter

Peter L. Bartlett

Lex Weaver

Abstract

In this paper, we present algorithms that perform gradient ascent of the average reward in a par
tially observable Markov decision process (�����). These algorithms are based on ������,
an algorithm introduced in a companion paper (Baxter & Bartlett, 2001), which computes biased
estimates of the performance gradient in �����s. The algorithm’s chief advantages are that it
uses only one free parameter � � ��� ��, which has a natural interpretation in terms of bias-variance
trade-off, it requires no knowledge of the underlying state, and it can be applied to infinite state,
control and observation spaces. We show how the gradient estimates produced by ������ can
be used to perform gradient ascent, both with a traditional stochastic-gradient algorithm, and with
an algorithm based on conjugate-gradients that utilizes gradient information to bracket maxima in
line searches. Experimental results are presented illustrating both the theoretical results of Baxter
and Bartlett (2001) on a toy problem, and practical aspects of the algorithms on a number of more
realistic problems.

1. Introduction

Function approximation is necessary to avoid the curse of dimensionality associated with large-
scale dynamic programming and reinforcement learning problems. The dominant paradigm is to
use the function to approximate the state (or state and action) values. Most algorithms then seek to
minimize some form of error between the approximate value function and the true value function,
usually by simulation (Sutton & Barto, 1998; Bertsekas & Tsitsiklis, 1996). While there have been
a multitude of empirical successes for this approach (for example, Samuel, 1959; Tesauro, 1992,
1994; Baxter, Tridgell, & Weaver, 2000; Zhang & Dietterich, 1995; Singh & Bertsekas, 1997), there
are only weak theoretical guarantees on the performance of the policy generated by the approximate
value function. In particular, there is no guarantee that the policy will improve as the approximate
value function is trained; in fact performance can degrade even when the function class contains an
approximate value function whose corresponding greedy policy is optimal (see Baxter & Bartlett,
2001, Appendix A, for a simple two-state example).

An alternative technique that has received increased attention recently is the “policy-gradient”
approach in which the parameters of a stochastic policy are adjusted in the direction of the gradient
of some performance criterion (typically either expected discounted reward or average reward). The

�2001 AI Access Foundation and Morgan Kaufmann Publishers. All rights reserved. c

BAXTER ET AL.

key problem is how to compute the performance gradient under conditions of partial observability
when an explicit model of the system is not available.

This question has been addressed in a large body of previous work (Barto, Sutton, & Anderson,
1983; Williams, 1992; Glynn, 1986; Cao & Chen, 1997; Cao & Wan, 1998; Fu & Hu, 1994;
Singh, Jaakkola, & Jordan, 1994, 1995; Marbach & Tsitsiklis, 1998; Marbach, 1998; Baird &
Moore, 1999; Rubinstein & Melamed, 1998; Kimura, Yamamura, & Kobayashi, 1995; Kimura,
Miyazaki, & Kobayashi, 1997). See the introduction of (Baxter & Bartlett, 2001) for a discussion
of the history of policy-gradient approaches. Most existing algorithms rely on the existence of an
identifiable recurrent state in order to make their updates to the gradient estimate, and the variance
of the algorithms is governed by the recurrence time to that state. In cases where the recurrence time
is too large (for instance because the state space is large), or in situations of partial observability
where such a state cannot be reliably identified, we need to seek alternatives that do not require
access to such a state.

Motivated by these considerations, Baxter and Bartlett (2001, 2000) introduced and analysed
������—an algorithm for generating a biased estimate of the gradient of the average reward in
general Partially Observable Markov Decision Processes (�����s) controlled by parameterized
stochastic policies. The chief advantages of ������ are that it requires only a single sample path
of the underlying Markov chain, it uses only one free parameter � � ��� ��, which has a natural
interpretation in terms of bias-variance trade-off, and it requires no knowledge of the underlying
state.

More specifically, suppose � � �

� are the parameters controlling the �����. For example, �

could be the parameters of an approximate neural-network value-function that generates a stochastic
policy by some form of randomized look-ahead, or � could be the parameters of an approximate �

function used to stochastically select controls1. Let ���� denote the average reward of the �����

with parameter setting �. ������ computes an approximation ��

���� to ����� based on a single
continuous sample path of the underlying Markov chain. The accuracy of the approximation is
controlled by the parameter � � ��� ��, and one can show that

����� � ��� ��

�����

���

The trade-off preventing choosing � arbitrarily close to 1 is that the variance of ������’s esti
mates of ��

���� scale as ���� � ��� . However, on the bright side, it can also be shown that the bias
of ��

��� (measured by ���

���� �� �����) is proportional to � �� � �� where � is a suitable mixing
time of the Markov chain underlying the ����� (Bartlett & Baxter, 2000a). Thus for “rapidly
mixing” �����’s (for which � is small), estimates of the performance gradient with acceptable
bias and variance can be obtained.

Provided ��

���� is a sufficiently accurate approximation to �����—in fact, ��

���� need only
be within ��Æ of �����—small adjustments to the parameters � in the direction ��

���� will guar
antee improvement in the average reward ����. In this case, gradient-based optimization algorithms
using ��

���� as their gradient estimate will be guaranteed to improve the average reward ���� on
each step. Except in the case of table-lookup, most value-function based approaches to reinforce
ment learning cannot make this guarantee.

In this paper we present a conjugate-gradient ascent algorithm that uses the estimates of ��

����

provided by ������. Critical to the successful operation of the algorithm is a novel line search

1. Stochastic policies are not strictly necessary in our framework, but the policy must be “differentiable” in the sense
that ����� exists.

352

POLICY-GRADIENT ESTIMATION

subroutine that brackets maxima by relying solely upon gradient estimates. This largely avoids
problems associated with finding the maximum using noisy value estimates. Since the parameters
are only updated after accumulating sufficiently accurate estimates of the gradient direction, we refer
to this approach as the “off-line” algorithm. This approach essentially allows us to take a stochastic
gradient optimization problem and treat it as a non-stochastic optimization problem, thus enabling
the use of a large body of accumulated heuristics and algorithmic improvements associated with
such methods. We also present a more traditional, “on-line” stochastic gradient ascent algorithm
based on ������ that updates the parameters at every time step. This algorithm is essentially the
algorithm proposed in (Kimura et al., 1997).

The off-line and on-line algorithms are applied to a variety of problems, beginning with a simple
3-state Markov decision process (MDP) controlled by a linear function for which the true gradient
can be exactly computed. We show rapid convergence of the gradient estimates ��

���� to the true
gradient, in this case over a large range of values of �. With this simple system we are able to
illustrate vividly the bias/variance tradeoff associated with the selection of �. We then compare the
performance of the off-line and on-line approaches applied to finding a good policy for the MDP.
The off-line algorithm reliably finds a near-optimal policy in less than 100 iterations of the Markov
chain, an order of magnitude faster than the on-line approach. This can be attributed to the more
aggressive exploitation of the gradient information by the off-line method.

Next we demonstrate the effectiveness of the off-line algorithm in training a neural network
controller to control a “puck” in a two-dimensional world. The task in this case is to reliably
navigate the puck from any starting configuration to an arbitrary target location in the minimum
time, while only applying discrete forces in the � and � directions. Although the on-line algorithm
was tried for this problem, convergence was considerably slower and we were not able to reliably
find a good local optimum.

In the third experiment, we use the off-line algorithm to train a controller for the call admission
queueing problem treated in (Marbach, 1998). In this case near-optimal solutions are found within
about 2000 iterations of the underlying queue, 1-2 orders of magnitude faster than the experiments
reported in (Marbach, 1998) with on-line (stochastic-gradient) algorithms.

In the fourth and final experiment, the off-line algorithm was used to reliably train a switched
neural-network controller for a two-dimensional variation on the classical “mountain-car” task (Sut
ton & Barto, 1998, Example 8.2).

The rest of this paper is organized as follows. In Section 2 we introduce �����s controlled by
stochastic policies, and the assumptions needed for our algorithms to apply. ������ is described
in Section 3. In Section 4 we describe the off-line and on-line gradient-ascent algorithms, including
the gradient-based line-search subroutine. Experimental results are presented in Section 5.

