
Near-Optimal Reinforcement Learning in

Polynomial Time

Michael Kearns�

Syntek Capital

New York, NY 10019

Satinder Singh

Syntek Capital

New York, NY 10019

January 1998

Abstract

We present new algorithms for reinforcement learning and prove

that they have polynomial bounds on the resources required to achieve

near-optimal return in general Markov decision processes. After ob-

serving that the number of actions required to approach the optimal

return is lower bounded by the mixing time T of the optimal policy

(in the undiscounted case) or by the horizon time T (in the discounted

case), we then give algorithms requiring a number of actions and total

computation time that are only polynomial in T and the numb er of

states and actions, for both the undiscounted and discounted cases.

An interesting aspect of our algorithms is their explicit handling of the

Exploration-Exploitation trade-o�.

� This work was done while both authors were at AT&T labs.

1 Introduction

In reinforcement learning, an agent i n teracts with an unknown environment,

and attempts to choose actions that maximize its cumulative p a yo� (Sut-

ton & Barto, 1998; Barto et al., 1990; Bertsekas & Tsitsiklis, 1996). The

environment i s t ypically modeled as a Markov decision process (MDP), and

it is assumed that the agent does not know the parameters of this process,

but has to learn how to act directly from experience. Thus, the reinforce-

ment learning agent faces a fundamental trade-o� between exploitation and

exploration (Bertsekas, 1987; Kumar & Varaiya, 1986; Thrun, 1992): that

is, should the agent exploit its cumulative experience so far, by executing

the action that currently seems best, or should it execute a di�erent action,

with the hope of gaining information or experience that could lead to higher

future payo�s? Too little exploration can prevent the agent from ever con-

verging to the optimal behavior, while too much exploration can prevent the

agent from gaining near-optimal payo� in a timely fashion.

There is a large literature on reinforcement learning, which has been

growing rapidly in the last decade. Many di�erent algorithms have been

proposed to solve reinforcement learning problems, and various theoretical

results on the convergence properties of these algorithms have been proven.

For example, Watkins Q-learning algorithm guarantees asymptotic conver-

gence to optimal values (from which the optimal actions can b e derived)

provided every state of the MDP has been visited an in�nite number of times

(Watkins, 1989; Watkins & Dayan, 1992; Jaakkola et al., 1994; Tsitsiklis,

1994). This asymptotic result does not specify a strategy for achieving this

in�nite exploration, and as such does not provide a solution to the inherent

exploitation-exploration trade-o�. To address this, Singh et al. (1998) spec-

ify two exploration strategies that guarantee both suÆcient exploration for

asymptotic convergence to optimal actions, and asymptotic exploitation, for

both the Q-learning and SARSA algorithms (a variant of Q-learning) (Rum-

mery & Niranjan, 1994; Singh & Sutton, 1996; Sutton, 1995). Gullapalli and

Barto (1994) and Jalali and Ferguson (1989) presented algorithms that learn

a model of the environment from experience, perform value iteration on the

estimated model, and with in�nite exploration converge to the optimal pol-

icy asymptotically.

These results, and to the best of our knowledge, all other results for

reinforcement learning in general MDPs, are asymptotic in nature, providing

no guarantee on either the numb e r o f actions or the computation time the

agent requires to achieve near-optimal performance.

1

On the other hand, non-asymptotic results become available if one con-

siders restricted classes of MDPs, if the model of learning is modi�ed from

the standard one, or if one changes the criteria for success. Thus, Saul and

Singh (1996) provide an algorithm and learning curves (convergence rates)

for an interesting special class of MDPs problem designed to highlight a

particular exploitation-exploration trade-o�. Fiechter (1994; 1997), whose

results are closest in spirit to ours, considers only the discounted-payo�

case, and makes the learning protocol easier by assuming the availability o f

a \reset" button that allows his agent to return to a set of start-states at

arbitrary times. Others have provided non-asymptotic results for prediction

in uncontrolled Markov processes (Schapire & Warmuth, 1994; Singh &

Dayan, 1998).

Thus, despite the many interesting previous results in reinforcement

learning, the literature has lacked algorithms for learning optimal behav-

ior in general MDPs with provably �nite bounds on the resources (actions

and computation time) required, under the standard model of learning in

which the agent w anders continuously in the unknown environment. The re-

sults presented in this paper �ll this void in what is essentially the strongest

possible sense.

We present new algorithms for reinforcement learning, and prove that

they have polynomial bounds on the resources required to achieve near-

optimal payo� in general MDPs. After observing that the number of actions

required to approach the optimal return is lower bounded, for any algorithm,

by the mixing time T of the optimal policy (in the undiscounted-payo�

case) or by the horizon time T (in the discounted-payo� case), we then give

algorithms requiring a numb e r o f actions and total computation time that

are only polynomial in T and the number of states, for both the undiscounted

and discounted cases. An interesting aspect of our algorithms is their rather

explicit handling of the exploitation-exploration trade-o�.

Two important caveats apply to our current results, as well as all the

prior results mentioned above. First, we assume that the agent can observe

the state of the environment, which m a y b e a n impractical assumption for

some reinforcement learning problems. Second, we do not address the fact

that the state space may be so large that we will have to resort to methods

such as function approximation. While some results are available on rein-

forcement learning and function approximation (Sutton, 1988; Singh et al.,

1995; Gordon, 1995; Tsitsiklis & Roy, 1996), and for partially observable

MDPs (Chrisman, 1992; Littman et al., 1995; Jaakkola et al., 1995), they

are all asymptotic in nature. The extension of our results to such cases is

2

left for future work.

The outline of the paper is as follows: in Section 2, we give standard

de�nitions for MDPs and reinforcement learning. In Section 3, we argue

that the mixing time of policies must be taken into consideration in order to

obtain �nite-time convergence results in the undiscounted case, and make

related technical observations and de�nitions. Section 4 makes similar ar-

guments for the horizon time in the discounted case, and provides a needed

technical lemma. The heart of the paper is contained in Section 5, where

we state and prove our main results, describe our algorithms in detail, and

provide intuitions for the proofs of convergence rates. Section 6 eliminates

some technical assumptions that were made for convenience during the main

proofs, while Section 7 discusses some extensions of the main theorem that

were deferred for the exposition. Finally, in Section 8 we close with a dis-

cussion of future work.

2 Preliminaries and De�nitions

We begin with the basic de�nitions for Markov decision processes.

De�nition 1 A Markov decision process (MDP) M on states 1; : : : ; N

and with actions a1

; : : : ; a k, c onsists of:

� The transition probabilities P

a (ij) � 0, which for any action a,M

and any states i and j, s p ecify the probability of reaching state j after P

executing action a from state i in M . Thus, j

P

a (ij) = 1 for any M

state i and action a.

R
� The payo� distributions, for each state i, with mean RM

(i) (where

max

� RM

(i) � 0), and variance Var M

(i) � Varmax

. These distri-

butions determine the random payo� received when state i is visited.

For simplicity, w e will assume that the number of actions k is a constant;

it will be easily veri�ed that if k is a parameter, the resources required by

our algorithms scale polynomially with k.

Several comments regarding some benign technical assumptions that we

will make on payo�s are in order here. First, it is common to assume that

payo�s are actually associated with state-action pairs, rather than with

states alone. Our choice of the latter is entirely for technical simplicity,

and all of the results of this paper hold for the standard state-action pay-

o�s model as well. Second, we h a ve assumed �xed upper bounds Rmax

and

3

Varmax

on the means and variances of the payo� distributions; such a re-

striction is necessary for �nite-time convergence results. Third, we have

assumed that expected payo�s are always non-negative for convenience, but

this is easily removed by adding a suÆciently large constant t o e v ery payo�.

Note that although the actual payo�s experienced are random variables

governed by the payo� distributions, for most of the paper we will be able to

perform our analyses in terms of the means and variances; the only exception

will be in Section 5.5, where we need to translate high expected payo�s into

high actual payo�s.

