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Abstract� This paper considers in parallel the scheduling problem for multi�
class queueing networks� and optimization of Markov decision processes� It is 

shown that the value iteration algorithm may perform poorly when the algo�
rithm is not initialized properly� The most typical case where the initial value 

function is taken to be zero may be a particularly bad choice� In contrast� if 

the value iteration algorithm is initialized with a stochastic Lyapunov function� 

then the following hold 

�i�� A stochastic Lyapunov function exists for each i n termediate policy� 

and hence each policy is regular �a strong stability condition�� 

�ii�� Intermediate costs converge to the optimal cost� 

�iii�� Any limiting policy is average cost optimal� 

It is argued that a natural choice for the initial value function is the value 

function for the associated deterministic control problem based upon a �uid 

model� or the approximate solution to Poisson�s equation obtained from the 

LP of Kumar and Meyn� Numerical studies show that either choice may l e a d 

to fast convergence to an optimal policy� 
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�� Introduction 

This paper presents a convergence proof for the value iteration algorithm for 

general Markov decision processes� and also develops methods for the application of 

this algorithm to the synthesis of optimal scheduling policies for multiclass queueing 

networks� The latter results are based upon the close connection between optimiza�
tion of a network� and optimal control of an associated �uid network model� 

Over the past ten years there have been several successful attempts to approxi�
mate a network model with a more tractable process to reduce the complexity of the 

control synthesis problem� The recent paper �MSS��� treats the optimal control of 

a m ulticlass queueing network by relating this problem to the optimal control of an 

associated di�usion process in heavy tra�c� following the work of �HW���� Meth�
o d s for translating an optimal policy for the Brownian system model back t o an 

implementable policy for the discrete�stochastic model are introduced in �Har���� 

In �Mey��b� Mey��� i t i s s h o wn that the value function for the network sched�
uling problem can b e approximated by the value function for an associated �uid 

limit model� Some heuristics based upon this result are developed in �Mey��� to 

translate a policy for the �uid model back to the original discrete network� The re�
sults reported here provide a more exact approach to translating an optimal policy 

for the �uid model back to the original problem of interest� 

We begin with the analysis of a general Markov Decision Process model with 

one step cost c and state process � � f	
t� � t � g evolving on a countable 

state space X� Our goal is to solve t h e average cost optimal control problem by 

constructing a stationary policy w with minimal average cost 

n�� X� 


����	 J 
w� x � �� lim sup Ex�c
	
t�� w 
	
t���� 

n�� 

n 

t�� 

Value iteration is perhaps the most common approach in practice to constructing an 

optimal policy� The idea is to consider the �nite time problem with value function 

h 

n��	 i X 


����	 Vn 


x� � min Ex 

c
	
t�� a 
t�� � V�
	
n�� � 

t�� 

where fa
t� � t � g is a sequence of actions determined by some policy� a n d the 

minimum in 
���� is with respect to all policies� The function V� 

� X � R� 

is a 

np e n a l t y term � the standard value iteration procedure uses V� 

� � Letting v

denote a policy which attains this minimum� it may b e assumed without loss of 

generality that there is a sequence of state feedback functions wk � X � A � k � � 

such that for any n� the policy v
n is a Markov policy whose �rst n actions may b e 

expressed 

n	 �
v���n��� 

� 
 w 

n��
	
��� � � � � w 
	
n � ����� 

The value iteration algorithm is then the standard dynamic programming approach 

to recursively computing an optimal sequence 
Vn 

� w 

n � n � ��� 

Various convergence proofs and counterexamples have appeared since the early 

sixties� with most of the general positive results holding in the case of �nite state 

space models only� A thorough survey is found on pages ������� of �Put���� In 

early papers the analyses typically focus on the di�erential cost function gn
x� � 

