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Abstract

Approximate value iteration is a simple algorithm that combats the curse of dimensionality
in dynamic programs by approximating iterates of the classical value iteration algorithm in
a spirit reminiscent of statistical regression. Each iteration of this algorithm can be viewed
as an application of a modified dynamic programming operator to the current iterate. The
hope is that the iterates converge to a fixed point of this operator, which will then serve as a
useful approximation of the optimal value function. In this paper, we show that, in general,
the modified dynamic programming operator need not possess a fixed point, and therefore,
approximate value iteration should not be expected to converge. We then propose a variant of
approximate value iteration for which the associated operator is guaranteed to possess at least
one fixed point. This variant is motivated by studies of temporal-difference learning (TD), and
existence of fixed points here implies existence of stationary points for the ordinary differential
equation approximated by a version of TD that incorporates “exploration.”

Key Words: Dynamic programming, neuro—dynamic programming, reinforcement learning,
temporal—difference learning, value iteration.



1 Introduction

Value iteration offers a simple approach to computing optimal value functions and policies for
finite-state discounted dynamic programs. The algorithm can be described compactly in terms
of the “dynamic programming operator” T'. In particular, value iteration generates a sequence
of functions according to Jx+1 = TJk, each mapping states to real numbers. This sequence
converges to the optimal value function J*, which is the unique fixed point of 7" and can be
used to generate an optimal policy.

Due to the “curse of dimensionality,” for problems of practical scale, the computational
burden associated with storing and manipulating functions over the state space is prohibitive,
and approximations are called for. One simple approximation method — dating all the way
back to Ref. [1] — is approximate value iteration, which aims at approximating each iterate

Jr by a linear combination of prespecified basis functions ¢1,...,¢x, in a spirit reminiscent
of statistical regression. In rough terms, iterates Ji are generated according to Ji41 = IIT Jy,
where Il is a projection operator that produces a function that is in the span of ¢1,..., ¢x and

close to T'Jx. The hope is that Ji converges to a good approximation of J*.

A fundamental question concerning approximate value iteration is whether the composition
IIT possesses a fixed point J that may serve as a limit to the sequence Ji. It turns out — as
will be illustrated by examples in Section 3 — that IIT" does not always have a fixed point. In
subsequent sections, we propose and analyze a variant of approximate value iteration that is
guaranteed to have a fixed point.

The variant of approximate value iteration developed in this paper was motivated by studies
of temporal-difference learning (TD), a class of algorithms that can be viewed as simulation—
based versions of approximate value iteration(Refs. [2]-[7]). As will be discussed in our closing
section, existence of fixed points for the proposed variant of approximate value iteration implies
existence of stationary points for a version of TD that incorporates “exploration.” Our analysis
of approximate value iteration therefore also resolves an open question concerning TD.

2 Exact and Approximate Value Iteration

We consider a controlled Markov chain with a finite set of states S and finite sets of actions
Az,z € §. Each state-action pair z € S and a € A, is associated with a reward g.(z)
and transition probabilities Py (z,-). Time-relative preferences are defined by a discount factor
a € (0,1). We denote by P, a matrix whose (z,y)th component is Py (z,y), and we let P,(x)
be a row vector equal to the zth row of P,.

A (stochastic stationary) policy is a mapping p : {(z,a)| z € S, a € Az} — [0,1], with
Za A, wu(z,a) =1 for all z. The policy defines probabilities with which actions are selected at
each state. In particular, when controlled by a policy u, the system evolves as a Markov chain
with transition probabilities

Pu(z,y) = Y n(@,a)Pa(,y).

a€Ay

For shorthand notation, let

gu@) = Y nlz,a)ga(w).

a€A,

A policy p is deterministic if for each x € S, there is an action a € A, such that u(z,a) = 1. A



policy p is optimal if it attains the supremum of

E Zakgp(;tk) To ==
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simultaneously for all initial states x € S, or equivalently, it attains the supremum of

[ee]

Z(aka)gH’

k=0

for all entries.