2. ������ Controlled by Stochastic Policies

A partially observable, Markov decision process (�����) consists of a state space � , observation
space � and a control space � . For each state � � � there is a deterministic reward ����. Although
the results in Baxter and Bartlett (2001) only guarantee convergence of ������ in the case of
finite � (but continuous � and �), the algorithm can be applied regardless of the nature of � so we
do not restrict the cardinality of � , � or � .

Consider first the case of discrete � , � and � . Each control � � � determines a stochastic
matrix � ��� � � ���

���� giving the transition probability from state � to state � (�� � � �). For each

353

BAXTER ET AL.

state � � � , an observation � � � is generated independently according to a probability distribution
���� over observations in � . We denote the probability that � � � by ��

���. A randomized policy
is simply a function � mapping observations into probability distributions over the controls � . That
is, for each observation � � � , ���� is a distribution over the controls in � . Denote the probability
under � of control � given observation � by �����.

For continuous ��� and � , ���

��� becomes a kernel ���

��� giving the probability density of
transitions from � to �, ���� becomes a probability density function on � with ��

��� the density at �,
and ���� becomes a probability density function on � with ����� the density at �.

To each randomized policy � there corresponds a Markov chain in which state transitions are
generated by first selecting an observation � in state � according to the distribution ����, then se
lecting a control � according to the distribution ��� �, and finally generating a transition to state �

according to the probability ���

���.
At present we are only dealing with a fixed �����. To parameterize the ����� we pa-

�rameterize the policies, so that � now becomes a function ���� � � of a set of parameters � � � ,
as well as of the observation �. The Markov chain corresponding to � has state transition matrix
� ��� � � ���

���� given by
���

��� � �� �����

�� ���� �� ����

����	 (1)

Note that the policies � are purely reactive or memoryless in that their choice of action is based only
upon the current observation. All the experiments described in the present paper use purely reactive
policies. Aberdeen and Baxter (2001) have extended ������ and the techniques of the present
paper to controllers with internal state.

The following technical assumptions are required for the operation of ������.

Assumption 1. The derivatives,
�� ���� � �

�

���

exist, and the ratios	 � � ��� ���� � �

� � � �� ���

����� � �

are uniformly bounded by � � �, for all � � � , � � � , � � �

� and � � � � � � � �� .

The second part of this assumption is needed because the ratio appears in the ������ algo
rithm. It allows zero-probability actions ����� � � � � only if ������ � � is also zero, in which case
we set ��� � � . See Section 5 for examples of policies satisfying this requirement.

Assumption 2. The magnitudes of the rewards, ������, are uniformly bounded by � � � for all
states �.

For deterministic rewards, his condition only represents a restriction in infinite state spaces.
However, all the results in the present paper apply to bounded stochastic rewards, in which case ����

is the expectation of the reward in state �.

Assumption 3. Each � ���� � � �

� , has a unique stationary distribution ���� � � ��

��� � � � � � �����,
satisfying the balance equations:

����� ��� � �����

354

POLICY-GRADIENT ESTIMATION

Assumption 3 ensures that, for all parameters �, the Markov chain forms a single recurrent class.
Since any finite-state Markov chain always ends up in a recurrent class, and it is the properties of
this class that determine the long-term average reward, this assumption is mainly for convenience
so that we do not have to include the recurrence class as a quantifier in our theorems. Observe
that episodic problems, such as the minimization of time to a goal state, may be modeled in a way
that satisfies Assumption 3 by simply resetting the agent upon reaching the goal state back to some
initial starting distribution over states. Examples are described in Section 5.

The average reward ���� is simply the expected reward under the stationary distribution ����:

� �

���� � ���������� (2)
���

Because of Assumption 3, ���� is also equal to the expected long-term average of the reward re
ceived when starting from any state �:

� � �

� �� � �� �
���� � ��� � ������

��

� � �

� �� �

�

���

Here the expectation is over sequences of states ��� � � � �� � ��

with state transitions generated by
� ��� (note that the expectation is independent of the starting state �).

3. The ������ Algorithm

������ (Algorithm 1) is an algorithm for computing a biased estimate ��

of the gradient of the
average reward �����. ��

satisfies

��� ��

� ��

�����

� ��

where ��

���� (� � ��� ��) is an approximation to ����� satisfying

����� � ��� ��

�����

���

(Baxter & Bartlett, 2001, Theorems 2, 5). Note that ������ relies only upon a single sample path
from the POMDP. Also, it does not require knowledge of the transition probability matrix � , nor of
the observation process �; it only requires knowledge of the randomized policy �, in particular the
ability to compute the gradient of the probability of the chosen control divided by the probability of
the chosen control.

We cannot set � arbitrarily close to � in ������, since the variance of the estimate is pro
portional to ���� � ��� . However, on the bright side, it can also be shown that the bias of ��

���

(measured by ���

���� �� �����) is proportional to � �� ��� where � is a suitable mixing time of the
Markov chain underlying the ����� (Bartlett & Baxter, 2000a). Under Assumption 3, regardless
of the initial starting state, the distribution over states converges to the stationary distribution ����

when the agent is following policy ���� ��. Standard Markov chain theory shows that the rate of
convergence to ���� is exponential, and loosely speaking, the mixing time � is the time constant in
the exponential decay.

355

BAXTER ET AL.

Algorithm 1 �������� � � � � � � �

�

1:	 Given:

�	 � � ��� ��.

�	 � � �.

��	 Parameters � � � .

�	 Randomized policy ���� �� satisfying Assumption 1.

�	 ����� with rewards satisfying Assumption 2, and which when controlled by ���� ��

generates stochastic matrices � ��� satisfying Assumption 3.

�	 Arbitrary (unknown) starting state ��

.

2:	 Set ��

� � and ��

� � (��

� ��

� �

�).
3:	 for � � � to � � � do
4: Observe ��

(generated according to the observation distribution �����)
5: Generate control ��

according to ���� � ��

6:	 Observe ������

� (where the next state ����

is generated according to �������

����).

����

��� � ��

7: Set ����

� �� �

�

���

��� � ��

8: Set ����

� � �

� ������

�����

9:	 end for
10: ��

� ��

��

11: return ��

Thus � has a natural interpretation in terms of a bias/variance trade-off: small values of �

give lower variance in the estimates ��

, but higher bias in that the expectation of ��

may be far
from �����, whereas values of � close to � yield small bias but correspondingly larger variance.
Fortunately, for problems which mix rapidly (small �), � can be small and still yield reasonable
bias. This bias/variance trade-off is vividly illustrated in the experiments of Section 5; see (Bartlett
& Baxter, 2000a) for a more detailed theoretical discussion of the bias/variance question.

4. Stochastic Gradient Ascent Algorithms

This section introduces two approaches to exploiting the gradient estimates produced by ������:

1.	 an off-line approach based on traditional conjugate-gradient optimization techniques but em
ploying a novel line-search mechanism to cope with the noise in ������’s estimates, and

2.	 an on-line stochastic optimization approach that uses the core update in ������ (�������

)
to update the parameters � on every iteration of the �����.

356

POLICY-GRADIENT ESTIMATION

4.1 Off-line optimization of the average reward

������ generates biased and noisy estimates ��

of the gradient of the average reward ����� for
�����s controlled by parameterized stochastic policies. A straightforward algorithm for finding
local maxima of ���� would be to compute ��

��� at the current parameter settings �, and then
modify � by � � � ����

���. Provided ��

��� is close enough to the true gradient direction �����,
and provided the step-sizes � are suitably decreasing, standard stochastic optimization theory tells us
that this technique will converge to a local maximum of ����. However, given that each computation
of ��

��� requires many iterations of the ����� to guarantee suitably accurate gradient estimates
(that is, in general � needs to be large), we would like to more aggressively exploit the information
contained in ��

��� than by simply adjusting the parameters � by a small amount in the direction
��

���.
There are two techniques for making better use of gradient information that are widely used in

non-stochastic optimization: better choice of the search direction and better choice of step size. Bet
ter search directions can be found by employing conjugate-gradient directions rather than the pure
gradient direction. Better step sizes are usually obtained by performing some kind of line-search to
find a local maximum in the search direction, or through the use of second order methods. Since
line-search techniques tend to be more robust to departures from quadraticity in the optimization
surface, we will only consider those here (however, see Baxter & Bartlett, 2001, Section 7.3, for a
discussion of how second-order derivatives may be computed with a ������-like algorithm).