Vn��
x� � Vn 


x� and the normalized value function hn
x� � Vn 


x� � Vn 


��� where � 
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is some distinguished state� Under various conditions one may s h o w t h a t a s n �� � 

possibly through a subsequence� 

n gn 

� ��� hn 

� h� w � w 

� 

where �� 

is the average minimum cost� and the triple 
��� w 

�� h � is a solution of the 

average cost optimality equation 
see 
�������� below�� 

Recently there has been a resurgence of interest in understanding the algorithm 

when the state space is unbounded� The paper �Cav��� treats countable state space 

models where the state space is a single communication class under any stationary 

policy� Convergence holds under two natural assumptions� the stabilizability con�
dition that the steady state cost is �nite for some stationary policy� and the almost 

monotone condition on the cost function of �Bor���� The irreducibility assumption 

was relaxed in �CF�	� b y imposing a global Lyapunov function condition similar 

to that of �Hor���� The global Lyapunov function condition is expressed as� 


���� E 

w �V 
	
t � ��� j 	
t� � x� � V 
x� � c
x� w
x�� � b�lS 


x�� t � Z�� 

where V is a positive function on the state space� b � �� and S is a �nite set� or 

more generally a compact set� It is assumed in �CF�	� t h a t there exists a single 

function V such that 
���� holds for every Markov policy w� where S � f�g is a 

vsingleton� Under this assumption it may b e s h o wn that Ex 

��� 

� is uniformly bounded 

over all policies� for each initial condition x� where �� 

is the �rst return time to the 

state � � X� 

In the paper �Sen���� conditions are determined under which the optimal cost 

�� 

is computable through the limit �� 

� limn�� 

Vn 


x��n� x � X� The analysis 

is based upon the discounted control problem� and the use of a truncated value 

function to avoid the di�culties associated with unbounded costs� The paper be�
gins with some implicit bounds on the relative discounted value function for the 

truncated control problem� These assumptions are related to more readily veri�
�able conditions such as the near monotone condition of �Bor���� and the Lya�
punov condition of �Hor���� Hence �Sen��� captures some aspects of the results 

of �CF�	� Cav���� 

None of these contributions are applicable in general for multiclass network 

models since both the Lyapunov condition and the irreducibility condition fails 

for many models� A contribution of the present paper is to establish conditions 

for convergence which are valid in the networks context� Both the assumptions 

imposed and the methods of analysis are based on the recent treatment of the 

policy iteration algorithm of �Mey��b�� 

The major contribution of this paper is to resolve a signi�cant d r a wback to the 

value iteration approach � it can be extremely slow� On page ��� of �Put��� the 

author writes �In average reward models� value iteration may c o n verge very slowly� 

and policy iteration may be ine�cient in models with many states ���� Indeed� we 

have applied value iteration to network models with approximately �� states 

where policy iteration is not directly applicable� and we have found that conver�
gence is slow even for very simple models� The explanation in the network case 

is easily seen� One is attempting to approximate the relative v alue function h
x� 

by the di�erence hn
x� � Vn 


x� � Vn 


��� When V� 

is taken to be zero� then each 

approximation hn 

is bounded by a linear function of x� and can grow by at m ost 

one in each iteration� The actual relative v alue function h is equivalent to a q u a �
dratic on the state space �Mey��b� Mey���� so there is a large mismatch b e t ween 
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the two functions whenever the state is large� For this reason� each of the state 

feedback l a ws fwng generated by t h e v alue iteration algorithm can actually induce 

a transient state process � 
see Section ��� 

We s h o w in this paper that if the value iteration algorithm is initialized with 

V� 

equal to a stochastic Lyapunov function satisfying 
���� for just one policy w� 

then the value iteration algorithm constructs recursively solutions to a version of 

the drift inequality 
���� for each n� Hence we reach the same conclusion estab�
lished for the policy iteration algorithm in the companion paper �Mey��b�� the 

strong stability condition 
���� is super�uous when working with the value iteration 

algorithm because the algorithm automatically generates stabilizing policies� It is 

only necessary to �nd an initial stabilizing policy to initialize the algorithm� Based 

upon this observation we prove t h a t the intermediate average costs J 
wn� x � are 

�nite for each n� and independent o f x� th a t th e a verage costs J 
wn� x � c o n verge to 

the optimal cost �� 

as n �� � and that any limiting policy is average cost optimal� 

Some of these ideas have been generalized to the risk sensitive c o n trol problem�in 

�BM���� 

In the network optimization problem the relative value function for the op�
timal policy may b e approximated by the value function for the associated �uid 

control problem� It is thus natural to use the latter value function to initialize 

the value iteration algorithm� A second approach we consider is based on com�
puting an approximate solution to Poisson�s equation through the stability L P o f 

�KM�	�� Results from numerical experiments show that either choice may lead to 

fast convergence to an optimal policy� We thus arrive at a new way o f using the 

information gained from solving a deterministic optimization problem to solve the 

original discrete scheduling problem of interest� 

The paper is organized as follows� In the following section we present t h e m a i n 

results concerning the convergence of the value iteration algorithm� The assump�
tions are satis�ed for general multiclass queueing networks of the form described in 