We n o w m o ve to the standard de�nition of a stationary and deterministic

policy in an MDP.

De�nition 2 Let M be a Markov decision process over states 1; : : : ; N and

with actions a1; : : : ; a k. A policy in M is a mapping � : f1; : : : ; N g !

fa1

; : : : ; a kg.

Later we will have occasion to de�ne and use non-stationary policies, that

is, policies in which the action chosen from a given state also depends on

the time of arrival at that state.

An MDP M , combined with a policy �, yields a standard Markov pro-

cess on the states, and we will say that � is ergodic if the Markov process

resulting from � is ergodic (that is, has a well-de�ned stationary distribu-

tion). For the development and exposition, it will b e easiest to consider

MDPs for which every policy is ergodic, the so-called unichain MDPs (Put-

erman, 1994). In a unichain MDP, the stationary distribution of any policy

does not depend on the start state. Thus, considering the unichain case

simply allows us to discuss the stationary distribution of any policy without

cumbersome technical details, and as it turns out, the result for unichains

already forces the main technical ideas upon us. Our results generalize to

non-unichain (multichain) MDPs with just a small and necessary change to

the de�nition of the best performance we can expect from a learning algo-

rithm. This generalization to multichain MDPs will be given in Section 7.

In the meantime, however, it is important to note that the unichain as-

sumption does not imply that every policy will eventually visit every state,

or even that there exists a single policy that will do so quickly; thus, the

exploitation-exploration dilemma remains with us strongly.

The following de�nitions for �nite-length paths in MDPs will be of re-

peated technical use in the analysis.

De�nition 3 Let M be a Markov decision process, and let � be a policy in

4

M . A T -path in M is a sequence p of T +1 states (that is, T transitions)

of M :

p = i1

; i 2

; : : : ; i T

; i T +1

: (1)

The probability that p is traversed in M upon starting in state i1

and exe-

cuting policy � is

T �(ik

)
Pr�

M

[p] = � k=1PM

(ik

ik+1): (2)

We n o w de�ne the two standard measures of the return of a policy.

De�nition 4 Let M be a Markov decision process, let � be a policy in M ,

and let p be a T -path in M . The (expected) undiscounted return along

p in M is

1

UM

(p) = (Ri1

+ � � � + RiT

) (3)

T

and the (expected) discounted return along p in M is

VM

(p) = Ri1

+ R i2

+ 2 Ri3

� � � + T �1RiT

(4)

where 0 � < 1 is a discount factor that makes future r eward less valuable

than immediate reward. The T -step undiscounted return from state i is

X

M

(i; T) = Pr�U

�
M

[p]UM

(p) (5)

p

and the T -step discounted return from state i is

X

M

(i; T) = Pr�V

�
M

[p]VM

(p) (6)

p

where in both cases the sum is over all T -paths p in M that start at i. We

de�ne U

� (i) = limT !1

U

� (i; T) and V

� (i) = limT !1

V

� (i; T). Since we M M M M

are in the unichain case, U

� (i) is independent of i, and we will simply write M

U

� .M

Furthermore, we de�ne the optimal T -step undiscounted return

from i in M by

M

(i; T) = max fU

�U

�

M

(i; T)g (7)

�

and similarly, the optimal T -step discounted return from i in M by

M

(i; T) = max fV

�V

�

M

(i; T)g: (8)

�

5

M

(i) = limT !1

U

�

M

(i) = limT !1

V

�Also, U

�

M

(i; T) and V

�

M

(i; T). Since we

are in the unichain case, U

�

M

(i) is independent of i, and we will simply write

U

� . The existence of these limits is guaranteed in the unichain case. M

Finally, we denote the maximum possible T -step return by GT ; inmax

the undiscounted case GT � Rmax

, while in the discounted case GT �max max

TR max

.

3 The Undiscounted Case and Mixing Times

It is easy to see that if we are seeking results about the undiscounted return

of a learning algorithm after a �nite number of steps, we need to take into

account some notion of the mixing times of policies in the MDP. To put it

simply, in the undiscounted case, once we m o ve from the asymptotic return

to the �nite-time return, there may no longer b e a well-de�ned notion of

\the" optimal policy. There may be some policies which will eventually yield

high return (for instance, by �nally reaching some remote, high-payo� state),

but take many steps to approach this high return, and other policies which

yield lower asymptotic return but higher short-term return. Such policies

are simply incomparable, and the best we could hope for is an algorithm

that \competes" favorably with any policy, in an amount of time that is

comparable to the mixing time of that policy .

The standard notion of mixing time for a policy � in a Markov deci-

sion process M quanti�es the smallest numb e r T of steps required to ensure

that the distribution on states after T steps of � is within � of the sta-

tionary distribution induced by �, where the distance between distributions

is measured by the Kullback-Leibler divergence, the variation distance, or

some other standard metric. Furthermore, there are well-known methods

for bounding this mixing time in terms of the second eigenvalue of the tran-

sition matrix P

� , and also in terms of underlying structural properties of M

the transition graph, such as the conductance (Sinclair, 1993). It turns out

that we can state our results for a weaker notion of mixing that only requires

the expected return after T steps to approach the asymptotic return.

De�nition 5 Let M be a Markov decision process, and let � be a n ergodic

policy in M . The �-return mixing time of � is the smallest T such that

for all T

0 � T , jU

�
M

j � � for all i.M

(i; T

0) � U

�

Suppose we are simply told that there is a policy � whose asymptotic

return U

� exceeds some value R in an unknown MDP M , and that the M

6

Reward RReward 0
State 0

1- ∆

∆ State 1

1

Figure 1: A simple Markov process demonstrating that �nite-time convergence

results must account for mixing times.

�-return mixing time of � is T . In principle, a suÆciently clever learning

algorithm (for instance, one that managed to discover � \quickly") could

achieve return close to U

�
M � � in not much more than T steps. Conversely,

without further assumptions on M or �, it is not reasonable to expect any

learning algorithm to approach return U�
M in many fewer than T steps. This

is simply because it may take the assumed policy � itself on the order of

T steps to approach its asymptotic return. For example, suppose that M

has just two states and only one action (see Figure 1): state 0 with payo�

0, self-loop probability 1 � �, and probability � of going to state 1; and

absorbing state 1 with payo� R >> 0. Then for small � and �, the �-return

mixing time is on the order of 1=�; but starting from state 0, it really will

require on the order of 1=� steps to reach the absorbing state 1 and start

approaching the asymptotic return R.

We n o w relate the notion of �-return mixing time to the standard notion

of mixing time.

Lemma 1 Let M be a Markov decision process on N states, and let � be

an ergodic policy in M . Let T be the smallest value such that for all T

0 � T ,

for any state i, the probability of being in state i after T

0 steps of � is within

�=(NR max

) of the stationary probability of i under �. Then the �-return

mixing time of � is at most

3 RT max .
�

The proof of the lemma follows in a straightforward way from the linear-

ity of expectations, and is omitted. The important point is that the �-return

mixing time is polynomially bounded by the standard mixing time, but may

in some cases be substantially smaller. This would happen, for instance, if

the policy quickly settles on a subset of states with common payo�, but takes

a long time to settle to its stationary distribution within this subset. Thus,

we will choose to state our results for the undiscounted return in terms of

7

the �-return mixing time, but can always translate into the standard notion

via Lemma 1.

With the notion of �-return mixing time, we can now b e more precise

about what type of result is reasonable to expect for the undiscounted case.

We would like a learning algorithm such that for any T , in a numb er of

actions that is polynomial in T , the return of the learning algorithm is close

to that achieved by the best policy among those that mix in time T . This

motivates the following de�nition.

