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Lecture Note 9 

1 Explicit Explore or Exploit (E3) Algorithm 

Last lecture, we studied the Q-learning algorithm: 

Qt+1(xt, at) = Qt(xt, at) + βt g (xt) + π min Qt(xt+1, a ≤) − Qt(xt, at) .at 
a

An important characteristic of Q-learning is that it is a model-free approach to learning an optimal policy 

in an MDP with unknown parameters. In other words, there is explicit attempt to model or estimate costs 

and/or transition probabilities — the value of each action is estimated directly through the Q-factor. 

Another approach to the same problem is to estimate the MDP parameters from the data and find a 

policy based on the estimated parameters. In this lecture, we will study one such algorithm — the Explicit 

Explore or Exploit (E3) algorithm, proposed by Kearns and Singh [1]. 

The main ideas for E3 are as follows: 

• we divide states in two sets: 

N known states 

NC unknown states 

• known states have been visited sufficiently many times to ensure that P̂a(x, y), ĝa(x) are “accurate” 

with high probabilities 

• an unknown state is moved to N when it has been visited at least m times for some number m 

ˆ ˆWe introduce two MDPs MN and MN . The MDP MN is presented in Fig. 1. Its main characteristic is that 

the unknown states from the original MDP are merged into a recurrent state x0 with cost ga(x0) = gmax, � a. 
ˆThe other MDP MN has the same structure as MN but the estimated transition probabilities and costs are 

replaced with their true values. 

We now introduce the algorithm. 

1.1 Algorithm 

We will first consider a version of E3 which assumes knowledge of J�; the assumption will be lifted later. 

The E3 algorithm proceeds as follows. 

1. Let N = ≥. Pick arbitrary state x0. Let k = 0. 

2. If xk → N , perform “balanced wandering:” /

ak = action chosen fewest times at state xk 

If xk → N , then 
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attempt exploitation: If the optimal policy �� for MN has Ĵ ˆ (xk) � J�(xk ) + βˆ
MN 2 , stop. 

Return xk and �� 
M̂N 

attempt exploration: Follow policy �̂S0 for T steps where T = 1 
1−� . 

ˆFigure 1: Markov Decision Process Mn 

Theorem 1 With probability no less than 1 − �, E3 will stop after a number of actions and computation 

time � 
1 1 1 

poly , , |S|, , gmax
δ � 1 − π 

and return a state x and policy u such that Ju(x) � J�(x) + δ. 

1.2 Main Points 

The main points used for proving Theorem 1 are as follows: 

(i) There exists m that is polynomially bounded such that, if all states in N have been visited at least m 
ˆtimes, then MN is sufficiently close to MN . 

(ii) Balanced wandering can only happen finitely many times. 

(iii) (a) Ju,MN (x) ∀ Ju(x) 

(b) ∅Ju,MN − J u,MN 
∅� � β with high probability ˆ 2 

(iv) If exploitation is not possible, then there is an exploration policy that reaches an unknown state after 

T transitions with high probability. 

To show the first main point, we consider the following lemma. 

Lemma 1 Suppose a state x has been visited at least m times with each action a → Ax having been executed 

at least ∈ m ⇒ times. Then, if |Ax | 

� 
1 1 1 

� 

m = poly |S|, , T, gmax, , log , var(g)
1 − π δ � 
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we have, w.p. ∀ 1 − �, 

|P̂a(x, y) − Pa(x, y)| = O δ 

�2
� 

1 − π 
|S|gmax 

�2
� 

1 − π 
|ĝa(x) − ga(x)| = O δ 

|S|gmax 

The proof of this lemma is a directly application of the Chernoff bound, which states that, if z1, z2, . . . 

are i.i.d. Bernoulli random variables, then 

1 
n � 

zi � Ez1 (SLLN) 
n 

i=1 

1 
n � 

n 
i=1 

zi − Ez1 > δ 
nδ2 

� 2 exp −P 
2 

The main point (ii) follows from pigeonhole principle: 

after (m − 1)|S| balanced wandering steps, at least one state will have to become known 

The main point iii(a) follows from the next lemma. 

Lemma 2 For all policy u, 

Ju,MN (x) ∀ Ju(x), � x. 

→ N since Ju,MN (x) = gmax ∀ Ju(x). If x → N , take T = inf{t : xt → N}. ThenProof: Trivial for x / 1−� /

�
T −1 

πt g πt gJu(x) = E u(xt) + u(xt) 
t=0 t=T 

�
T −1 

πt gu(xt) + πT gmax
� E 

1 − π 
t=0 

= Ju,MN (x) 

To prove the main point iii(b), we first introduce the following definition.