���������, described in Algorithm 2, is a version of the Polak-Ribiere conjugate-gradient
algorithm (see, e.g. Fine, 1999, Section 5.5.2) that is designed to operate using only noisy (and
possibly) biased estimates of the gradient of the objective function (for example, the estimates ��

provided by ������). The argument ���� to ��������� computes the gradient estimate.
The novel feature of ��������� is �������, a linesearch subroutine that uses only gradi
ent information to find the local maximum in the search direction. The use of gradient informa
tion ensures ������� is robust to noise in the performance estimates. Both ��������� and
������� can be applied to any stochastic optimization problem for which noisy (and possibly)
biased gradient estimates are available.

The argument ��

to ��������� provides an initial step-size for �������. The argument �

provides a stopping condition; when ���������� falls below �, ��������� terminates.

4.2 The ������� algorithm

The key to the successful operation of ��������� is the linesearch algorithm ������� (Al
gorithm 3). ������� uses only gradient information to bracket the maximum in the direction �� ,
and then quadratic interpolation to jump to the maximum.

We found the use of gradients to bracket the maximum far more robust than the use of function
values. To illustrate why this is so, in Figure 1 we have plotted a stylized view of the average reward
���� along some search direction �� (labeled “� ” in the figure), and its gradient in that direction
����� � �� (labeled “grad(�)”). There are two ways we could search in the direction �� to bracket
the maximum of ���� in that direction (at � in this case), one using function values and the other
using gradient estimates:

1. Find three points ��� � �� � �

, all lying in the direction �� from �, such that ����

� � � ���

� and
����

� � � ���

�. Assuming no overshooting, we then know the maximum must lie between ��

357

BAXTER ET AL.

Algorithm 2 ��������������� �� � �� � �

1:	 Given:

�	 ���� � �

� � �

� : a (possibly noisy and biased) estimate of the gradient of the objec
tive function to be maximized.

�	 Starting parameters � � �

� (set to maximum on return).

�	 Initial step size ��

� �.

�	 Gradient resolution �.

2:	 � � � � �������

3:	 while ���� � � do
4: ������������� �� � � � �

� � �

5: � � �������

6: � � �� � �� � ������

7: � � �� ��

8: if � � � � � then
9: � � �

10: end if
11: � � �

12: end while

and ��

and we can use the three points and quadratic interpolation to estimate the location of
the maximum.

2. Find two points ��

and ��

such that �����

� � �� � � and ������ � �� � �, and again use
quadratic interpolation (which corresponds to linear interpolation of the gradients) to estimate
the location of the maximum.

Both of these approaches will be equally satisfactory provided there is no noise in either the function
estimates ����, or the gradient estimates �����. However, when estimates of ���� or ����� are
available only through simulation, they will necessarily be noisy and the situation will look more
like Figure 2. In this case the use of gradients to bracket the maximum becomes more desirable,
because the line-search technique based on value estimates could choose any of the peaks in the
plot of � � noise as the location of the maximum, which occur nearly uniformly along the �-axis,
whereas the second technique based on gradients would choose any of the zero-crossings of the
noisy gradient plot, which are far closer to the true maximum2. This is illustrated in Figure 3.

Another view of this phenomenon is that regardless of the variance of our estimates of ����, the
variance of ���� �����

� � ����

�� approaches � (the maximum possible) as ��

approaches ��. Thus,
to reliably bracket the maximum using noisy estimates of ���� we need to be able to reduce the
variance of the estimates when ��

and ��

are close. In our case this means running the simulation

2. There is an implicit assumption in our argument that the noise processes in the gradient and value estimates are of
approximately the same magnitude. If the variance of the value estimates is considerably smaller than the variance of
the gradient estimates then we would expect bracketing with values to be superior. In all our experiments we found
gradient bracketing to be superior.

358

POLICY-GRADIENT ESTIMATION

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-1 -0.5 0 0.5 1

f
grad(f)

Figure 1: Stylized plot of the average reward ���� and the gradient ����� � �� in a search direction
�� .

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

-1 -0.5 0 0.5 1

f + noise
grad(f) + noise

Figure 2: Plot as in Figure 1 but with estimation noise added to both the function and gradient
curves.

from which the estimates are derived for longer and longer periods of time. In contrast, the variance
of ���� ������ � �� (and ���� ������ � ��) is independent of the distance between ��

and ��

, and in
particular does not grow as the two points approach one another.

One disadvantage to using gradient estimates to bracket is that it is not possible to detect extreme
overshooting of the maximum. However, this can be avoided by using value estimates as a “sanity

359

BAXTER ET AL.

1

0.5

0

-0.5

-1

-1 -0.5 0 0.5 1

f
grad(f)

Figure 3: Plot of the possible maximum locations that would be found by a line-search algorithm
based on value estimates (�), and one based on gradient estimates (grad(�)), for the curves
in Figure 2. The zero-crossings in each case are the possible locations. Note that the
gradient-based approach more accurately localizes the maximum.

check” to determine if the value has dropped dramatically, and suitably adjusting the search if this
occurs.

In Algorithm 3, lines 5–25 bracket the maximum by finding a parameter setting ��

� ��

�

���
� such that �������� � �� � ��, and a second parameter setting ��

� ��

� ���
� such that

����������
� � � . The reason for � rather than � in these expressions is to provide some robustness

against errors in the estimates �������. It also prevents the algorithm “stepping to �” if there is
no local maximum in the direction �� . Note that we use the same � as used in ��������� to
determine when to terminate due to small gradient (line 4 in ���������).

Provided that the signs of the gradients at the bracketing points ��

and ��

show that the maxi
mum of the quadratic defined by these points lies between them, line 27 will jump to the maximum.
Otherwise the algorithm simply jumps to the midpoint between ��

and ��.

4.3 On-line optimization of the average reward: �������

��������� combined with ������� operates by iteratively choosing “uphill” directions and
then searching for a local maximum in the chosen direction. If the ���� argument to ���������

is ������, the optimization will involve many iterations of the underlying ����� between pa
rameter updates.

In traditional stochastic optimization one typically uses algorithms that update the parameters
at every iteration, rather than accumulating gradient estimates over many iterations. Algorithm 4,
�������, presents an adaptation of ������ to this form. See Bartlett and Baxter (2000b) for a
proof that ������� converges to the vicinity of a local maximum of ����. Note that �������

is very similar to the algorithms proposed in Kimura et al. (1995, 1997).

360

POLICY-GRADIENT ESTIMATION

Algorithm 3 ������������� � �

� �

�� � �� � �

1:	 Given:

�	 ���� � �

� � �

� : a (possibly noisy and biased) estimate of the gradient of the objec
tive function.

�	 Starting parameters ��

� �

� (set to maximum on return).

��	 Search direction �� � � with �������� � �� � �.

�	 Initial step size ��

� �.

�	 Inner product resolution � � � � .

2:	 � � ��

3:	 � � ��

� ���

4:	 � � �������

5:	 if � � �� � � then
6: Step back to bracket the maximum:
7: repeat
8: ��

� �

9: ��

� � � ��

10: � � ���

11: � � ��

� ���

12: � � �������

13: until � � �� � ��

14: ��

� �

15: ��

� � � ��

16: else
17: Step forward to bracket the maximum:
18: repeat
19: ��

� �

20: ��

� � � ��

21: � � � �

22: � � ��

� ���

23: � � �������

24: until � � �� � �

25: ��

� �

26: ��

� � � ��

27: end if
28: if ��

� � and ��

� � then
�����29: � � ��

� �� �����

30: else
31: � �

�
�

���

�

32: end if
33: ��

� ��

� ���

361

BAXTER ET AL.

Algorithm 4 ��������� � � � � �

� � �

� .
1:	 Given:

�	 � � ��� ��.

�	 � � �.

��	 Initial parameter values ��

� � . � �

�	 Randomized parameterized policies ���� �� � � � �

� satisfying Assumption 1.