�;T
M to be the De�nition 6 Let M be a Markov decision process. We de�ne �

class of all ergodic policies � in M whose �-return mixing time is at most

�;T
MT . We let opt (�) denote the optimal expected asymptotic undiscounted

�;T
M .return among all policies in �

Thus, our goal in the undiscounted case will be to compete with the poli-

�;T
M in time that is polynomial in T , 1 =� and N . We will eventually cies in �

give an algorithm that meets this goal for every T and � simultaneously . An

interesting special case is when T = T

�, where T

� is the �-mixing time of the

asymptotically optimal policy, whose asymptotic return is U

�. Then in time

polynomial in T

�, 1=� and N , our algorithm will achieve return exceeding

U

� � � with high probability. It should be clear that, modulo the degree of

the polynomial running time, such a result is the best that one could hope

for in general MDPs.

4 The Discounted Case and the Horizon Time

For the discounted case, the quanti�cation of which policies a learning al-

gorithm is competing against is more straightforward, since the discounting

makes it possible in principle to compete against all policies in time pro-

portional to the horizon time. In other words, unlike in the undiscounted

case, the expected discounted return of any policy after T � 1=(1 �) steps

approaches the expected asymptotic discounted return. This is made precise

by the following lemma.

Lemma 2 Let M be any Markov decision process, and let � be any policy

in M . If

T � (1=(1 �)) log(Rmax

=(�(1 �))) (9)

then for any state i,

�
M (i; T) � V �

M

�
M (i; T) + �: (10)V (i) � V

8

We call the value of the lower bound on T given above the �-horizon time

for the discounted MDP M .

Proof: The lower bound on V

�

M

(i) follows trivially from the de�nitions,

since all expected payo�s are nonnegative. For the upper bound, �x any

in�nite path p, and let R1

; R 2

; : : : b e the expected payo�s along this path.

Then

VM

(p) = R1

+ R 2

+ 2R3

+ � � � (11)

T 1 X X

� k�1Rk

+ Rmax

T k (12)

k=1 k=0

= VM

(p0) + Rmax

T (1=(1 �)) (13)

where p0 is the T -path pre�x of the in�nite path p. Solving

Rmax

T (1=(1 �)) � � (14)

for T yields the desired bound on T ; since the inequality holds for every �xed

path, it also holds for the distribution over paths induced by a n y policy �.

2

In the discounted case, we m ust settle for a notion of \competing" that

is slightly di�erent than for the undiscounted case. The reason is that while

in the undiscounted case, since the total return is always simply averaged ,

a learning algorithm can recover from its \youthful mistakes" (low return

during the early part of learning), this is not possible in the discounted case

due to the exponentially decaying e�ects of the discounting factor. The

most we can ask for is that, in time polynomial in the �-horizon time, the

learning algorithm has a policy that, from its current state, has discounted

return within � of the asymptotic optimal for that state. Thus, if time were

reinitialized to 0, with the current state being the start state, the learned

policy would have near-optimal expected return. This is the goal that our

algorithm will achieve for general MDPs in the discounted case.

5 Main Theorem

We are now ready to describe our new learning algorithms, and to state

and prove our main theorem: namely, that the new algorithms will, for a

general MDP, a c hieve near-optimal performance in polynomial time, where

the notions of performance and the parameters of the running time (mixing

9

and horizon times) have been described in the preceding sections. For ease

of exposition only , we will �rst state the theorem under the assumption

that the learning algorithm is given as input a \targeted" mixing time T ,

T ;�and the optimal return opt (�M

) achieved by any policy mixing within T

steps (for the undiscounted case), or the optimal value function V

�(i) (for

the discounted case). This simpler case already contains the core ideas of

the algorithm and analysis, and these assumptions are entirely removed in

Section 6.

Theorem 3 (Main Theorem) Let M be a Markov decision process over N

states.

T ;�� (Undiscounted c ase) Recall that �M

is the class of all ergodic policies

T ;�whose �-return mixing time is bounded b y T , and that opt (�M

) is the

T ;�optimal asymptotic expected undiscounted return achievable in �M

.

T ;�There exists an algorithm A, taking inputs �; Æ;N ; T and opt (�M

),

such that the total number of actions and computation time taken by

A is polynomial in 1=�; 1=Æ; N , T , and Rmax

, and with probability at

T ;�least 1 � Æ, the total actual return of A exceeds opt (�M

) � �.

�	 (Discounted case) Let V

�(i) denote the value function for the policy

with the optimal expected discounted return in M . Then there exists

an algorithm A, taking inputs �; Æ; N and V

�(i), such that the total

number of actions and computation time taken by A is polynomial

in 1=�; 1=Æ; N , the horizon time T = 1=(1 �), and Rmax

, and with

probability at least 1 � Æ, A will halt in a state i, and output a policy

�̂, such that V

�̂ (i) � V

�(i) � �.M

The remainder of this section is divided into several subsections, each

describing a di�erent and central aspect of the algorithm and proof. The

full proof of the theorem is rather technical, but the underlying ideas are

quite intuitive, and we s k etch them �rst as an outline.

5.1 High-Level Sketch of the Proof and Algorithms

Although there are some di�erences b e t ween the algorithms and analyses

for the undiscounted and discounted cases, for now it will b e easiest to

think of there being only a single algorithm. This algorithm will be what is

commonly referred to as indirect or model-based : namely, rather than only

maintaining a current policy or value function, the algorithm will actually

10

maintain a model for the transition probabilities and the expected payo�s

for some subset of the states of the unknown MDP M . It is important

to emphasize that although the algorithm maintains a partial model of M ,

it may choose to never build a complete model of M , if doing so is not

necessary to achieve high return.

It is easiest to imagine the algorithm as starting o� by doing what we

will call balanced wandering . By this we mean that the algorithm, upon

arriving in a state it has never visited before, takes an arbitrary action

from that state; but upon reaching a state it has visited before, it takes the

action it has tried the fewest times from that state (breaking ties b e t ween

actions randomly). At each state it visits, the algorithm maintains the

obvious statistics: the average payo� received at that state so far, and for

each action, the empirical distribution of next states reached (that is, the

estimated transition probabilities).

A crucial notion for both the algorithm and the analysis is that of a

known state. Intuitively, this is a state that the algorithm has visited \so

many" times (and therefore, due to the balanced wandering, has tried each

action from that state many times) that the transition probability and ex-

pected payo� estimates for that state are \very close" to their true values in

M . An important aspect of this de�nition is that it is weak enough that \so

many" times is still polynomially bounded, yet strong enough to meet the

simulation requirements we will outline shortly. The fact that the de�nition

of known state achieves this balance is shown in Section 5.2.

States are thus divided into three categories: known states, states that

have been visited before, but are still unknown (due to an insuÆcient n umb e r

of visits and therefore unreliable statistics), and states that have not even

been visited once. An important observation is that we cannot do balanced

wandering inde�nitely before at least one state becomes known: by the

Pigeonhole Principle, we will soon start to accumulate accurate statistics at

some state. This fact will be stated more formally in Section 5.5.

Perhaps our most important de�nition is that of the known-state MDP .

If S is the set of currently known states, the current known-state MDP

is simply an MDP MS

that is naturally induced on S by the full MDP M ;

briey, all transitions in M between states in S are preserved in MS

, while all

other transitions in M are \redirected" in MS

to lead to a single additional,

absorbing state that intuitively represents all of the unknown and unvisited

states.

Although the learning algorithm will not have direct access to MS

, by

virtue of the de�nition of the known states, it will have an approximation

11

M̂S

. The �rst of two central technical lemmas that we prove (Section 5.2)

^shows that, under the appropriate de�nition of known state, MS

will have

good simulation accuracy : that is, the expected T -step return of any policy

^in MS

is close to its expected T -step return in MS

. (Here T is either the

mixing time that we are competing against, in the undiscounted case, or the

^horizon time, in the discounted case.) Thus, at any time, MS

is a partial

model of M , for that part of M that the algorithm \knows" very well.