We assume that P, is irreducible and aperiodic for every p. Hence, each P, possesses a
unique invariant distribution 7, with 7,(x) > 0 for all . Note that the invariant distribution
is the left eigenvector associated with the unit eigenvalue of P, with entries adding to one.

The optimal value function J* uniquely solves Bellman’s equation:

J =max{g, + aP.J},
n

where the maximization is pointwise. Alternatively, defining the dynamic programming operator
T by
TJ = max{g, + aP.J},
"

the value function can be characterized as the unique fixed point of 7. For each policy u, we
define an additional operator T}, by

TuJ =gu+ P, J.

It is well-known that for any J, there is a deterministic policy p such that T'J =T, J. We call
such a pu a greedy policy with respect to J. It is also well-known that a policy pu* is optimal if
and only if it is greedy with respect to the optimal value function J*.

Value iteration computes improving approximations to the value function by generating a
sequence according to Jx4+1 = T'J, initialized with some function Jy. It is well-known that,
for any Jo, the sequence Ji converges to J*. Unfortunately, due to the curse of dimensionality,
application of value iteration becomes infeasible in the face of problems of practical scale.

Approximate value iteration aims at alleviating the prohibitive computational burden asso-
ciated with value iteration by dealing with compactly represented approximations rather than
functions over the state space. In particular, given a preselected collection ¢y, ..., ¢k of basis
functions, the algorithm generates approximations J to each iterate Ji, where

K
Ty = Zrk(i)%
i=1

for some weight vector ri, € R¥. Defining a |S| x K matrix

| |
P = ¢1 ¢K ,
| |

we have Ji = ®ri. Also, let ¢(x) = (¢1(x),...,¢x(z)) so that Ji(z) = ¢'(x)rr. We assume,
without loss of generality, that the basis functions are linearly independent.



The simplest form of approximate value iteration involves a projection matrix II that projects
onto the span of ¢1,...,¢x with respect to the standard Euclidean norm, i.e.,

IIJ = argmin || J — ®7||2.
o7

The algorithm then generates iterates according to jk_;,_l = IITJs. Hence, the operator T' is
effectively approximated by IIT.

A slightly more sophisticated version of approximate value iteration projects with respect
to a weighted Euclidean norm. In particular, given a |S|-dimensional vector m with positive
components, we can define a norm by

1/2

1Tl = Y m@) @) |

zES

and the associated projection is given by

IIJ = argmin ||J — ®7||x.
o7

As before, approximate value iteration would generate iterates according to Jx41 = IITJx. One
possible motivation for employing a weighted Euclidean norm is that it enables “emphasis” of
“important” or “frequently visited” states in trading—off error among states.

Finally, a more general form of approximate value iteration might not employ a single
projection matrix, but rather choose a projection matrix based on the current iterate. For
example, given a mapping that defines for each function J a projection matrix II;, approximate
value iteration could generate iterates according to Jry1 = II jijk.

3 On the Nonexistence of Fixed Points

It turns out that operators associated with simple versions of approximate value iteration often
lack fixed points. In such cases, the hope that iterates Jy will converge to a fixed point can
not be met. We provide in this section two examples that illustrate difficulties that arise and
motivate the variant of approximate value iteration that we will propose in the next section.
Our first example makes use of a projection operator II that simply projects with respect
to the standard Euclidean norm. In this example, the composition II7T does not possess a fixed
point, and furthermore, approximate value iteration leads to an unbounded sequence of iterates.

Example 3.1 Consider a Markov chain with states 1 and 2 and only one policy. In state 1, the
reward is 1 and there is a probability 0.2 of remaining in that state and 0.8 of going to state 2.
In state 2, the reward is 2 and there is a probability 0.2 of going to state 1 and 0.8 of staying in
state 2. Let g be the vector of rewards and P be the transition probability matrixz. The discount
factor is o = 5%1 and we want to find an approximate value function in the subspace spanned
by ® = [1 2]. Then if IL is the projection with respect to the Euclidean norm, if ®r = IIT®r,

the parameter vector r must solve

r o= (®®)'® (g4 aPr)
= 147
Hence, IIT does not have a fized point. Furthermore, the sequence of weights T, generated by

approzimate value iteration evolves according to rx+1 = 1+ ri, and therefore the sequence is
unbounded.