�	 ����� with rewards satisfying Assumption 2, and which when controlled by ���� ��

generates stochastic matrices � ��� satisfying Assumption 3. � �

�	 Step sizes ��� � � � � �� � � � satisfying ��

� � and �� � �.�

�	 Arbitrary (unknown) starting state ��

.

2:	 Set ��

� � (��

� �

�).
3:	 for � � � to � � � do
4: Observe ��

(generated according to �����).
5: Generate control ��

according to ���� � ��

6:	 Observe ������

� (where the next state ����

is generated according to �������

����.

����

��� � ��

7: Set ����

� �� �

�

���

��� � ��

8: Set ����

� ��

� ��������

�����

9:	 end for
10: return ��

5. Experiments

In this section we present several sets of experimental results. Throughout this section, where we
refer to ��������� we mean ��������� with ������ as its ���� argument.

In the first set of experiments, we consider a system in which a controller is used to select
actions for a 3-state Markov Decision Process (���). For this system we are able to compute the
true gradient exactly using the matrix equation

�

����� � ������� ���	 � � � ��� � ������

���

�� (3)

where � ��� is the transition matrix of the underlying Markov chain with the controller’s parameters
set to �, ����� is the stationary distribution corresponding to � ��� (written as a row vector), ������

is the square matrix in which each row is the stationary distribution, and � is the (column) vector of
rewards (see Baxter & Bartlett, 2001, Section 3, for a derivation of (3)). Hence we can compare the
estimates ��

generated by ������ with the true gradient �����, both as a function of the number
of iterations � and as a function of the discount parameter �. We also optimize the performance of
the controller using the on-line algorithm, �������, and the off-line algorithm ���������.
��������� reliably converges to a near optimal policy with around 100 iterations of the ���,
while the on-line method requires approximately 1000 iterations. This should be contrasted with

362

POLICY-GRADIENT ESTIMATION

� � �

� ��

� ��

� ��

� ��

� ��

� ��

Origin Destination State Probabilities
State Action

0.0 0.8 0.2
0.0 0.2 0.8
0.8 0.0 0.2
0.2 0.0 0.8
0.0 0.8 0.2
0.0 0.2 0.8

Table 1: Transition probabilities of the three-state MDP

�� ����� � � ��

��� � ��

��

��� � ��

� ������ � � ��

��� � ��

����� � ��

� ����� � � ����� � ��

����� � ��

Table 2: Three-state rewards and features.

training a linear value-function for this system using ����� (Sutton, 1988), which can be shown
to converge to a value function whose one-step lookahead policy is suboptimal (Weaver & Baxter,
1999).

In the second set of experiments, we consider a simple “puck-world” problem in which a small
puck must be navigated around a two-dimensional world by applying thrust in the � and � directions.
We train a 1-hidden-layer neural-network controller for the puck using ���������. Again the
controller reliably converges to near optimality.

In the third set of experiments we use ��������� to optimize the admission thresholds for
the call-admission problem considered in (Marbach, 1998).

In the final set of experiments we use ��������� to train a switched neural-network con
troller for a two-dimensional variant of the “mountain-car” task (Sutton & Barto, 1998, Example
8.2).

In all the experiments we found that convergence of the line-searches was greatly improved if
all calls to the ������ algorithm were seeded with the same random number sequence.

5.1 A three-state MDP

�
In this section we consider a three-state ���, in each state of which there is a choice of two actions

�

and ��

. Table 1 shows the transition probabilities as a function of the states and actions. Each
state � has an associated two-dimensional feature vector ���� � ���

���� � �

���� and reward ����

which are detailed in Table 2. Clearly, the optimal policy is to always select the action that leads to
state � with the highest probability, which from Table 1 means always selecting action ��.

This rather odd choice of feature vectors for the states ensures that a value function linear in
those features and trained using �����—while observing the optimal policy—will implement a
suboptimal greedy one-step lookahead policy (see (Weaver & Baxter, 1999) for a proof). Thus, in

363

BAXTER ET AL.

contrast to the gradient based approach, for this system, ����� training a linear value function is
guaranteed to produce a worse policy if it starts out observing the optimal policy.

5.1.1 TRAINING A CONTROLLER

Our goal is to learn a stochastic controller for this system that implements an optimal (or near-
optimal) policy. Given a parameter vector � � � ��

� � �� � �

� � ��, we generate a policy as follows. For
any state �, let

����� �� ����

��� � �������

����� �� ����

��� � ��������

Then the probability of choosing action ��

in state � is given by

���

���

���

��� � �

���

��� � ���

���

while the probability of choosing action ��

is given by

���

���

���

��� �

���

��� � ���

���

� � � ���

����

The ratios
����

���

needed by Algorithms 1 and 4 are given by,
���

���

����

��� ���

���

� ������� � �

���� ���

���� ���

���� (4)
���

��� ���

��� � ���

���

����

��� ���

���

� �������� ���

���� � �

���� � �

���� (5)
���

��� ���

��� � ���

���

�

Since the second two components in ���� are always the negative of the first two, this shows that
two of the parameters are redundant in this case: we could just as well have set ��

� ���

and
�

� ���.

5.1.2 GRADIENT ESTIMATES

With a parameter vector3 of � � �� � �� ��� ���, ������ was used to generate estimates ��

of
��

�, for various values of � and � � ��� ��. To measure the progress of ��

towards the true gradient
��, �� was calculated from (3) and then for each value of � the angle between ��

and �� and
the relative error ���

���� were recorded. The angles and relative errors are plotted in Figures 4, 5 ����

and 6.
The graphs illustrate a typical trade-off for the ������ algorithm: small values of � give

higher bias in the estimates, while larger values of � give higher variance (the final bias is only
shown in Figure 6 for the norm deviation because it was too small to measure for the angular
deviation). The bias introduced by having � � � is very small for this system. In the worst case,
� � ���, the final gradient direction is indistinguishable from the true direction while the relative
deviation ������

� is only ����.����

3. Other initial values of the parameter vector were chosen with similar results. Note that ��� �� ��� ��� generates a
suboptimal policy.

364

POLICY-GRADIENT ESTIMATION

160
beta=0.0

160
beta=0.4

140 140

120 120

A
ng

le
 (

de
gr

ee
s)

A

ng
le

 (
de

gr
ee

s) 100

80

60

40

20 20

0
 0

-20 -20
1 10 100 1000 10000 100000 1e+06 1e+07 1 10 100 1000 10000 100000 1e+06 1e+07

Markov Chain Iterations (T) Markov Chain Iterations (T)

160 160
beta=0.8 beta=0.95

A
ng

le
 (

de
gr

ee
s)

A
ng

le
 (

de
gr

ee
s) 100

80

60

40

140 140

120 120

100 100

80 80

60 60

40 40

20 20

0 0

-20 -20
1 10 100 1000 10000 100000 1e+06 1e+07 1 10 100 1000 10000 100000 1e+06 1e+07

Markov Chain Iterations (T) Markov Chain Iterations (T)

Figure 4: Angle between the true gradient �� and the estimate ��

for the three-state Markov
chain, for various values of the discount parameter �. ��

was generated by Algorithm 1.
Averaged over 500 independent runs. Note the higher variance at large � for the larger
values of �. Error bars are one standard deviation.

5.1.3 TRAINING VIA CONJUGATE-GRADIENT ASCENT

��������� with ������ as the “����” argument was used to train the parameters of the
controller described in the previous section. Following the low bias observed in the experiments of
the previous section, the argument � of ������ was set to �. After a small amount of experimen
tation, the arguments ��

and � of ��������� were set to ��� and ������ respectively. None of
these values were critical, although the extremely large initial step-size (��) did considerably reduce
the time required for the controller to converge to near-optimality.

We tested the performance of ��������� for a range of values of the argument � to
������ from � to ����. Since ������� only uses ������ to determine the sign of the inner
product of the gradient with the search direction, it does not need to run ������ for as many
iterations as ��������� does. Thus, ������� determined its own � parameter to ������

as follows. Initially, (somewhat arbitrarily) the value of � within ������� was set to ���� the
value used in ��������� (or 1 if the value in ��������� was less than 10). ������� then
called ������ to obtain an estimate ��

of the gradient direction. If ��

� �� � � (�� being the
desired search direction) then � was doubled and ������� was called again to generate a new
estimate ��

. This procedure was repeated until ��

� �� � �, or � had been doubled four times. If
��

� �� was still negative at the end of this process, ������� searched for a local maximum in
the direction ���, and the number of iterations � used by ��������� was doubled on the next
iteration (the conclusion being that the direction �� was generated by overly noisy estimates from
������).