The second central technical lemma (Section 5.3) is perhaps the most

enlightening part of the analysis, and is named the \Explore or Exploit"

Lemma. It formalizes a rather appealing intuition: either the optimal (T -

step) policy achieves its high return by staying, with high probability, in

the set S of currently known states | which, most importantly, the algo-

rithm can detect and replicate by �nding a high-return exploitation policy

^in the partial model MS

| or the optimal policy has signi�cant probability

of leaving S within T steps | which again the algorithm can detect and

replicate by �nding an exploration policy that quickly reaches the additional

^absorbing state of the partial model MS

.

^Thus, by performing two o�-line, polynomial-time computations on MS

(Section 5.4), the algorithm is guaranteed to either �nd a way to get near-

optimal return in M quickly, or to �nd a way to improve the statistics at

an unknown or unvisited state. Again by the Pigeonhole Principle, the

latter case cannot occur too many times before a new state becomes known,

and thus the algorithm is always making progress. In the worst case, the

algorithm will build a model of the entire MDP M , but if that does happen,

the analysis guarantees that it will happen in polynomial time.

The following subsections esh out the intuitions sketched above, pro-

viding the full proof of Theorem 3. In Section 6, we show how to remove

the assumed knowledge of the optimal return.

5.2 The Simulation Lemma

In this section, we prove the �rst of two k ey technical lemmas mentioned in

^the sketch of Section 5.1: namely, that if one MDP M is a suÆciently accu-

rate approximation of another MDP M , then we can actually approximate

the T -step return of any policy in M quite accurately by its T -step return

^in M .

Eventually, w e will appeal to this lemma to show that we can accurately

assess the return of policies in the induced known-state MDP MS

by com-

^puting their return in the algorithm's approximation MS

(that is, we will

12

^ ^appeal to Lemma 4 below using the settings M = MS

and M = MS

). The

important technical point is that the goodness of approximation required

depends only polynomially on 1=T , and thus the de�nition of known state

will require only a polynomial number of visits to the state.

We begin with the de�nition of approximation we require.

^De�nition 7 Let M and M be Markov decision processes over the same

^state space. Then we say that M is an �-approximation of M if:

� For any state i,

RM

(i) � � � R ^ (i) � RM

(i) + �; (15)M

� For any states i and j, and any action a,

M

(ij) � � � P

a (ij) � P

aP

a

^ M

(ij) + �: (16)

M

We n o w state and prove the Simulation Lemma, which s a ys that provided

M̂ is suÆciently close to M in the sense just de�ned, the T -step return of

^policies in M and M will be similar.

Lemma 4 (Simulation Lemma) Let M be any Markov decision process over

N states.

^ T� (Undiscounted Case) Let M be an O((�=(N TG max

))2)-approximation

T;�=2
of M . Then for any policy � in �M

1 , and for any state i,

M

(i; T) � � � U

� (i; T) � U

�U

�

^ M

(i; T) + �: (17)

M

� (Discounted Case) Let T � (1=(1 �)) log(Rmax

=(�(1 �))), and let

^ TM be an O(�=(N TG max

))2)-approximation of M . Then for any policy

� and any state i,

M

(i) � � � V

� (i) � V

�V

�

^ M

(i) + �: (18)
M

1 Note that the lemma for the undiscounted case is stated with respect to those policies

whose �=2-return mixing time is T , as opposed to �-return mixing time. However, the �=2-

return and �-return mixing times are linearly related by standard eigenvalue arguments.

13

Proof: Let us �x a policy � and a start state i. Let us say that a

transition from a state i0 to a state j0 under action a is �-small in M if

P

a (i0j0) � �. Then the probability that T steps from state i following M

policy � will cross at least one �-small transition is at most �N T . This is

because the total probability of all �-small transitions in M from any state i0

under action �(i0) is at most �N , and we h a ve T independent opportunities

to cross such a transition. This implies that the total expected contribution

to either U

� (i; T) or V

� (i; T) by the walks of � that cross at least one M M

T�-small transition of M is at most �N TG max

.

(i0j0) � � + � (since

M

M

a0 0(i j) � � implies P ^
�approximation of M), the total contribution to either U ^

Similarly, since P

a

M

M̂ is an �-

�V
M̂

by the walks of � that cross at least one �-small transition of M is at most

(� + �)N TG max

. We can thus bound the di�erence between U

�T
M

(i; T) and

(i; T) or (i; T)

�(i; T) and V ^

a0 0(i j) � � � PM ^

M M

T(� + 2 �)N TG max

. We will eventually determine a choice for � and solve

T(� + 2 �)N TG max

� �=4 (19)

Thus, for now w e restrict our attention to the walks of length T that do

not cross any �-small transition of M . Note that for any transition satisfying

P

a

M

(i0j0) > � , w e can convert the additive approximation

P

a

M

�U ^

for �.

(i; T) (or b etween V

�

M

(i; T)) restricted to these walks by

(i0j0) � P

a

M

(i0j0) + � (20)

a0 0(i j) � P ^M

to the multiplicative approximation

(1 � �)P

a

M

(i0j0) � (1 + �)P

a

M

(i0j0) (21)

�[p] � PrM ^

where � = �=�. Thus, for any T -path p that, under �, does not cross any

�-small transitions of M , w e have

(1 � �)T Pr�

M

[p] � (1 + �)T Pr�

M

[p]: (22)

For any T -path p, the approximation error in the payo�s yields

UM

(p) � � � U ^ (p) � UM

(p) + � (23)M

and

VM

(p) � T� � V ^ (p) � VM

(p) + T�: (24)M

14

Since these inequalities hold for any �xed T -path that does not traverse any

�-small transitions in M under �, they also hold when we take expectations

^over the distributions on such T -paths in M and M induced by �. Thus,

(1��)T [U

�

^ M

(i; T)+ �]+ �=4 (25) M

(i; T)��]��=4 � U

� (i; T) � (1+ �)

T [U

�

M

and

M

(i; T) � T�] � �=4 � V

� (i; T) � (1 + �)T [V

�(1 � �)T [V

�

^ M

(i; T) + T�] + �=4

M

(26)

where the additive �=4 terms account for the contributions of the T -paths

that traverse �-small transitions under �, as bounded by Equation (19).

For the upper bounds, we will use the following Taylor expansion:

log(1 + �)T = T log(1 + �) = T (� � �2=2 + �

3 =3 � � � �) � T �=2: (27)

Now to complete the analysis for the undiscounted case, we need two con-

ditions to hold:

M

(i; T) � U

�(1 + �)T U

�
M

(i; T) + �=8 (28)

and

(1 + �)T � � �=8; (29)

M

(i; T) + �] + �=4 � U

�because then (1 + �)T [U

�
M

(i; T) + �=2. The �rst

condition would b e satis�ed if (1 + �)

T � 1 + �=8GT ; solving for � we max

Tobtain T �=2 � �=8GT or � � �=(4TG max

). This value of � also implies max

that (1 + �)T is a constant and therefore satisfying the second condition

would require that � = O(�).

Recalling the earlier constraint given by Equation (19), if we choose p

� = �, then we �nd that

pT(� + 2 �)N TG max

� 3 �N TG

T � �=4 (30)max

and p T� = �=� = � � �=(4TG max

) (31)

and � = O(�) are all satis�ed by the choice of � given in the lemma. A

similar argument yields the desired lower bound, which completes the proof

for the undiscounted case. The analysis for the discounted case is entirely

analogous, except we m ust additionally appeal to Lemma 2 in order to relate

the T -step return to the asymptotic return. 2

15

The Simulation Lemma essentially determines what the de�nition of

known state should b e : one that has been visited enough times to ensure

(with high probability) that the estimated transition probabilities and the

Testimated payo� for the state are all within O((�=(N TG max

))2) of their true

values. The following lemma, whose proof is a straightforward application

of Cherno� bounds, makes the translation between the number of visits to

a state and the desired accuracy of the transition probability and payo�

estimates.