Section �� Methods for constructing suitable initializations for the value iteration 

algorithm for the network scheduling problem are described in Sections ���� The 

appendices contain proofs of the main results and some background theory� 


� Value iteration 

Consider a general Markov Decision Process whose state space X and action 

space A are countable� Detailed treatments of Markov Decision Processes can be 

found in� for instance �Put���� We present here a bare�bones description of the 

general model� 

Associated with each x � X is a non�empty subset A
x� � A whose elements are 

the admissible actions when the state 	t 

takes the value x at time t� The transitions 

of the state process � are governed by the conditional probability distributions 

fPa
x� y�g which describe the probability t h a t the next state is y � X given that 

the current state is x � X� and the current action chosen is a � A� A policy w 

is a sequence of actions fa
t� � t � Z�g which is adapted� that is� a
t� can only 

depend on the history f	
�� � � � � 	
t�g� We will consider primarily Markov policies 

of the form w � fw�
	
��� w 

�
	
���� w 

� 
	
���� ���g� where for each i the function 

iw maps X to A� w ith wi 
x� � A 
x� for each x� For a Markov policy w we denote 

the resulting Markov c hain �w �� f	w 
t� � t � g � w e simply write � if it is clear 

from the context which policy has been applied� 
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A stationary policy is a Markov policy for which wi � w for all i� for some 

�xed state feedback l a w w� The action w
x� is applied whenever the state takes 

the value x� independent of the past and independent of the time�period� We shall 

write Pw 


x� B� � Pw
x�
x� B� for the transition law corresponding to a stationary 

policy w� The n�step transition probabilities are denoted 

P 

n 

w 


x� y� � P
	w 
n� � y j 	w 
� � x�� x� y � X� 

We also use the operator�theoretic notation� 

P 

nh 
x� �� E�h
	w 
n�� j 	w 
� � x��w 

where h is any real�valued function on X� 

The resolvent k ernel is de�ned for a feedback l a w w as 

� X 

Kw 

� ��
t���P 

t �w 

t�� 

We will occasionally extend this de�nition to a Markov policy v � 
 v�� v 

�� � � � � via 

h 

� i X 

Kv 


x� y� �� 

v ��
t����l
	
t� � y� � x� y � X�Ex 

t�� 

We assume that a cost function c � X �A � ��� �� i s g i v en� The average cost 

of a particular policy w is� for a given initial condition x� de�ned as 

n�� X� 

J 
w� x � �� lim sup 

w �c
	w 
t�� a 
t����Ex 

n�� 

n 

t�� 

�A policy w� is then called optimal if J 
w � x � � J 
w� x � for all policies w� and any 

initial state x� 

A central concept in this paper is the notion of f �regularity� a s developed in 

�MT���� with f equal to some function on the state space� In the present p a p e r 

the functions of interest take the form f � cw 

with cw 


y� � c
y� w 
y��� y � X� 

The de�nition takes a simple form since the state space is assumed to be countably 

in�nite� the controlled chain is cw 

�regular if for some distinguished state � � X� 

h 

�� 

�� i X 

w 

Ex 

cw 


	
t�� � �� x � X� 

t�� 

where �� 

is the �rst return time to the state �� 

Following �Mey��b�� a state feedback l a w w will be called regular if the con�
trolled chain is a cw 

�regular Markov c hain� a policy w is also called regular pro�
vided that w is a stationary Markov policy de�ned by a regular state feedback 

law� This a highly desirable stability property for the controlled process� If the 

feedback law w is regular� then necessarily an invariant probability measure �w 

exists such that �w 


cw 

� � �� Moreover� for a regular w� the resulting cost is P 

J 
w� x � � �w 


y�cw 


y�� independent o f x� The following result is a consequence 

of the f �norm ergodic theorem of �MT��� Chapter ���� 

Theorem ���� For any regular feedback law w� there exists a unique invariant P 

probability �w 

� a n d t h e c ontrolled state process � satis�es �w 

�� cw 


x� �w 


x� � �� 
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For each initial condition the average cost is equal to �w 