The following lemma from Refs. [5, 8] motivates the use of a certain weighted Euclidean
norm in order to circumvent the difficulty that arises in the previous example.

Lemma 3.1 Let P be the transition matriz for an irreducible aperiodic Markov chain, and let
7 be the invariant distribution. Then, ||P|- < 1.

An immediate consequence of this lemma is that, for a problem with only one policy (i.e.,
|Az| =1 for all z), the operator T" is a contraction; in particular,

TJ =TT~ < allJ =T,

for any J and J, where 7 is the invariant distribution associated with the single policy. Fur-
thermore, since a projection matrix II that projects with respect to || - ||» is nonexpansive with
respect to || - ||, we have

TS — 0T Tl < aflJ = T,

for any J and J. In other words, IIT is a contraction. It follows that IIT has a unique fixed
point and that value iteration converges to this fixed point.

The above discussion identifies a version of value iteration that converges to a fixed point.
Unfortunately, this only applies to problems with a single policy. Can the essential idea be
generalized to problems with multiple policies? In such cases, there are usually multiple invari-
ant distributions to take into account, each associated with a different policy. One approach to
dealing with this issue involves projecting with respect to a Euclidean norm weighted by the
invariant distribution associated with a policy that is greedy with respect to the current iterate
Je. In particular, let s be a greedy policy with respect to J, and let for any y, let II, be a
projection matrix that projects onto the span of ¢1,...,¢x with respect to || - [|x,. A version
of approximate value iteration can be defined by Jy41 = I, TJ. We define the operators i
and H, by

HJ=1,,TJ and H,J=1LT,J.

To make this definition unambiguous, we need to establish what policy p; must be used if there
is more than one greedy policy — in this case, we let p; be the randomized policy that takes
each greedy action with the same probability.

The question that arises is whether H possesses a fixed point. In the case of a single policy
the question reduces to one that we have already addressed, and the answer is affirmative. The
following example, adapted from Ref. [7], shows that H does not necessarily possess fixed points
when there are multiple policies.

Example 3.2 Consider a controlled Markov chain with three states and two deterministic poli-
cies 1 and 2, with rewards and transition matrices given by

0 02 0 08 02 0 08
g=g¢gp=|-1|,A=[04 06 0 |, Po= 1 0 0
1 0 1 0 0 1 0

Note that there are two possible actions at state 2, while no choices are offered at states 1 and
3. Let « =0.99 and ® = [0 1 2]'. For any function J, there are three possibilities for py: p1
(with Py, = P1), p2 (with Py, = P2), and ps (with Py, = (P1+ P2)/2).

A function J is a fized point of H if and only if 11, ,TJ = J, or equivalently, 11, T, ,J = J.
Based on arguments made earlier regarding approximate value iteration for problems with a
single policy, each composition 11, T, (i = 1,2,3) has a unique fized point. Let us denote
these fized points by Ji = ®ry, J5 = ®r3, and J5 = Pr;, respectively. It turns out that
r] = —0.1647, r5 = 0.3311 and r3 = 0.1889, and that py, = p2, pi, = p1, and py; = p1. It
follows that neither J1, J2, nor Js, are fized points of H, and therefore H has no fized points.



Based on the above example, one might speculate that nonexistence of fixed points may
be a consequence of discontinuities of H at points where there is more than one greedy policy.
As we show in the sequel, incorporating “exploration” (i.e., randomizing policies) leads to a
continuous variant of H for which fixed points are guaranteed to exist.

4 Incorporating Exploration

We now introduce a modified dynamic programming operator. This definition makes use of
d—greedy policies, which effectively incorporate exploration into a greedy policy. Formally, for
any & > 0, we define a d—greedy policy pd with respect to J by

exp [(9a(z) + aPa(z)J) /9]
> aea, P [(9a(x) + aPa(z)J) /0]’

for all z € § and a € A,. Our modified dynamic programming operator T3, which we will refer
to as the d—greedy dynamic programming operator, is then defined by

py(z,a) =

T5 =T,s .