Lemma 5 Let M be a Markov decision process. Let i be a state of M

that has been visited at least m times, with each action a1; : : : ; a k

having

been executed a t least bm=kc times from i. Let P̂ a (ij) denote the empirical M

probability transition estimates obtained from the m visits to i. For

m = O(((N T G

T

max

)=�)4 Varmax

log(1=Æ)) (32)

with probability at least 1 � Æ, we have

j P̂

a

M

(ij) � P

a

M

(ij)j = O(�=(N T G

T

max

))2) (33)

for all states j and actions a, and

j R̂M

(i) � RM

(i)j = O(�=(N T G

T

max

))2) (34)

where Varmax

= maxi[Var M

(i)] is the maximum variance of the random

payo�s over all states.

Thus, we get our formal de�nition of known states:

De�nition 8 Let M be a Markov decision process. We say that a state i

of M is known if each action has been executed from i at least

mknown

= O(((N TG

T)=�)4 Varmax

log(1=Æ)) (35)max

times.

5.3 The \Explore or Exploit" Lemma

Lemma 4 indicates the degree of approximation required for suÆcient sim-

ulation accuracy, and led to the de�nition of a known state. If we let S

denote the set of known states, we now specify the straightforward way in

which these known states de�ne an induced MDP. This induced MDP has

an additional \new" state, which intuitively represents all of the unknown

states and transitions.

16

De�nition 9 Let M be a Markov decision process, and let S be any subset

of the states of M . The induced Markov decision process on S, denoted

MS

, has states S [f s0g, and transitions and payo�s de�ned as follows:

�	 For any state i 2 S, RMS

(i) = RM

(i); a ll p ayo�s in MS

are determin-

istic (zero variance) even if the payo�s in M are stochastic.

�	 RMS

(s0) = 0 .

�	 For any action a, P

a (s0

s0) = 1 . Thus, s0

is an absorbing state. MS

�	 For any states i; j 2 S, and any action a, P

a (ij) = P

a

MS

M

(ij). Thus,

transitions in M between states in S are preserved in MS

.

�	 For any state i 2 S and any action a, P

a (is0

) =

P

2S

P

a

s

MS

j = M

(ij). Thus,

all transitions in M that are not between states in S are redirected to

0

in MS

.

De�nition 9 describes an MDP directly induced on S by the true un-

known MDP M , and as such preserves the true transition probabilities be-

tween states in S. Of course, our algorithm will only have approximations to

these transition probabilities, leading to the following obvious approxima-

^tion to MS

: if we simply let M denote the obvious empirical approximation

^to M

2 , then MS

is the natural approximation to MS

. The following lemma

^establishes the simulation accuracy of MS

, and follows immediately from

Lemma 4 and Lemma 5.

Lemma 6 Let M be a Markov decision process, and let S be the set of

currently known states of M . Then with probability at least 1 � Æ,

T;�=2�	 (Undiscounted Case) For any policy � in � , and for any state i,MS

U

� (i; T) � � � U

�

^ (i; T) � U

� (i; T) + �: (36)MS MS

MS

�	 (Discounted Case) Let T � (1=(1 �)) log(Rmax

=(�(1 �))). Then for

any policy � and any state i,

V

� (i) � � � V

� (i) � V

� (i) + �: (37)^MS MS

MS

2 that is, the states of M̂ are simply all the states visited so far, the transition prob-

abilities of M̂ are the observed transition frequencies, and the rewards are the observed

rewards

17

Let us also observe that any return achievable in MS

(and thus approx-

^imately achievable in MS

) is also achievable in the \real world" M :

Lemma 7 Let M be a Markov decision process, and let S be the set of

currently known states of M . Then for any policy � in M , any state i 2 S,

and any T , U

� (i; T) � U

� (i; T) and V

� (i; T) � V

� (i; T).MS

M MS

M

Proof: Follows immediately from the facts that MS

and M are identical

on S, the expected payo�s are non-negative, and that outside of S no payo�

is possible in MS

. 2

We are now at the heart of the analysis: we h a ve identi�ed a \part" of the

unknown MDP M that the algorithm \knows" very well, in the form of the

^approximation MS

to MS

. The key lemma follows, in which w e demonstrate

^the fact that MS

(and thus, by the Simulation Lemma, MS

) must always

provide the algorithm with either a policy that will yield large immediate

return in the true MDP M , or a policy that will allow rapid exploration of

an unknown state in M (or both).

Lemma 8 (Explore or Exploit Lemma) Let M be any Markov decision pro-

cess, let S be any subset of the states of M , and let MS

be the induced

Markov decision process on M . For any i 2 S, any T , and any 1 > � > 0,

either there exists a policy � in MS

such that U

� (i; T) � UMS

�

M

(i; T) � �

(respectively, V

� (i; T) � VMS

�

M

(i; T) � �), or there exists a policy � in MS

s
such that the probability that a walk of T steps following � will terminate in

0

exceeds �=GT

max

.

Proof: We give the proof for the undiscounted case; the argument for the

discounted case is analogous. Let � be a policy in M satisfying U

� (i; T) =M

U�

M

(i; T), and suppose that U

�

MS

(i; T) < U

�

M

(i; T) � � (otherwise, � already

witnesses the claim of the lemma). We m a y write

X

M

(i; T) = Pr�U

�
M

[p]UM

(p) (38)

p

X X

M

[q]UM

(q) + Pr�= Pr� M

[r]UM

(r) (39)

q r

where the sums are over, respectively, all T -paths p in M that start in state

i, all T -paths q in M that start in state i and in which every state in q

is in S, and all T -paths r in M that start in state i and in which at least

18

one state is not in S. Keeping this interpretation of the variables p; q and r

�xed, we m a y write

X X

Pr� MS

MSM

[q]UM

(q) = Pr� [q]UMS

(q) � U

� (i; T): (40)

q q

The equality follows from the fact that for any path q in which e v ery state

M

[q] = Pr�is in S, Pr� MS

[q] and UM

(q) = UMS

(q), and the inequality from

the fact that U

� (i; T) takes the sum over all T -paths in MS

, not just those MS

that avoid the absorbing state s0. Thus

X

Pr� M

(i; T) � � (41)M

[q]UM

(q) � U

�

q

which implies that X

Pr�

M

[r]UM

(r) � �: (42)

r

But X X

M

[r]UM

(r) � GT
M

[r] (43)Pr�

max

Pr�

r r

and so X

Pr�

max

(44)M

[r] � �=GT

r

as desired. 2

5.4 O�-line Optimal Policy Computations

Let us take a moment to review and synthesize. The combination of Lem-

mas 6, 7 and 8 establishes our basic line of argument:

� At a n y time, if S is the set of current known states, the T -step return

^of any policy � in MS

(approximately) lower bounds the T -step return

of (any extension of) � in M .

^� At a n y time, there must either be a policy in MS

whose T -step return

^in M is nearly optimal, or there must b e a policy in MS

that will

quickly reach the absorbing state | in which case, this same policy,

executed in M , will quickly reach a state that is not currently in the

known set S.

19

In this section, we discuss how with two o�-line, polynomial-time com-

^putations on MS

, we can �nd both the policy with highest return (the

exploitation policy), and the one with the highest probability of reaching

the absorbing state in T steps (the exploration policy). This essentially

follows from the fact that the standard value iteration algorithm from the

dynamic programming literature is able to �nd T -step optimal policies for

an arbitrary MDP with N states in O(N

2 T) computation steps for both the

discounted and the undiscounted cases.

For the sake of completeness, we present the undiscounted and dis-

counted value iteration algorithms (Bertsekas & Tsitsiklis, 1989) below. The

optimal T -step policy may be non-stationary, and is denoted by a sequence

�� = f��

1

; �

�

2

; �

�

3

; : : : ; �

�(i) is the optimal action to be taken from t

� g, where �T

state i on the tth step.