� independent of x� and the 

following limits hold� 

n	 n X	 � 

X� 

J 
w� x � � �w 

� lim Ex�cw 


	
t��� � lim cw 


	
t��� a�s� �Px�� 

n�� n	

n�� n 

t��	 t�� 

ut 

In view of Theorem ���� we denote the average cost J 
w� � J 
w� x � when the 

policy w is regular� 

The construction of an optimal policy typically involves the solution to the 

following equations 


���� �� 

� h�
x� � min �c
x� a� � Pa 

h� 


x�� 

a�A
x� 


����	 w 

�
x� � arg min�c
x� a� � Pah� 


x��� x � X� 

a�A
x� 

The equality 
����� a version of Poisson�s equation� is known as the average cost 

optimality equation 
ACOE�� The second equation 
���� de�nes a stationary policy 

w
� 
see e�g� �Put��� ABF���� Bor��� for further discussion�� 

The value iteration algorithm� or VIA� is de�ned inductively as follows� If the 

value function Vn 

is given� the action wn 
x� is de�ned as 

n w 
x� � arg min�Pa 

Vn 


x� � c
x� a��� x � X� 

a�A
x� 

For each n the following dynamic programming equation is satis�ed� 

Vn��
x� � cwn 
x� � Pwn Vn 


x� � min 
Pa 

Vn 


x� � ca
x��� 

a�A
x� 

which then makes it possible to compute the next function wn�� � 

To simplify notation we denote throughout the remainder of this paper 

cn 

� cwn � Pn 

� Pwn � Kn 

� Kwn � 

and we le t E 

n denote the expectation operator induced by the stationary policy 

n n 

w �� 
w 

n 
	
��� w 
	
���� w 

n 
	
���� � � � �� 

Suppose that � � X is some distinguished state� and de�ne 


���� hn
x� � Vn
x� � Vn 


��� gn
x� � Vn��
x� � Vn 


x�� x � X� n � Z�� 

Then for each n we h a ve the identity Pn 

hn 

� hn 

�cn 

�gn� w h i c h at least super�cially 

resembles the ACOE� We s h o w below that the pair fhn� g ng does indeed converge 

to a solution fh�� � �g to 
����� 
���� under reasonable conditions on the model and 

on the initial value function V�� 

We assume that at least one regular policy w�� exists� so that there also exists 

a function V� 

� X � R� 

and an � � � such that 


����	 P��V� 

� V� 

� c�� 

� �� 

This stabilizability assumption is a generalization of that used in �Cav��� and many 

other papers� If the value iteration algorithm is initialized with this function V�� 

then the resulting penalty t e r m i n Vn 

� n � �� �regularizes� the intermediate policies 

to ensure that each is stabilizing� and in the examples considered it also appears to 

speed convergence� 

We assume throughout the paper that there exists a regular� optimal policy 

w 

� � a Pw� �invariant probability �w� � and a relative value function h� 

satisfying 
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the ACOE with �� 

� �w� 
cw� �� The quantities 
w� � �w� � h�� m a y not be unique� 

but we �x one such triple throughout the paper in our assumptions and in the 

analysis to follow� These conditions will be met under the stabilizability p a r t of 

Assumption 
A��� and Assumptions 
A��� 
A�� below 
the conditions of �Sen��� 

may b e v eri�ed� following the approach o f � Mey��b��� 

Assumptions 
A�� and 
A�� are related to the near�monotone assumption of 

�Bor���� We call a function c norm�like if the sublevel set fx � c
x� � bg is a 

�nite subset of X for any �nite b� It is assumed in Assumption 
A�� below that 

for any �reasonable� policy w� the cost cw 


x� dominates a norm�like function c 

on X� Assumption 
A�� then imposes an accessibility condition on the sublevel set 

S� 

	 X de�ned as 


���� S� 

� fx � c
x� � ��g� 

Although this assumption imposes an accessibility condition on all Markov policies� 

Assumption 
A�� is only used for the optimal policies v 

n � and the stationary policies 

w
n � n � Z�� Assumption 
A�� is weaker than the Lyapunov condition of �CF�	�� 

It is satis�ed for the network scheduling problem described in Section �� and other 