Note that T is continuous.
Let us now establish some basic properties of J—greedy policies and dynamic programming
operators. Our first lemma shows that J—greedy policies become greedy as ¢ | 0.

Lemma 4.1 Take h € R™ and let

s explh(i)/d]
D) = S Pl G)A

fori=1,...,m. Then,

h

sup{m?xh(z Zn (h,i)h(4) } < M

Proof: Without loss of generality, suppose that h(m) = max; h(i). Then

. - 5 . . < — hi)) ex hiz him 6
SUp {m?x h(i) = z_: e Z)h(l)} W Z 1+ Z ; e)pr [((J() )* h(;)))/) é] |

soup Z M) Z 1D s ((h i) — ) ]

<

< S Mexp [~ (hm) — (@)
< (5(m—1)sgl())$exp(—x)

< é(me— 1)

q.e.d.

The following lemma establishes that Ts approximates 7" uniformly as J | 0 and follows as
an immediate consequence of the previous lemma.



Lemma 4.2

limsup |(T5J)(z) ~ (T)(x)| = 0.

Our next lemma establishes existence of a fixed point.
Lemma 4.3 For any 6 > 0, Ts has a fized point.

Proof: Let G = sup,cs ,c.4, |90(2)|- Since there is only a finite number of states and actions,
G is finite. Now consider the compact convex set {J : || J||ooc < G/(1 — «)}. This set is closed
under T, and since T is continuous, Brouwer’s fixed point theorem guarantees existence of a
fixed point. q.e.d.

Let us introduce the notion of a quasi-contraction, which will help us study the operator T
and its fixed points.

Definition 4.1 .Quasi-contraction. An operator F is a quasi-contraction with respect to
a norm || - || if there exists a nonempty set X* of fized points, a compact set C O X*, and
a scalar B € [0,1) such that for any x ¢ C, there exists a fized point x* € X* such that
[Fz— 2" < Bllz — 27|

Given this definition, we have the following lemma.

Lemma 4.4 For any 6 > 0, Ts is a quasi-contraction.

Proof: For any J; and Jo,

(1T5J1 — T J2| oo ITJ. — TJalleo + | TJy — TsJ1||oc + | T T2 — TsJ2]|o

<
< afi = Bzl + O(9),

and since we know from Lemma 4.3 that 75 has a fixed point, 75 is indeed a quasi-contraction.
q.e.d.

The following lemma establishes that, for small J, fixed points of T5 approximate those of
T.

Lemma 4.5 Let J* be the unique fized point of T, and for any 6 > 0, let J° be the set of fized
points of Ts. Then,

lim sup |J(z)—J"(z)]=0.

00 jegd zes

Proof: For any J € J°,

1] = Tl [T5 = J"[|oo
[T5] =TI |loo + 1TT = J" oo

allJ = J e +O(9),

IAN A

and ||J — J*|looc = O(9). Note that the O(d) term in the final inequality is uniformly bounded
over J by Lemma 4.2. q.e.d.

Lemma 4.4 bears some important implications on 75. First, note that all fixed points of T}
lie within a ball of radius O(d). Furthermore, for J outside this circle, T5 behaves somewhat
like a contraction. Hence, for a variant of value iteration taking the form Jx41 = TsJk, after a
finite number n of iterations, iterates Ji for k£ > n will all lie in this ball. Furthermore, applying
Lemma 4.5, we can deduce that there is some § > 0 such that for all § < §, greedy policies
associated with functions in the ball under consideration are optimal.



5 Existence of Fixed Points

Based on the operator Ts, we can define a new version of approximate value iteration, which
updates weights according to _ _
Jk+1 = HH‘S- TaJk.
Ik

Alternatively, defining an operator Hs by
HsJ =115 TsJ,
J
we have Jyy1 = HsJy. The following theorem, which is the main result of this section, estab-
lishes that, unlike H, H;s always possesses a fixed point.
Theorem 5.1 For any 6 > 0, Hs has a fixed point.