T -step Undiscounted Value Iteration:

^Initialize: for all i 2 MS

, UT +1

(i) = 0 :0

For t = T ; T � 1; T � 2; : : : ; 1: P

for all i, Ut(i) = R ^ (i) + maxa j

P

a (ij)Ut+1

(j)^MS MS P

for all i ��(it

) = argmaxa[R ^ (i) +MS

j

P

a

M̂S

(ij)Ut+1

(j)]

Undiscounted value iteration works backwards in time, �rst producing the

optimal policy for time step T , then the optimal policy for time step T � 1,

and so on. Observe that for �nite T a policy that maximizes cumulative

T -step return will also maximize the average T -step return.

T -step Discounted Value Iteration:

^Initialize: for all i 2 MS

, VT +1

(i) = 0 :0

For t = T ; T � 1; T � 2; : : : ; 1: P

for all i, Vt(i) = R ^ (i) + maxa j

P

a (ij)Vt+1

(j)^MS MSP

for all i ��(it

) = argmaxa[R ^ (i) + MS

j

P

a

M̂S

(ij)Vt+1

(j)]

Again, discounted value iteration works backwards in time, �rst producing

the optimal policy for time step T , then the optimal policy for time step

T � 1, and so on.

Note that the total computation involved is O(N

2T) for both the dis-

counted and the undiscounted cases.

20

Our use of value iteration will b e straightforward: at certain points in

the execution of the algorithm, we will perform value iteration o�-line twice:

^once on MS

(using either the undiscounted or discounted version, depending

on the measure of return), and a second time on what we will denote

^
SM

0

(on which the computation will use undiscounted value iteration, regardless

of the measure of return).

M

0 ^The MDP

^
S

has the same transition probabilities as MS

, but di�erent

M

0payo�s: in

^
S

, the absorbing state s0

has payo� Rmax

and all other states

have payo� 0. Thus we reward exploration (as represented by visits to s0)

rather than exploitation. If �̂ is the policy returned by value iteration on

^ M

0MS

and �̂0 is the policy returned by v alue iteration on

^
S

, then Lemma 8

guarantees that either the T -step return of �̂ from our current known state

approaches the optimal achievable in M (which for now w e are assuming we

know, and can thus detect), or the probability that �̂0 reaches s0, and thus

that the execution of �̂0 in M reaches an unknown or unvisited state in T

steps with signi�cant probability (which w e can also detect).

5.5 Putting it All Together

All of the technical pieces we need are now in place, and we now give a

more detailed description of the algorithm, and tie up some loose ends. In

Section 6, we remove the assumption that we know the optimal returns that

can be achieved in M .

m

In the sequel, we will use the expression balanced wandering to denote

the steps of the algorithm in which the current state is not a known state,

and the algorithm executes the action that has been tried the fewest times

before from the current state. Note that once a state becomes known, by

de�nition it is never involved in a step of balanced wandering again. We use

known

to denote the number of visits required to a state before it becomes a

known state (di�erent for the undiscounted and discounted cases), as given

by De�nition 8.

We call the algorithm the Explicit Explore or Exploit (or E3) algorithm,

because whenever the algorithm is not engaged in balanced wandering, it

performs an explicit o�-line computation on the partial model in order to

�nd a T -step policy guaranteed to either exploit or explore. In the descrip-

tion that follows, we freely mix the description of the steps of the algorithm

with observations that will make the ensuing analysis easier to digest.

21

The Explicit Explore or Exploit (E3) Algorithm:

�	 (Initialization) Initially, the set S of known states is empty.

�	 (Balanced Wandering) Any time the current state is not in S, the

algorithm performs balanced wandering.

m
� (Discovery of New Known States) Any time a state i has been visited

known

times during balanced wandering, it enters the known set S,

and no longer participates in balanced wandering.

�	 Observation: Clearly, after N (mknown

� 1)+1 steps of balanced wan-

dering, by the Pigeonhole Principle some state becomes known. This

is the worst case, in terms of the time required for at least one state

to become known. More generally, if the total number of steps of bal-

anced wandering the algorithm has performed ever exceeds Nm known

,

then every state of M is known (even if these steps of balanced wan-

dering are not consecutive). This is because each known state can

account for at most mknown

steps of balanced wandering.

� (O�-line Optimizations) Upon reaching a known state i 2 S during

balanced wandering, the algorithm performs the two o�-line optimal

^ M

0policy computations on MS

and

^
S

described in Section 5.4:

{ (Attempted Exploitation) If the resulting exploitation policy �̂
^achieves return from i in MS

that is at least U

� � �=2 (respec-

tively, in the discounted case, at least V

�(i) � �=2), the algorithm

executes �̂ for the next T steps (respectively, halts and outputs

i and �̂). Here T is the given �=2-mixing time given to the algo-

rithm as input (respectively, the horizon time).

{ (Attempted Exploration) Otherwise, the algorithm executes the

resulting exploration policy �̂0 (derived from the o�-line compu-

M

0tation on

^
S

) for T steps in M , which b y Lemma 8 is guaranteed

to have probability at least �=(2GT) of leaving the set S.max

�	 (Balanced Wandering) Any time an attempted exploitation or at-

tempted exploration visits a state not in S, the algorithm immediately

resumes balanced wandering.

�	 Observation: Thus, every action taken by the algorithm in M is

either a step of balanced wandering, or is part of a T -step attempted

exploitation or attempted exploration.

22

This concludes the description of the algorithm; we can now wrap up

the analysis.

One of the main remaining issues is our handling of the con�dence pa-

rameter Æ in the statement of the main theorem: for both the undiscounted

and discounted case, Theorem 3 ensures that a certain performance guaran-

tee is met with probability at least 1�Æ. There are essentially three di�erent

sources of failure for the algorithm:

� At some known state, the algorithm actually has a poor approximation

^to the next-state distribution for some action, and thus MS

does not

have suÆciently strong simulation accuracy for MS

.

�	 Repeated attempted explorations fail to yield enough steps of balanced

wandering to result in a new known state.

�	 (Undiscounted case only) Repeated attempted exploitations fail to re-

sult in actual return near U

�.

Our handling of the failure probability Æ is to simply allocate Æ= 3 to

each of these sources of failure. The fact that we can make the probability

of the �rst source of failure (a \bad" known state) controllably small is

quanti�ed by Lemma 6. Formally, we use Æ0 = Æ= 3N in Lemma 6 to meet

the requirement that all states in MS

be known simultaneously.

For the second source of failure (failed attempted explorations), a stan-

dard Cherno� bound analysis suÆces: by Lemma 8, each attempted ex-

ploration can b e viewed as an independent Bernoulli trial with probability

at least �=(2GT) of \success" (at least one step of balanced wandering).max

In the worst case, we must make every state known before we can exploit,

requiring Nm known

steps of balanced wandering. The probability o f h a ving

fewer than Nm known

steps of balanced wandering will be smaller than Æ= 3

if the number of (T -step) attempted explorations is

O((GT =�)N log(N =Æ)mknown

):	 (45)max

We can now �nish the analysis for the discounted case. In the discounted

case, if we e v er discover a policy �̂ whose return from the current state i in

M̂S

is close to V

�(i) (attempted exploitation), then the algorithm is �nished

^by arguments already detailed | since (with high probability) MS

is a very

accurate approximation of part of M , �̂ must be a near-optimal policy from

i in M as well (Lemma 7). As long as the algorithm is not �nished, it must

be engaged in balanced wandering or attempted explorations, and we have

23

already bounded the numb e r of such steps before (with high probability)

every state is in the known set S. If and when S does contain all states

^of M , then MS

is actually an accurate approximation of the entire MDP

M , and then Lemma 8 ensures that exploitation must b e possible (since

exploration is not). We again emphasize that the case in which S eventually

contains all of the states of M is only the worst case for the analysis | the

algorithm may discover it is able to halt with a near-optimal exploitation

policy long before this ever occurs.