ˆ ˆ
Definition 1 Let M and M be two MDPs. Then M is a β-approximation to M if 

|P̂a(x, y) − Pa(x, y)| � β 

|ga(x) − ĝa(x)| � β. 

�2
�⎡ ⎡

2gmax M̂ is an O δLemma 3 If T ∀ 1 
1−� log 1−� 

|S|gmax 
approximation of M , then, �u,and

β(1−�) 

||Ju,M − J u,M ||� � δ.ˆ
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Sketch of proof: Take a policy u and a start state x. We consider paths of length T starting from x: 

p = x0, x1, x2, . . . , xT 

where p denotes the path. Note that 

t gu(xt) ,Ju,M (x) = Pu,M (p)gu(p) + E π
p t=T +1 

where 

Pu,M (p) = Pu,M (x0, x1)Pu,M (x1, x2) . . . Pu,M (xT −1, xT ) 

is the probability of observing path p and 

T �
t 

u(p) = π u(xt)g g
t=0 

is the discounted cost associated with path p. 

By selecting T properly, we can have 

πT gmax
πt gu(xt) � δE 

1 − π 
t=T +1 

Recall that a(x, y) − P̂a(x, y) � β.P We consider two kinds of paths: 

(a) paths containing at least one transition xt, xt+1 in the set R such that Pu(xt, xt+1) � �. Note that the 

total probability associated with such paths is less than or equal to �|S|T , since the probability of any 

given path is less than or equal to �, starting with each state x in each transition there are at most |S| 

possible “small probability” transitions, and there are T transitions where this can occur. Therefore 

p∗R 

Pu(p)gu(P) 
gmax gmax

� �|S|Pu(p) T . 
1 − π 1 − π 

p∗R 

M̂ to conclude that We can follow the same principle with the MDP 

(� + β)|S|Tgmax 

1 − π 
P̂u(p)ĝu(P) . 

p∗R 

Therefore, we have 

(β + 2�) |S| Tgmax 

1 − π 
P̂u(p) −Pu(p)g u(p)ĝu(p) 

p∗R p∗R 

(b) For all other paths, we have 

(1 − �)Pa(xt, xt+1) � P̂a(xt, xt+1) � (1 + �)Pa(xt, xt+1) 

where � = � . Therefore, 

(1 − �)T Pu(p) � P̂u(p) � (1 + �)T Pu(p). 
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Moreover, |gu(p) − ĝu(p)| � Tβ, then 
δ 

(1 − �)T [Ju,T − βT ] − � Ĵu,T � (1 + �)T [Ju,T + βT ] + 
δ 

4 4 
The theorem follows by considering an appropriate choice of �. � 

The main point (iv) says that: If exploitation is not possible, then exploration is. We show it by the 

following lemma. 

Lemma 4 For any x → N , one of the following must hold. 

(a) there exists u in MN such that JN
T (x) + β, or u,T (x) � J� 

(b) there exists u such that the probability that a walk of T steps will terminate in N C exceeds �(1−�) . 
gmax 

Proof: Let u� be the policy that attains J� 
T . If 

JN
T (x) + β u� ,T (x) � J� 

then we are done. Suppose that 

JN 
� ,T (x) > J� 

T (x) + β. u

Then we have 

JN PN 
� (q)g N PN 

� (p)g N 
� ,T (x) = u u (q) + (p)u u u 

q∗N r 
⎢⎦ ⎢⎦ 

path in N path outside N 

and 

Pu� (q)gu(q) + Pu� (q)gu(q). 
q r 

J� 
T (x) = 

Therefore ⎤ 

⎥
⎥
� 

�
�
⎣ JN 

u� ,T (x) − J� 
� ,T (x) = u PN 

� (p) g N 
� (p) − P � (p)gu� (p) > β uu u
⎢⎦ ⎢⎦

r 
� gmax �0 

1−� 

which implies 
β(1 − π)

PN gmax 
� (p) PN 

� (p) ∀ 
1 − π u gmax 

> β ≤ . u

r r 

In order the complete the proof of Theorem 1 from the four lemmas above, we have to consider the 

probabilities from two forms of failure: 

• failure to stop the algorithm with a near-optimal policy 

• failure to perform enough exploration in a timely fashion 

The first point is addressed by Lemmas 1, 2 and 3; which establish that, if the algorithm stops, with high 

probability the policy produced is near-optimal. The second point follows from Lemma 4, which shows that 

each attempt to explore is successful with some non negligible probability. By applying the Chernoff bound, 

it can be shown that, after a number of attempts that is polynomial in the quantities of interest, exploration 

will occur with high probability. 
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