To aide in the proof of this theorem we will first establish a few lemmas. Henceforth we use
the shorthand notation II to refer to Hui and p? to refer to u,.

5.1 Preliminary Lemmas

We begin by establishing continuity of certain functions that are important to our analysis.
Lemma 5.1 The invariant distribution m, is a continuous function of .

Proof: Since P, is irreducible, all but one of its eigenvalues are strictly inside the unit circle.
The remaining eigenvalue is 1 and corresponds to a left eigenvector of 7, Ref. [9]. It follows
that the matrix
7]
e

has full column rank. As an invariant distribution, 7, uniquely satisfies
P, -1 0
J O
Ty = o E

Since P, is a continuous function of u, so is 7,. Note that for a full column rank matrix A, not
necessarily square, we let A= = (A’A)"1A'. q.e.d.

and therefore,

As discussed earlier, for each policy p, there exists a unique vector 7, such that ®&r, = H,®r,
(this follows from Lemma 3.1). The next lemma establishes that the solution to this equation
is continuous in p.

Lemma 5.2 The unique solution r, to ®r, = H, Pr, is a continuous function of p.

Proof: The equation ®r, = H,Pr, can be rewritten as
Pry =10, (gu + aPu®ry),

or, via rearranging, as

(I —oll,P)®r, =11,9,.
(From Ref. [8], we know that ||II,P,.||, < 1, and therefore all eigenvalues of II, P, are in the
unit circle (possibly on the boundary). It follows that I — alIl, P, is invertible, and we have

Pr, =1 - aHuPH)_lnugw



and since ® has full column rank,
Tw = <I>_1(] - aHuPu)_lnugu-

By Lemma 5.1, D,, = diag(,,) is a continuous function of y, and therefore, I, = ®(®'D,,®)"*®'D,,
is also a continuous function of p. Continuity of r, follows. q.e.d.

5.2 Main Analysis

For any policy u, let us define
su(r) = &' D, (T, ®r — ®r) and s5(r) = ‘I)lDuf« (Ts®r — o),
where D,, = diag(m,) for any policy p. Furthermore, we define functions F}) : R¥ — R* and
FY : RE s RE by
Fl(r)y=r+~su(r) and Fj(r) =1+ yss(r).
The following lemma relates fixed points of F;) and Fy' to those of H, and Hs.

Lemma 5.3 For any 6 > 0 and v > 0, a vector r is a fived point of F}] (F‘s"*) if and only if
®r is a fized point of H,, (Hs).

Proof: Let r be a fixed point of F}. Then,

su(r) = 0
®'D,dr = @ D,(gu+ aP,Pr)
®(®'D,®) '®'D,dr = &@D,®) '® D,(g. + aP,Pr)
or = II,T,Pr,

and ®r is a fixed point of H,. Reversing the steps, it can be shown that if ®r is a fixed point
of H,, ris a fixed point of F},.

An entirely analogous argument establishes that r is a fixed point of Fy' if and only if ®r is
a fixed point of Hs. q.e.d.

The next lemma establishes that, for sufficiently small v, F is a pseudo-contraction.

Lemma 5.4 There exists a constant v* > 0 such that for all u and any v € (0,~*), there exists
a scalar B € (0,1) such that

1EZ(r) = rulla < Byllr — rullo.
Proof: First, note that for all p,
[Hpu®r — @y, < af|@r — 2rylfu,

and

(®r — @ry, H Or — @1y, (®r — @ry, (Hu®r — @ry) + (Pry — @)y
[@r — @ryllul|Hu®r — @yl — [|Pr — ‘I)TuHi
(a = 1)||@r — Pry|;

(= 1)(r = 7,) (2" Du®@)(r — r4).-

ININIA

Since D, is positive definite for all ;4 and the set of all randomized policies is compact, it follows
that there exists a constant C1 > 0 independent of p such that

(r— TH),SH(T) < —Cillr - THH;



Note that

5 ()12 ($:D, (T, @r — o))

]~

i=1

-
Il

(D (LT, ®r — @r))”

M=

1

-
Il

Hd’iHiHHHTM‘I)T - ‘I)THi

]