Using the value of mknown

given for the discounted case by De�nition 8,

the total numb e r o f actions executed by the algorithm in the discounted case

is thus bounded by T times the maximum number of attempted explorations,

given by Equation (45), for a bound of

TO((N TG max

=�) log(N =Æ)mknown

): (46)

The total computation time is bounded by O(N

2T) (the time required for

the o�-line computations) times the maximum number of attempted explo-

rations, giving

TO((N

3 TG max

=�) log(N =Æ)mknown

): (47)

For the undiscounted case, things are slightly more complicated, since

we do not want to simply halt upon �nding a policy whose expected re-

turn is near U

�, but want to achieve actual return approaching U

�, which

is where the third source of failure (failed attempted exploitations) enters.

We have already argued that the total numb e r of T -step attempted ex-

plorations the algorithm can perform before S contains all states of M is

polynomially bounded. All other actions of the algorithm must be accounted

for by T -step attempted exploitations. Each of these T -step attempted ex-

ploitations has expected return at least U

� � �=2. The probability that the

actual return, restricted to just these attempted exploitations, is less than

U

� � 3�=4, can b e made smaller than Æ= 3 if the numb e r of blocks exceeds

O((1=�)2 log(1=Æ)); this is again by a standard Cherno� bound analysis.

However, we also need to make sure that the return restricted to these

exploitation blocks is suÆcient to dominate the potentially low return of

the attempted explorations. It is not diÆcult to show that provided the

numb e r of attempted exploitations exceeds O(GT =�) times the numb e rmax

of attempted explorations (bounded by Equation (45)), both conditions are

satis�ed, for a total number of actions bounded by O(T =�) times the numb e r

of attempted explorations, which i s

O(NT (GT =�)2 log(N =Æ)mknown

): (48)max

24

The total computation time is thus O(N

2T =�) times the numb e r of at-

tempted explorations, and thus bounded by

O(N

3T (GT =�)2 log(N =Æ)mknown

):	 (49)max

This concludes the proof of the main theorem. We remark that no serious

attempt to minimize these worst-case bounds has been made; our immediate

goal was to simply prove polynomial bounds in the most straightforward

manner possible. It is likely that a practical implementation based on the

algorithmic ideas given here would enjoy performance on natural problems

that is considerably better than the current bounds indicate. (See Moore

and Atkeson, 1993, for a related heuristic algorithm.)

6	 Eliminating Knowledge of the Optimal Returns

and the Mixing Time

In order to simplify our presentation of the main theorem, we made the as-

sumption that the learning algorithm was given as input the targeted mixing

T ;�time T and the optimal return opt (�M

) a c hievable in this mixing time (in

the undiscounted case), or the value function V

�(i) (in the discounted case;

the horizon time T is implied by knowledge of the discounting factor).

In this section, we sketch the straightforward way in which these assump-

tions can be removed without changing the qualitative nature of the results,

and briey discuss some alternative approaches that may result in a more

practical version of the algorithm.

T ;�Let us begin by noting that knowledge of the optimal returns opt (�M

)

or V

�(i) is used only in the Attempted Exploitation step of the algorithm,

^where we must compare the return possible from our current state in MS

with the best possible in the entire unknown MDP M . In the absence of

this knowledge, the Explore or Exploit Lemma (Lemma 8) ensures us that

it is safe to have a bias towards exploration. More precisely, any time we

arrive in a known state i, we will �rst perform the Attempted Exploration

o�-line computation on the modi�ed known-state MDP

^
S

described inM

0

Section 5.4, to obtain the optimal exploration policy �̂0. Since it is a simple

matter to compute the probability that �̂0 will reach the absorbing state s0

of

^
S

in T steps, we can then compare this probability to the lower boundM

0

�=(2GT) of Lemma 8. As long as this lower bound is exceeded, we maymax

execute �̂0 in an attempt to visit a state not in S. If this lower bound is not

^exceeded, Lemma 8 guarantees that the o�-line computation on MS

in the

25

Attempted Exploitation step must result in an exploitation policy �̂ that is

close to optimal. As before, in the discounted case we halt and output �̂,

while in the undiscounted case we execute �̂ in M and continue.

Note that this exploration-biased solution to removing knowledge of

opt (� �;T
M) or V

�(i) results in the algorithm always exploring all states of

M that can be reached in a reasonable amount of time, before doing any ex-

ploitation. Although this is a simple way of removing the knowledge while

keeping a polynomial-time algorithm, practical variants of our algorithm

might pursue a more balanced strategy, such as the standard approach of

having a strong bias towards exploitation instead, but doing enough explo-

ration to ensure rapid convergence to the optimal performance. For instance,

we can maintain a schedule �(t) 2 [0; 1], where t is the total number of ac-

tions taken in M by the algorithm so far. Upon reaching a known state, the

algorithm performs Attempted Exploitation (execution of �̂) with probabil-

ity 1 � �(t), and Attempted Exploration (execution of �̂0) with probability

�(t). For choices such as �(t) = 1=t, standard analyses ensure that we

^will still explore enough that MS

will, in polynomial time, contain a pol-

icy whose return is near the optimal of M , but the return we h a ve enjoyed

in the meantime may b e m uch greater than the exploration-biased solution

given above. Note that this approach is similar in spirit to the \�-greedy"

method of augmenting algorithms such as Q-learning with an exploration

component, but with a crucial di�erence: while in �-greedy exploration, we

with probability �(t) attempt a single action designed to visit a rarely vis-

ited state, here we are proposing that with probability �(t) we execute a

multi-step policy for reaching an unknown state, a policy that is provably

0MS

^

For the undiscounted case, it still remains to remove our assumption

that the algorithm knows the targeted mixing time T . Indeed, we would

like to state our main theorem for any value of T : that is, for any T , as long

as we run the algorithm for a number of steps that is polynomial in T and

justi�ed by .

the other parameters, the total return will exceed opt (�

�;T
M) � � with high

probability. This is easily accomplished: ignoring all other parameters, we

already have an algorithm A(T) that, given T as input, runs for P (T) steps

for some �xed polynomial P (�) and meets the desired criterion. We now

propose a new algorithm A0, which does not need T as input, and simply

runs A sequentially for T = 1; 2; 3; : : : . For any T , the amount of time A0

must b e
 run before A0 has executed A(T) is T
t

P
=1

P (t) � TP (T) =
 P

0(T),

which is still polynomial in T . We just need to run A0 for suÆciently many

steps after the �rst P

0(T) steps to dominate any l o w-return periods that took

26

place in those P

0(T) steps, similar to the analysis done for the undiscounted

case towards the end of Section 5.5. We again note that this solution, while

suÆcient for polynomial time, is far from the one we would implement in

practice: for instance, we would clearly want to modify the algorithm so

that the many sequential executions of A shared and accumulated common

partial models of M .

7 The Multichain Case

The main issue in extending our results to arbitrary multichain MDPs is that

the asymptotic undiscounted return for any policy � is not independent o f

the start state. This makes the undiscounted case for multichain MDPs

look a lot like the usual discounted case. Indeed, our results extend to ar-

bitrary multichain MDPs in the discounted case without any modi�cation.

Therefore, one way to deal with the undiscounted-case multichain MDPs is

to only ask that given polynomial time our algorithm will be in a state for

which it has a policy that has an expected return that is near-optimal for

that state. Another way is to modify what we can expect when we compete

against a policy: instead of expecting to compete against the largest asymp-

totic return over any start state for that policy, we can compete against

the lowest asymptotic return over any start state for that policy. Thus, we

modify De�nitions 5 and 6 as follows:

Definition 5 Let M be a Markov decision process, and let � be any policy

in M . The �-return mixing time of � is the smallest T such that for all

T

0 � T , jU

� (i; T

0) � U

� (i)j � � for all i.M M

Definition 6 Let M be an arbitrary Markov decision process. We de�ne

T ;� to be the class of all policies in M whose �-return mixing time is at �M

T ;�most T . We let opt (�M

) = max T ;�

[mini

U

�

M

(i)], b e the optimal expected

�2�
M

T ;�asymptotic undiscounted return among all policies in �M

.