365

BAXTER ET AL.

0

0.5

1

1.5

2

2.5

3

R
el

at
iv

e
N

or
m

 D
iff

er
en

ce

beta=0.0

0

0.5

1

1.5

2

2.5

3

R
el

at
iv

e
N

or
m

 D
iff

er
en

ce

beta=0.4

1 10	 100 1000 10000 100000 1e+06 1e+07 1 10 100 1000 10000 100000 1e+06 1e+07

Markov Chain Iterations (T) Markov Chain Iterations (T)

3.5 4.5
beta=0.8 beta=0.95

43

R
el

at
iv

e
N

or
m

 D
iff

er
en

ce

R
el

at
iv

e
N

or
m

 D
iff

er
en

ce 3.5
2.5

3

2

1.5

2.5

2

1.5
1

1
0.5 0.5

0 0
1 10 100 1000 10000 100000 1e+06 1e+07 1 10 100 1000 10000 100000 1e+06 1e+07

Markov Chain Iterations (T) Markov Chain Iterations (T)

Figure 5: A plot of ������

� for the three-state Markov chain, for various values of the discount ����

parameter �. ��

was generated by Algorithm 1. Averaged over 500 independent runs.
Note the higher variance at large � for the larger values of �. Error bars are one standard
deviation.

0.001

0.01

0.1

1

10

R
el

at
iv

e
N

or
m

 D
iff

er
en

ce

beta=0.0
beta=0.40
beta=0.80
beta=0.95

1 10 100 1000 10000 100000 1e+06 1e+07

Markov Chain Iterations (T)

Figure 6: Graph showing the error in the estimate ��

(as measured by ������

�) for various values ����

of � for the three-state Markov chain. ��

was generated by Algorithm 1. Note the
decrease in the final bias as � increases. Both axes are log scales.

366

POLICY-GRADIENT ESTIMATION

0.8

0.7

0.6

C
O

N
JG

R
A

D
 F

in
al

 R
ew

ar
d

0.5

0.4

0.3

0.2
1 10 100 1000 10000

Markov Chain Iterations (T)

Figure 7: Performance of the 3-state Markov chain controller trained by ��������� as a func
tion of the total number of iterations of the Markov chain. The performance was com
puted exactly from the stationary distribution induced by the controller. The average
reward of the optimal policy is ���. Averaged over 500 independent runs. The error bars
were computed by dividing the results into two separate bins depending on whether they
were above or below the mean, and then computing the standard deviation within each
bin.

Figure 7 shows the average reward ���� of the final controller produced by ���������, as a
function of the total number of simulation steps of the underlying Markov chain. The plots represent
an average over ��� independent runs of ���������. Note that ��� is the average reward of the
optimal policy. The parameters of the controller were (uniformly) randomly initialized in the range
������ ���� before each call to ���������. After each call to ���������, the average reward
of the resulting controller was computed exactly by calculating the stationary distribution for the
controller. From Figure 7, optimality is reliably achieved using approximately 100 iterations of the
Markov chain.

5.1.4 TRAINING ON-LINE WITH �������

The controller was also trained on-line using Algorithm 4 (�������) with fixed step-sizes ��

�

with � � ��� �� ��� ���. Reducing step-sizes of the form ��

� �� were tried, but caused intolerably
slow convergence. Figure 8 shows the performance of the controller (measured exactly as in the
previous section) as a function of the total number of iterations of the Markov chain, for different
values of the step-size . The graphs are averages over 100 runs, with the controller’s weights
randomly initialized in the range ������ ���� at the start of each run. From the figure, convergence
to optimal is about an order of magnitude slower than that achieved by ���������, for the best
step-size of � � ��. Step-sizes much greater that � �� �� failed to reliably converge to an optimal
policy.

367

BAXTER ET AL.

0.8

c=0.1

0.8

0.79
0.75 0.78

c=1

A
ve

ra
ge

 R
ew

ar
d

0.7

0.65

0.6

A
ve

ra
ge

 R
ew

ar
d 0.77

0.76

0.75

0.74

0.73

0.720.55
0.71

0.5 0.7
10 100 1000 10000 10 100 1000 10000

Markov Chain Iterations Markov Chain Iterations

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
ve

ra
ge

 R
ew

ar
d

c=10
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
ve

ra
ge

 R
ew

ar
d

c=100

10 100 1000 10000 10 100 1000 10000

Markov Chain Iterations Markov Chain Iterations

Figure 8: Performance of the 3-state Markov chain controller as a function of the number of itera
tion steps in the on-line algorithm, Algorithm 4, for fixed step sizes of ���� �� ��, and ���.
Error bars were computed as in Figure 7.

5.2 Puck World

In this section, experiments are described in which ��������� and ������� were used to
train 1-hidden-layer neural-network controllers to navigate a small puck around a two-dimensional
world.

5.2.1 THE WORLD

The puck was a unit-radius, unit-mass disk constrained to move in the plane in a region 100 units
square. The puck had no internal dynamics (i.e rotation). Collisions with the region’s boundaries
were inelastic with a (tunable) coefficient of restitution � (set to ��� for the experiments reported
here). The puck was controlled by applying a 5 unit force in either the positive or negative �

direction, and a 5 unit force in either the positive or negative � direction, giving four different
controls in total. The control could be changed every ���� of a second, and the simulator operated
at a granularity of ����� of a second. The puck also had a retarding force due to air resistance of
����� � speed� . There was no friction between the puck and the ground.

The puck was given a reward at each decision point (���� of a second) equal to �� where �

was the distance between the puck and some designated target point. To encourage the controller
to learn to navigate the puck to the target independently of the starting state, the puck state was
reset every 30 (simulated) seconds to a random location and random � and � velocities in the range
����� ���, and at the same time the target position was set to a random location.

Note that the size of the state-space in this example is essentially infinite, being of the order of
�PRECISION where PRECISION is the floating point precision of the machine (�� bits). Thus, the

368

POLICY-GRADIENT ESTIMATION

time between visits to a recurrent state is likely to be large. Also, the puck cannot just maximize its
immediate reward because this leads to significant overshooting of the target locations.

5.2.2 THE CONTROLLER

A one-hidden-layer neural-network with six input nodes, eight hidden nodes and four output nodes
was used to generate a probabilistic policy in a similar manner to the controller in the three-state
Markov chain example of the previous section. Four of the inputs were set to the raw � and �

locations and velocities of the puck at the current time-step, the other two were the differences
between the puck’s � and � location and the target’s � and � location respectively. The location
inputs were scaled to lie between �� and �, while the velocity inputs were scaled so that a speed
of �� units per second mapped to a value of �. The hidden nodes computed a ���� squashing
function, while the output nodes were linear. Each hidden and output node had the usual additional
offset parameter. The four output nodes were exponentiated and then normalized as in the Markov-
chain example to produce a probability distribution over the four controls (�� units thrust in the �

direction, �� units thrust in the � direction). Controls were selected at random from this distribution.

5.2.3 CONJUGATE GRADIENT ASCENT

We trained the neural-network controller using ��������� with the gradient estimates generated
by ������. After some experimentation we chose � � � ��� and � � � � ���� ��� as the param
eters ��������� supplied to ������. ������� used the same value of � and the scheme
discussed in Section 5.1.3 to determine the number of iterations with which to call ������.

Due to the saturating nature of the neural-network hidden nodes (and the exponentiated output
nodes), there was a tendency for the network weights to converge to local minima at “infinity”.
That is, the weights would grow very rapidly early on in the simulation, but towards a suboptimal
solution. Large weights tend to imply very small gradients and thus the network becomes “stuck”
at these suboptimal solutions. We have observed a similar behaviour when training neural networks
for pattern classification problems. To fix the problem, we subtracted a small quadratic penalty term
����� from the performance estimates and hence also a small correction ��� �

from the gradient
calculation4 for ��.