1

.
Il

H¢1Hi (I, T ®r — @7yl + || Py — 'I'THH)2

-

i=1

il5: (| @r — @rlly + || @ru — @rl,0)°

-

i=1

K
= (1+a)* ) [loill|@r. — @r]7,

i=1
and it follows that there exists a constant C> > 0 independent of u such that
2 2
llsu(P)llz < C2flr —rul2.
Making use of the inequalities we have established, we have
HFJ(T) - TM”% = |r JF'YSH(T) - TMH%
= lr=rull® + 290 = r) s (r) + 77l (r)]*

(1= 29C1 +~°Co)|lr — 7 f2-
The result then follows with v* = 2C1/C». q.e.d.

IN

Lemma 5.5 For any vy > 0 and § > 0, the function Fy possesses a fixed point.

Proof: By Lemma 5.2, r, is a continuous function of . Since p occupies a compact set (the
unit simplex 7), so does the set R = {r,|u € v}. Let R = max{||r|||r € R}.

Note that we only have to establish that a fixed point exists for a particular v > 0, since,
by Lemma 5.3 this fixed point is also a fixed point for all other positive values of ~.

Set v > 0 such that there is a 3 € (0,1) with

12 (r) = rull2 < Bllr = rull2,
for all . (Existence of such a - is ensured by Lemma 5.4.) We then have
[EF ()2 < NEFF(r) = rusllz + llrysll2
Bllr =752+ R
Blrll2 + 1+ B)R.

IN

IN

It follows that the set

_ 1+ AR
C= {r Ir]l2 < ﬁ},

is closed under Fy'. The result is then a consequence of Brouwer’s fixed point theorem. q.e.d.

Theorem 5.1 follows from Lemmas 5.3 and 5.5.



5.3 Existence of Fixed Points for H

Note that by replacing Fy with F” (defined in the same way as Fy with T replacing T
and g, = par replacing p)), all steps in the proof of Lemma 5.5 remain valid except for the
application of Brouwer’s fixed point theorem, which can no longer be applied because F” may
not be continuous because the greedy policy p, and the invariant distribution m,, are not
continuous in 7. Nevertheless, Theorem 5.1 allows us to identify a sufficient condition for H to
have a fixed point, as will be established in the upcoming theorem.

Let Vs be the set of fixed points of Fy, and let P be the set of vectors r such that more
than one policy is greedy with respect to ®r. It is easy to show that P is closed. Finally, let
Q. = {r|||r — #|| > € for all # € P}. Note that Q. is also a closed set.

Theorem 5.2 Suppose that there exists an € > 0, a decreasing sequence o converging to 0,
and a sequence T € Vs, N Qc. Then, there exists a vector r* such that ®r* = H®r*.

Proof: First, let

ar(z) = argmax {ga(z) + Pa(z)®r},
a€A,
and
As(r,x,a) = ga, (2)(®) + Py, (2)(x)Pr — ga(r) — aPu(x)Pr.
Then,
inf As(ryz,a) = A >0,
T€Qe,x,aFar(x)

and for all r € O,
1

> = )
T 14 (m—1)exp [—A/(ﬂ

where m is the maximum number of actions per state. Let

(@, ar(z))

5(’") = <¢k7Tw‘I)7" - ‘I”">ur~
Note that for small enough 9,
7 = 12l < (m — 1)exp [~A/d]
and therefore, u® converges uniformly to p, in Q.. Now

[s(ri)lleo = lIs(rk) — s5(rk)lloo
— @ [Dur, (9, + (@, D) = D (5,6, + (aPyg ~D)2n )|

S H‘I),Durk gHrk - @’Dué‘k gué‘k: ||°° +

e}

1+ P8R

2 1-p

Since Dy, g, and P, are continuous functions of p and ul converges to pur, s(rx) converges to
0. Hence, H has a fixed point. g.e.d.

+ max H@’ {(QPLW ~1)D,.,, — (Pl —1)D,

Krp

)} bi

10



6 Multiplicity of Fixed Points

It was established in the previous section that Hs possesses at least one fixed point. It would
be convenient if the fixed point were known to be unique, but unfortunately, this is not always
the case, as demonstrated by the following example.