Under these re�ned de�nitions, all of our undiscounted-case results on

unichain MDPs extend without modi�cation to arbitrary MDPs.

8 Future Work

There are a numb e r o f i n teresting lines for further research.

27

�	 Practical implementation. Although the polynomial bounds proven

here are far too large to immediately claim the practical relevance of

our algorithm, we feel that the underlying algorithmic ideas are very

promising and will eventually result in a competitive algorithm. We

are currently examining the practical issues and choices that arise for

an implementation, some of which w ere discussed briey in Section 6,

and we hope to report on an implementation and experiments soon.

�	 A model-free version. Partially related to the last item, it would

be nice to �nd an algorithm similar to ours that did not require main-

taining a partial model, but only a policy (or perhaps several). We

are currently investigating this as well.

�	 Large state spaces. It would be interesting to study the applicability

of recent methods for dealing with large state spaces, such as function

approximation, to our algorithm. This has been recently investigated

in the context of factored MDPs (Kearns & Koller, 1999).

Acknowledgements

We give w arm thanks to Tom Dean, Tom Dietterich, Tommi Jaakkola, Leslie

Kaelbling, Michael Littman, Lawrence Saul, Terry Sejnowski, and Rich Sut-

ton for valuable comments. Satinder Singh was supported by NSF grant

IIS-9711753 for the portion of this work done while he was at the University

of Colorado, Boulder.

References

Barto, A. G., Sutton, R. S., & Watkins, C. (1990). Sequential decision

problems and neural networks. In Touretzky, D. S. (Ed.), Advances in

Neural Information Processing Systems 2, pages 686{693, San Mateo,

CA. Morgan Kaufmann.

Bertsekas, D. P. (1987). Dynamic Programming: Deterministic and Stochas-

tic Models. Englewood Cli�s, NJ: Prentice-Hall.

Bertsekas, D. P. & Tsitsiklis, J. N. (1989). Parallel and Distributed Compu-

tation: Numerical Methods. Englewood Cli�s, NJ: Prentice-Hall.

Bertsekas, D. P. & Tsitsiklis, J. N. (1996). Neuro-Dynamic Programming.

Belmont, MA: Athena Scienti�c.

28

Chrisman, L. (1992). Reinforcement learning with perceptual aliasing: The

perceptual distinctions approach. In AAAI-92.

Fiechter, C. (1994). EÆcient reinforcement learning. In COLT94: Proceed-

ings of the Seventh Annual ACM Conference on Computational Learn-

ing Theory, pages 88{97. ACM Press.

Fiechter, C. (1997). Expected mistake bound model for on-line reinforcement

learning. In Machine Learning: Proceedings of the Fourteenth Interna-

tional Conference (ICML97), pages 116{124. Morgan Kaufmann.

Gordon, G. J. (1995). Stable function approximation in dynamic program-

ming. In Prieditis, A. & Russell, S. (Eds.), Machine Learning: Proceed-

ings of the Twelth International Conference, pages 261{268. Morgan

Kaufmann.

Gullapalli, V. & Barto, A. G. (1994). Convergence of indirect adaptive

asynchronous value iteration algorithms. In Cowan, J. D., Tesauro,

G., & Alspector, J. (Eds.), Advances is Neural Information Processing

Systems 6, pages 695{702. Morgan Kau�man.

Jaakkola, T., Jordan, M. I., & Singh, S. (1994). On the convergence of

stochastic iterative dynamic programming algorithms. Neural Compu-

tation, 6 (6), 1185{1201.

Jaakkola, T., Singh, S., & Jordan, M. I. (1995). Reinforcement learning al-

gorithm for partially observable Markov decision problems. In Tesauro,

G., touretzky, D. S., & Leen, T. K. (Eds.), Advances in Neural Infor-

mation Processing Systems 7, pages 345{352. Morgan Kaufmann.

Jalali, A. & Ferguson, M. (1989). A distributed asynchronous algorithm

for expected average cost dynamic programming. In Proceedings of the

29th Conference on Decision and Control, pages 1283{1288, Honolulu,

Hawaii.

Kearns, M. & Koller, D. (1999). EÆcient Reinforcement Learning in Fac-

tored MDPs. To appear in IJCAI 1999.

Kumar, P. R. & Varaiya, P. P. (1986). Stochastic Systems: Estimation,

Identi�cation, and Adaptive Control. Englewood Cli�s, N.J.: Prentice

Hall.

29

Littman, M., Cassandra, A., & Kaelbling., L. (1995). Learning policies for

partially observable environments: Scaling up. In Prieditis, A. & Rus-

sell, S. (Eds.), Proceedings of the Twelfth International Conference on

Machine Learning, pages 362{370, San Francisco, CA. Morgan Kauf-

mann.

Moore, A. W & Atkeson, C. G.. (1993). Prioritized sweeping: Reinforcement

learning with less data and less real time. Machine Learning, 12 (1).

Puterman, M. L. (1994). Markov decision processes : discrete stochastic

dynamic programming. New York: John Wiley & Sons.

Rummery, G. A. & Niranjan, M. (1994). On-line Q-learning using connec-

tionist systems. Technical Report CUED/F-INFENG/TR 166, Cam-

bridge University Engineering Dept.

Saul, L. & Singh, S. (1996). Learning curve bounds for markov decision

processes with undiscounted rewards. In COLT96: Proceedings of the

Ninth Annual ACM Conference on Computational Learning Theory.

Schapire, R. E. & Warmuth, M. K. (1994). On the worst-case analysis of

temporal-di�erence learning algorithms. In Cohen, W. W. & Hirsh, H.

(Eds.), Machine Learning: Proceedings of the Eleventh International

Conference, pages 266{274. Morgan Kaufmann.

Sinclair, A. (1993). Algorithms for random generation and counting: a

Markov chain approach. Boston: Birkhauser.

Singh, S. & Dayan, P. (1998). Analytical mean squared error curves for

temporal di�erence learning. Machine Learning. in press.

Singh, S., Jaakkola, T., & Jordan, M. I. (1995). Reinforcement learning with

soft state aggregation. In Advances in Neural Information Processing

Systems 7. Morgan Kaufmann.

Singh, S., Jaakkola, T., Littman, M. L., & Szepesvari, C. (1998). Con-

vergence results for single-step on-policy reinforcement learning algo-

rithms. Machine Learning. in press.

Singh, S. & Sutton, R. S. (1996). Reinforcement learning with replacing

eligibility traces. Machine Learning, 22, 123{158.

30

Sutton, R. S. (1988). Learning to predict by the methods of temporal dif-

ferences. Machine Learning, 3, 9{44.

Sutton, R. S. (1995). Generalization in reinforcement learning: Successful

examples using sparse coarse coding. In Touretzky, D. S., Mozer, M. C.,

& Hasselmo, M. E. (Eds.), Advances in Neural Information Processing

Systems 8, pages 1038{1044. MIT Press.

Sutton, R. S. & Barto, A. G. (1998). Reinforcement Learning: An Introduc-

tion. Cambridge, MA: MIT Press.

Thrun, S. B. (1992). The role of exploration in learning control. In White,

D. A. & Sofge, D. A. (Eds.), Handbook of Intelligent Control: Neu-

ral, Fuzzy and Adaptive Approaches. Florence, Kentucky 41022: Van

Nostrand Reinhold.

Tsitsiklis, J. (1994). Asynchronous stochastic approximation and Q-

learning. Machine Learning, 16 (3), 185{202.

Tsitsiklis, J. & Roy, B. V. (1996). Feature-based methods for large scale

dynamic programming. Machine Learning, 22, 59{94.

Watkins, C. J. C. H. (1989). Learning from Delayed Rewards. PhD thesis,

Cambridge Univ., Cambridge, England.

Watkins, C. J. C. H. & Dayan, P. (1992). Q-learning. Machine Learning,

8 (3/4), 279{292.

31