We used a decreasing schedule for the quadratic penalty weight � (arrived at through some
experimentation). � was initialized to ��� and then on every tenth iteration of ���������, if the
performance had improved by less than 10% from the value ten iterations ago, � was reduced by a
factor of 10. This schedule solved nearly all the local minima problems, but at the expense of slower
convergence of the controller.

A plot of the average reward of the neural-network controller is shown in Figure 9, as a function
of the number of iterations of the �����. The graph is an average over 100 independent runs,
with the parameters initialized randomly in the range ������ ���� at the start of each run. The four
bad runs shown in Figure 10 were omitted from the average because they gave misleadingly large
error bars.

Note that the optimal performance (within the neural-network controller class) seems to be
around �� for this problem, due to the fact that the puck and target locations are reset every ��

simulated seconds and hence there is a fixed fraction of the time that the puck must be away from

4. When used as a technique for capacity control in pattern classification, this technique goes by the name “weight
decay”. Here we used it to condition the optimization problem.

369

BAXTER ET AL.

-5

-10

-15

-20

-25

A

ve
ra

ge
 R

ew
ar

d
-30

-35

-40

-45

-50

-55

0 3e+07 6e+07 9e+07 1.2e+08 1.5e+08

Iterations

Figure 9: Performance of the neural-network puck controller as a function of the number of itera
tions of the puck world, when trained using ���������. Performance estimates were
generated by simulating for �� ���� ��� iterations. Averaged over 100 independent runs
(excluding the four bad runs in Figure 10).

the target. From Figure 9 we see that the final performance of the puck controller is close to optimal.
In only 4 of the 100 runs did ��������� get stuck in a suboptimal local minimum. Three of
those cases were caused by overshooting in ������� (see Figure 10), which could be prevented
by adding extra checks to ���������.

Figure 11 illustrates the behaviour of a typical trained controller. For the purpose of the illus
tration, only the target location and puck velocity were randomized every 30 seconds, not the puck
location.

5.3 Call Admission Control

In this section we report the results of experiments in which ��������� was applied to the task
of training a controller for the call admission problem treated by Marbach (1998, Chapter 7).

5.3.1 THE PROBLEM

The call admission control problem treated by Marbach (1998, Chapter 7) models the situation
in which a telecommunications provider wishes to sell bandwidth on a communications link to
customers in such a way as to maximize long-term average reward.

Specifically, the problem is a queuing problem. There are three different types of call, each
with its own call arrival rate ����, ����, ����, bandwidth demand ����, ����, ���� and average
holding time ����, ����, ����. The arrivals are Poisson distributed while the holding times are
exponentially distributed. The link has a maximum bandwidth of 10 units. When a call arrives and
there is sufficient available bandwidth, the service provider can choose to accept or reject the call
(if there is not enough available bandwidth the call is always rejected). Upon accepting a call of

370

POLICY-GRADIENT ESTIMATION

5

0

-5

-10

-15

-20

-25

-30

-35

-40

-45

-50

-55

A
ve

ra
ge

 R
ew

ar
d

0 5e+07 1e+08 1.5e+08 2e+08 2.5e+08 3e+08 3.5e+08

Iterations

Figure 10: Plots of the performance of the neural-network puck controller for the four runs (out of
100) that converged to substantially suboptimal local minima.

target

Figure 11: Illustration of the behaviour of a typical trained puck controller.

type �, the service provider receives a reward of ���� units. The goal of the service provider is to
maximize the long-term average reward.

The parameters associated with each call type are listed in Table 3. With these settings, the
optimal policy (found by dynamic programming by Marbach (1998)) is to always accept calls of
type 2 and 3 (assuming sufficient available bandwidth) and to accept calls of type 1 if the available

371

BAXTER ET AL.

Call Type
Bandwidth Demand �

Arrival Rate �

Average Holding Time �

Reward �

1
1

���

���

1

2
1

���

���

2

3
1

���

���

4

Table 3: Parameters of the call admission control problem.

bandwidth is at least 3. This policy has an average reward of �����, while the “always accept”
policy has an average reward5 of �����.

5.3.2 THE CONTROLLER

The controller had three parameters � � � ��

� � �� � �

�, one for each type of call. Upon arrival of a call
of type �, the controller chooses to accept the call with probability

�

� if � � ���� � ��,
���� �

��������������

��

� otherwise,

where � is the currently used bandwidth. This is the class of controllers studied by Marbach (1998).

5.3.3 CONJUGATE GRADIENT ASCENT

��������� was used to train the above controller, with ������ generating the gradient es
timates from a range of values of � and � . The influence of � on the performance of the trained
controllers was marginal, so we set � � ��� which gave the lowest-variance estimates. We used
the same value of � for calls to ������ within ��������� and within �������, and this
was varied between �� and ��� ���. The controller was always started from the same parameter
setting � � �� � �� �� (as was done by Marbach (1998)). The value of this initial policy is �����. The
graph of the average reward of the final controller produced by ��������� as a function of the
total number of iterations of the queue is shown in Figure 12. A performance of ����� was reliably
achieved with less than ���� iterations of the queue.

Note that the optimal policy is not achievable with this controller class since it is incapable
of implementing any threshold policy other than the “always accept” and “always reject” policies.
Although not provably optimal, a parameter setting of ��

� ��� and any suitably large values of ��

and ��

generates something close to the optimal policy within the controller class, with an average
reward of ���. Figure 13 shows the probability of accepting a call of each type under this policy
(with ��

� ��

� ��), as a function of the available bandwidth.
The controllers produced by ��������� with � � � �� and sufficiently large � are essentially

“always accept” controllers with an average reward of �����, within 2% of the optimum achievable
in the class. To produce policies even nearer to the optimal policy in performance, ���������

must keep ��

close to its starting value of �, and hence the gradient estimate ��

� �� �� ��

� ��

�

5. There is some discrepancy between our average rewards and those quoted by Marbach (1998). This is probably due
to a discrepancy in the way the state transitions are counted, which was not clear from the discussion in (Marbach,
1998).

372

POLICY-GRADIENT ESTIMATION

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

C
O

N
JG

R
A

D
 F

in
al

 R
ew

ar
d

class optimal
beta=0.0

1000 10000 100000

Total Queue Iterations

Figure 12: Performance of the call admission controller trained by ��������� as a function of
the total number of iterations of the queue. The performance was computed by simu
lating the controller for 100,000 iterations. The average reward of the globally optimal
policy is �����, the average reward of the optimal policy within the class is ���, and
the plateau performance of ��������� is �����. The graphs are averages from 100
independent runs.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
cc

ep
ta

nc
e

P
ro

ba
bi

lit
y

call type 1
call types 2 or 3

1 2 3 4 5 6 7 8 9 10

Available Bandwidth

Figure 13: Probability of accepting a call of each type under the call admission policy with near-
optimal parameters ��

� ���� � �

� ��

� ��. Note that calls of type 2 and 3 are
essentially always accepted.

373

BAXTER ET AL.

1

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

N
or

m
al

iz
ed

 D
el

ta

Delta1
Delta2
Delta3

0	 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Beta

Figure 14: Plot of the three components of ��

for the call admission problem, as a function of the
discount parameter �. The parameters were set at � � �� � �� ��. � was set to �� ���� ���.
Note that ��

does not become negative (the correct sign) until � � ����.

produced by ������ must have a relatively small first component. Figure 14 shows a plot of
normalized ��

as a function of �, for � � �� ���� ��� (sufficiently large to ensure low variance
in ��

) and the starting parameter setting � � ��� �� ��. From the figure, ��

starts at a high value
which explains why ��������� produces “always accept” controllers for � � � ��, and does not
become negative until � � ����, a value for which the variance in ��

even for moderately large �

is relatively high.
A plot of the performance of ��������� for � � ��� and � � ���� is shown in Figure

15. Approximately half of the remaining 2% in performance can be obtained by setting � � ���,
while for � � � ��� a sufficiently large choice for � gives most of the remaining performance. For
this problem, there is a huge difference between gaining 98% of optimal performance, which is
achieved for � � ��� and less than 2000 iterations of the queue, and gaining 99% of the optimal
which requires � � ��� and of the order of 500,000 queue iterations. A similar convergence rate
and final approximation error to the latter case were reported for the on-line algorithms by Marbach
(1998, Chapter 7).