Example 6.1 Consider again a controlled Markov chain with three states and two deterministic
policies 1 and 2. Let the transistion matrices be the same as in Example 3.2 and the rewards be

0

g1 =gz = 1 (1)
—1

Let « = 0.99 and ® = [0 1 2. Then policies 1 and 2 have approrimate value functions with
parameters r1 = 0.1647 and ro = —0.3311. The optimal policies for the one-step problem with
final rewards ®r1 and ®r2 are, respectively, 1 and 2, hence H has two fized points. We are also
able to find that for 6 = 0.001, Hs has a fized point between -0.331126/4 and -0.3311256 and
another fixed point between 0.1647443 and 0.1647449.

7 TD and its Stationary Points

The version of approximate value iteration that we have presented is related to and motivated by
TD. The latter is a stochastic algorithm that adapts approximation weights r during simulation
of the underlying Markov decision process. In this section, we will describe a version of the
algorithm known as TD(0) and discuss how its stationary points coincide with fixed points of
approximate value iteration. We depart, though, from the degree of rigor maintained in previous
sections and only present heuristic arguments.

Application of TD(0) entails simulating a single endless trajectory z; of the Markov decision
process under consideration. The weight vector is updated upon each transition, generating a
sequence ;. Given the state z; and decision a; at time ¢, if the next state is x;y1, the weight
vector r; is updated according to

Tig1 =Tt + Y P(@1) (Gar (@1) + a(Pre) (Teqr) — (Pre) () -

But how is the decision a; selected? One simple approach that has been proposed makes “greedy
decisions;” that is,
ar = argmax (ga () + a(Pa®r:)(z)) .
a€A,

Note that such decisions are optimal if &r, = J*. The hope is that, though weights may initially
lead to inaccurate approximations of J* and poor decisions, as the simulation progresses, weights
will converge to those that generate accurate approximations and near—optimal decisions.

Unfortunately, the use of greedy decisions in TD(0) has appeared to perform poorly in
practice (e.g., see Ref. [10]). Experiments point to the importance of “exploration;” i.e.,
randomization of the policy. One approach to exploration, which is connected to the variant of
approximate value iteration studied in previous sections, selects decisions by letting a; = a with
probability ,ugt (z¢,a), for each a € A,. Using results from stochastic approximation theory
(e.g., see Ref. [11]), one can show that if step sizes ¢ diminish at an appropriate rate, the
process followed by r, asymptotically approximates an ordinary differential equation

7= CID'DMQ (9,5 + P, s Pr— @r).

11



Intuitively, this ordinary differential equation drives r in the expected direction that would
be taken by the stochastic algorithm, where the expectation is taken over the steady state
distribution of p;. In particular,

<I>'DH£ (9,8 +abP,s®r — @r) = ZWMQ (z)o(z) (gpg(m) +a(P,s®r)(z) — (@r)(m)) .
z€S

A vector r is a stationary point of this ordinary differential equation if and only if

’I)IDH;E‘I)T = CI)IDH;E (gug + aPHgCI)T)
(¥’ D,s®) ' Ds®r = B('D,s®) ' D,s(g,s +aP,sPr)
or = HHQT(;@T.

Hence, stationary points coincide with fixed points of our version of approximate value iteration.
It follows that TD(0) with this form of exploration possesses stationary points. Note that, if
greedy decisions are employed, the expected update direction when the weight vector is r is
given by

‘I),DM (guy + @Pu, or — ®r).

For this quantity to be zero, we must have
®r =11, TPr,

i.e., ®r must be a fixed point of the version of approximate value iteration considered in Example
2. As illustrated in that example, the associated operation need not possess a fixed point.

In this paper, we have established existence of fixed/stationary points for appropriate ver-
sions of approximate value iteration and TD. This is just one basic property, and a number of
important questions remain open. Let us close by mentioning two:

1. Do the proposed versions of approximate value iteration and/or TD converge?

2. How well do fixed points of approximate value iteration approximate the optimal value
function?
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