5.4 Mountainous Puck World

The “mountain-car” task is a well-studied problem in the reinforcement learning literature (Sutton
& Barto, 1998, Example 8.2). As shown in Figure 16, the task is to drive a car to the top of a one-
dimensional hill. The car is not powerful enough to accelerate directly up the hill against gravity, so
any successful controller must learn to “oscillate” back and forth until it builds up enough speed to
crest the hill.

In this section we describe a variant of the mountain car problem based on the puck-world
example of Section 5.2. With reference to Figure 17, in our problem the task is to navigate a puck

374

POLICY-GRADIENT ESTIMATION

0.775

0.78

0.785

0.79

0.795

0.8

0.805

C
O

N
JG

R
A

D
 F

in
al

 R
ew

ar
d

class optimal
beta=0.90

0.78

0.782

0.784

0.786

0.788

0.79

0.792

0.794

0.796

0.798

0.8

0.802

C
O

N
JG

R
A

D
 F

in
al

 R
ew

ar
d

class optimal
beta=0.95

100000 1e+06 1e+07 0 1e+07 2e+07 3e+07 4e+07

Total Queue Iterations Total Queue Iterations

Figure 15: Performance of the call admission controller trained by ��������� as a function
of the total number of iterations of the queue. The performance was calculated by
simulating the controller for 1,000,000 iterations. The graphs are averages from 100
independent runs.

Figure 16: The classical “mountain-car” task is to apply forward or reverse thrust to the car to get
it over the crest of the hill. The car starts at the bottom and does not have enough power
to drive directly up the hill.

out of a valley and onto a plateau at the northern end of the valley. As in the mountain-car task, the
puck does not have sufficient power to accelerate directly up the hill, and so has to learn to oscillate
in order to climb out of the valley. Once again we were able to reliably train near-optimal neural-
network controllers for this problem, using ��������� and �������, and with ������

generating the gradient estimates.

5.4.1 THE WORLD

The world dimensions, physics, puck dynamics and controls were identical to the flat puck world
described in Section 5.2, except that the puck was subject to a constant gravitational force of ��

units, the maximum allowed thrust was � units (instead of �), and the height of the world varied as

375

BAXTER ET AL.

Figure 17: In our variant of the mountain-car problem the task is to navigate a puck out of a valley
and onto the northern plateau. The puck starts at the bottom of the valley and does not
have enough power to drive directly up the hill.

follows: � ��� if � � �� or � � ��

height��� �� � ����

�

� � ��

�

��

�

�

����

��

��

otherwise�

With only � units of thrust, a unit mass puck can not accelerate directly out of the valley.
Every 120 (simulated) seconds, the puck was initialized with zero velocity at the bottom of

the valley, with a random � location. The puck was given no reward while in the valley or on the
southern plateau, and a reward of ��� � �� while on the northern plateau, where � was the speed
of the puck. We found the speed penalty helped to improve the rate of convergence of the neural
network controller.

5.4.2 THE CONTROLLER

After some experimentation we found that a neural-network controller could be reliably trained to
navigate to the northern plateau, or to stay on the northern plateau once there, but it was difficult to
combine both in the same controller (this is not so surprising since the two tasks are quite distinct).
To overcome this problem, we trained a “switched” neural-network controller: the puck used one
controller when in the valley and on the southern plateau, and then switched to a second neural-
network controller while on the northern plateau. Both controllers were one-hidden-layer neural-
networks with nine input nodes, five hidden nodes and four output nodes. The nine inputs were the
normalized (���� ��-valued) �, � and � puck locations, the normalized �, � and � locations relative
to center of the northern wall, and the �, � and � puck velocities. The four outputs were used to
generate a policy in the same fashion as the controller of Section 5.2.2.

An approach requiring less prior knowledge would be to have a third controller that stochasti
cally selects the base neural network controller as a function of the puck’s location. This “master”

376

POLICY-GRADIENT ESTIMATION

80

70

60

50
A

ve
ra

ge
 R

ew
ar

d
40

30

20

10

0
0 2e+07 4e+07 6e+07 8e+07 1e+08

Iterations

Figure 18: Performance of the neural-network puck controller as a function of the number of itera
tions of the mountainous puck world, when trained using ���������. Performance
estimates were generated by simulating for �� ���� ��� iterations. Averaged over 100
independent runs.

controller could itself be parameterized and have its parameters trained along with the base con
trollers.

5.4.3 CONJUGATE GRADIENT ASCENT

The switched neural-network controller was trained using the same scheme discussed in Sec
tion 5.2.3, except this time the discount factor � was set to ����.

A plot of the average reward of the neural-network controller is shown in Figure 18, as a function
of the number of iterations of the �����. The graph is an average over 100 independent runs, with
the neural-network controller parameters initialized randomly in the range ������ ���� at the start of
each run. In this case no run failed to converge to near-optimal performance. From the figure we
can see that the puck’s performance is nearly optimal after about 40 million total iterations of the
puck world. Although this figure may seem rather high, to put it in some perspective note that a
random neural-network controller takes about 10,000 iterations to reach the northern plateau from a
standing start at the base of the valley. Thus, 40 million iterations is equivalent to only about 4,000
trips to the top for a random controller.

Note that the puck converges to a final average performance around 75, which indicates it is
spending at least 75% of its time on the northern plateau. Observation of the puck’s final behaviour
shows it behaves nearly optimally in terms of oscillating back and forth to get out of the valley.

5.5 Choosing � and the Running Time of ������

One aspect of these experiments that required some measure of tuning is the choice of the � parame
ter and running time � used by ������. Although these were selected by trial and error, we have

377

BAXTER ET AL.

had some success recently with a scheme for automatically choosing these parameters as follows.
Before any training begins, ������ is run for a large number of iterations whilst simultaneously
generating gradient estimates for a number of different choices of �. This can be done from a single
simulation simply by maintaining a separate eligibility trace ��

for each value of �. Since the bias
reduces with increasing �, the largest � that gives a reasonably low-variance gradient estimate at the
end of the long run is selected as a “reference” � (the variance is estimated by comparing gradient
estimates at reasonably well-separated intervals towards the end of the run). Furthermore, since
the variance of the gradient estimate decreases as � decreases, all gradient estimates for values of �

smaller than the reference � will typically have smaller variance than that of the reference �. Hence,
we can reliably compare the directions for smaller �’s with the direction given by the reference �,
and choose the smallest � whose corresponding direction is sufficiently close to the reference �

direction. We take“sufficiently close” to mean within ��Æ –��Æ .
Note that this scheme only works if the original run is sufficiently long to get a low-variance

direction estimate at the right value of �. If the right value of � is too large then any fixed bound on
the run length can be made to fail, but this will be a problem for all algorithms that automatically
choose �.

Once a suitable � has been found, we can go back and find the point in the original long run
where the direction estimate corresponding to that value of � “settled down” (again, we measure
the variance of the estimates by sampling at suitably large intervals, and choose a point where the
variance falls below some chosen value). This time is then used as the running time � for ������

when estimating the gradient direction. Finally, the running time used in ������ when bracketing
the maximum in ������� can also be automatically tuned by starting with an initial fixed running
time that is a fraction of � , and then continuing until the sign of the inner product of the estimates
produced by ������ with the search direction “settles down”. With this technique, the sign
estimation time is usually considerably smaller than the gradient direction estimation time.

Another useful heuristic is to re-estimate � and ������’s running time � whenever the pa
rameters � change by a large amount, since a large change in � can lead to significant changes in the
mixing time of the �����.

6. Conclusion

This paper showed how to use the performance gradient estimates generated by the ������ al
gorithm (Baxter & Bartlett, 2001) to optimize the average reward of parameterized �����s. We
described both a traditional “on-line” stochastic gradient algorithm and an “off-line” approach that
relied on the use of �������, a robust line-search algorithm that uses gradient estimates, rather
than value estimates, to bracket the maximum. The off-line approach in particular was found to per
form well on four quite distinct problems: optimizing a controller for a three-state ���, optimizing
a neural-network controller for navigating a puck around a two-dimensional world, optimizing a
controller for a call admission problem, and optimizing a switched neural-network controller in a
variation of the classical mountain-car task. One reason for the superiority of the off-line approach
is that by searching for a local maximum at each step it makes much more aggressive use of the
gradient information than does the on-line algorithm.

For the three-state ��� and the call-admission problems we were able to provide graphic illus
trations of how the bias and variance of the gradient estimates ��

� can be traded against one another
by varying � between � (low variance, high bias) and � (high variance, low bias).

378

POLICY-GRADIENT ESTIMATION

Relatively little tuning was required to generate these results. In addition, the controllers oper
ated on direct and simple representations of the state, in contrast to the more complex representations
usually required of value-function based approaches.

It is often the case that value-function methods converge much more rapidly than their policy-
gradient counterparts. This is due to the fact that they enforce constraints on the value-function.
With this in mind an interesting avenue for further research is Actor-Critic algorithms (Barto et al.,
1983; Baird & Moore, 1999; Kimura & Kobayashi, 1998; Konda & Tsitsiklis, 2000; Sutton,
McAllester, Singh, & Mansour, 2000) in which one attempts to combine the fast convergence of
value-functions with the theoretical guarantees of policy-gradient approaches.

Despite the success of the off-line approach in the experiments described here, the on-line algo
rithm has advantages in other settings. In particular, when it is applied to multi-agent reinforcement
learning, both gradient computations and parameter updates can be performed for distinct agents
without any communication beyond the global distribution of the reward signal. This idea has led to
a parameter optimization procedure for spiking neural networks, and some successful preliminary
results with network routing (Bartlett & Baxter, 1999; Tao, Baxter, & Weaver, 2001).

Acknowledgements

This work was supported by the Australian Research Council, and benefited from the comments of
several anonymous referees. Most of this research was performed while the first and second au
thors were with the Research School of Information Sciences and Engineering, Australian National
University.

References

Aberdeen, D., & Baxter, J. (2001). Policy-gradient learning of controllers with internal state. Tech. rep.,
Australian National University.

Baird, L., & Moore, A. (1999). Gradient descent for general reinforcement learning. In Advances in Neural
Information Processing Systems 11. MIT Press.

Bartlett, P. L., & Baxter, J. (1999). Hebbian synaptic modifications in spiking neurons that learn. Tech.
rep., Research School of Information Sciences and Engineering, Australian National University.
http://csl.anu.edu.au/�bartlett/papers/BartlettBaxter-Nov99.ps.gz.

Bartlett, P. L., & Baxter, J. (2000a). Estimation and approximation bounds for gradient-based reinforcement
learning. In Proceedings of the Thirteenth Annual Conference on Computational Learning Theory,
pp. 133–141.

Bartlett, P. L., & Baxter, J. (2000b). Stochastic optimization of controlled partially observable markov deci
sion processes. In Proceedings of the 39th IEEE Conference on Decision and Control (CDC00).

Barto, A. G., Sutton, R. S., & Anderson, C. W. (1983). Neuronlike adaptive elements that can solve difficult
learning control problems. IEEE Transactions on Systems, Man, and Cybernetics, SMC-13, 834–846.

Baxter, J., & Bartlett, P. L. (2000). Reinforcement learning in POMDPs via direct gradient ascent. In
Proceedings of the Seventeenth International Conference on Machine Learning.

Baxter, J., & Bartlett, P. L. (2001). Infinite-horizon policy-gradient estimation. Journal of Artificial Intelli
gence Research. To appear.

Baxter, J., Tridgell, A., & Weaver, L. (2000). Learning to play chess using temporal-differences. Machine
Learning, 40(3), 243–263.

379

BAXTER ET AL.

Bertsekas, D. P., & Tsitsiklis, J. N. (1996). Neuro-Dynamic Programming. Athena Scientific.

Cao, X.-R., & Chen, H.-F. (1997). Perturbation Realization, Potentials, and Sensitivity Analysis of Markov
Processes. IEEE Transactions on Automatic Control, 42, 1382–1393.

Cao, X.-R., & Wan, Y.-W. (1998). Algorithms for Sensitivity Analysis of Markov Chains Through Potentials
and Perturbation Realization. IEEE Transactions on Control Systems Technology, 6, 482–492.

Fine, T. L. (1999). Feedforward Neural Network Methodology. Springer, New York.

Fu, M. C., & Hu, J. (1994). Smooth Perturbation Derivative Estimation for Markov Chains. Operations
Research Letters, 15, 241–251.

Glynn, P. W. (1986). Stochastic approximation for monte-carlo optimization. In Proceedings of the 1986
Winter Simulation Conference, pp. 356–365.

Kimura, H., & Kobayashi, S. (1998). An analysis of actor/critic algorithms using eligibility traces: Rein
forcement learning with imperfect value functions. In Fifteenth International Conference on Machine
Learning, pp. 278–286.

Kimura, H., Miyazaki, K., & Kobayashi, S. (1997). Reinforcement learning in POMDPs with function
approximation. In Fisher, D. H. (Ed.), Proceedings of the Fourteenth International Conference on
Machine Learning (ICML’97), pp. 152–160.

Kimura, H., Yamamura, M., & Kobayashi, S. (1995). Reinforcement learning by stochastic hill climbing
on discounted reward. In Proceedings of the Twelfth International Conference on Machine Learning
(ICML’95), pp. 295–303.

Konda, V. R., & Tsitsiklis, J. N. (2000). Actor-Critic Algorithms. In Neural Information Processing Systems
1999. MIT Press.

Marbach, P. (1998). Simulation-Based Methods for Markov Decision Processes. Ph.D. thesis, Laboratory for
Information and Decision Systems, MIT.

Marbach, P., & Tsitsiklis, J. N. (1998). Simulation-Based Optimization of Markov Reward Processes. Tech.
rep., MIT.

Rubinstein, R. Y., & Melamed, B. (1998). Modern Simulation and Modeling. Wiley, New York.

Samuel, A. L. (1959). Some Studies in Machine Learning Using the Game of Checkers. IBM Journal of
Research and Development, 3, 210–229.

Singh, S. P., Jaakkola, T., & Jordan, M. I. (1994). Learning Without State-Estimation in Partially Observable
Markovian Decision Processes. In Proceedings of the Eleventh International Conference on Machine
Learning.

Singh, S., & Bertsekas, D. (1997). Reinforcement learning for dynamic channel allocation in cellular tele
phone systems. In Advances in Neural Information Processing Systems: Proceedings of the 1996
Conference, pp. 974–980. MIT Press.

Singh, S., Jaakkola, T., & Jordan, M. (1995). Reinforcement learning with soft state aggregation. In Tesauro,
G., Touretzky, D., & Leen, T. (Eds.), Advances in Neural Information Processing Systems, Vol. 7. MIT
Press, Cambridge, MA.

Sutton, R. (1988). Learning to Predict by the Method of Temporal Differences. Machine Learning, 3, 9–44.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement Learning: An Introduction. MIT Press, Cambridge MA.
ISBN 0-262-19398-1.

Sutton, R. S., McAllester, D., Singh, S., & Mansour, Y. (2000). Policy Gradient Methods for Reinforcement
Learning with Function Approximation. In Neural Information Processing Systems 1999. MIT Press.

380

POLICY-GRADIENT ESTIMATION

Tao, N., Baxter, J., & Weaver, L. (2001). A multi-agent, policy-gradient approach to network routing. Tech.
rep., Australian National University.

Tesauro, G. (1992). Practical Issues in Temporal Difference Learning. Machine Learning, 8, 257–278.

Tesauro, G. (1994). TD-Gammon, a self-teaching backgammon program, achieves master-level play. Neural
Computation, 6, 215–219.

Weaver, L., & Baxter, J. (1999). Reinforcement learning from state and temporal differences. Tech. rep.,
Australian National University.

Williams, R. J. (1992). Simple Statistical Gradient-Following Algorithms for Connectionist Reinforcement
Learning. Machine Learning, 8, 229–256.

Zhang, W., & Dietterich, T. (1995). A reinforcement learning approach to job-shop scheduling. In Pro
ceedings of the Fourteenth International Joint Conference on Artificial Intelligence, pp. 1114–1120.
Morgan Kaufmann.

381