storage and routing models found in the operations research a rea � 

Formally� our assumptions are summarized as follows� 

�A�� There exists a policy w
��� a function V� 

� X � R� 

� and � � � satisfying 


���� and for the optimal policy w� � � �� 

lim P 

n 

� 

V� 


x� �  � x � X� 

n�� n 

w

�A
� For each �xed x� the function c
x� 
 � is is norm�like o n A� and there 

exists a norm�like function c � X � R� 

such that for any regular polcy w 

satisfying J 
w� � �� 

cw 


x� � c
x�� x � X� 

�A�� There is a �xed state � � X and a � �  such that for any Markov 

p olicy v� 


���� Kv 


x� �� � � for all x � S�� 

where S� 

is de�ned in 
����� and for any action a � A 
��� 

Pa
�� �� � �� 

We will occasionally also assume 

�A�� For any regular optimal policy w the controlled chain is irreducible in 

the usual sense that 

Kw 


x� y� � � x� y � X� 

The main results of this section are summarized in the following two theorems� 

Theorem ���� For the value iteration algorithm initialized with the function 

V�� s u p p ose that Assumptions �A����A	� are s a t i s � e d� Then 

�i� For each x the sequences fgn
x�g and fhn
x�g are b ounded� and 

� 

lim Vn 


�� � lim gn
�� � ��� 

n�� n 

n�� 

� 

lim sup Vn 


x� � lim sup gn
x� � ��� x � X� 

n�� 

n n�� 
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�ii� Each intermediate state feedback law wn is regular� and each Vn 

serves as 

a Lyapunov function for the nth policy� 

PnVn 

� Vn 

� cn 

� �� n � � 

�iii� The average cost J 
wn � converges to the optimal cost� 

J 
w 

n � � �� 

as n �� � 

�iv� Any point�wise limit point of the feedback laws fwn � n � Z�g is regular 

and optimal� 

ut 

Theorem ���� Under Assumptions �A����A
� the conclusions of Theorem ��� 

hold� and in addition� as n �� � 

hn
x� � h�
x� � h�
�� 

gn
x� � ��� 

� 

Vn 


x� � ��� x � X� 

n 

ut 

Proof of Theorem ���� The two limits in 
i� follow from Lemma B�� 
ii�� 

The bounds on the two limit supremums follow from Lemma B�� 
i� and the formula 

n�� X �� 

gt
x� � 
Vn 


x� � V�
x��� 

n n 

t�� 

The bound in 
ii�� and hence also regularity� is established in Proposition B��� 

Result 
iii� requires the lower bound cw 

� c� From Proposition B�� and this 

lower bound we h a ve �n
c� � � for all n� which shows that the probabilities f�n 

� 

n � Z�g are tight� From Proposition B�� and the Comparison Theorem A�� we 

have �n 


cn� � �n 


gn� where gn 

� �� Since the probabilities f�ng are tight� for any 

preassigned 	 �  there exists a �nite set C 	 X with �n
C� � � � 	 for all n� Thus� 

� � lim sup J 
w 

n � � lim inf
� � �n 


gn�� 

n�� 

n�� X 

� lim inf �n
x�
� � gn
x�� 

n�� 

x�C 

� 
� � 	�
� � ���� 

Since 	 is arbitrary� this shows that lim supn�� 

J 
wn � � ��� as desired� 

Finally� result 
iv� is immediate from 
i� and Fatou�s lemma applied to the 

identity Pn 

hn 

� hn 

� cn 

� gn 

obtained in Proposition B��� ut 

Proof of Theorem ���� The convergence of hn 

follows from Lemma B���� 

We m a y then use the identity gn
x� � gn
��� hn��
x� � hn 


x� and Theorem ��� 
i� 

to prove that gn
x� converges to �� � The convergence of Vn
x��n to �� then follows 

as in the proof of Theorem ��� 
i�� ut 

�� Discrete and �uid models for multiclass networks 

Consider a network of the form illustrated in Figure �� composed of d single 

server stations� indexed by 
 � � � � � � � d � The network is populated by K classes 

of customers� and an exogenous stream of customers of class � arrive to machine 

s
��� A customer of class k requires service at station s
k�� If the service times 
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and interarrival times are assumed to b e exponentially distributed� then after a 

suitable time scaling and sampling of the process� the dynamics of the network can 

b e d e s c r i b e d b y the random linear system� 

K X 


���� 	
t � � � � 	 
 t� � Ii 


t � ���e 

i�� � e 

i�wi 


	
t��� 

i�� 

K 

w

where the state process � evolves on X � Z� 

� The random variable 	i
t� denotes 

the number of class i customers in the system at time t which a wait service in bu�er i 

at station s
i�� The function w � X � f� �gK�� is the policy to b e designed� If 

i 


	
t��Ii 


t � � � � � � this means that at the discrete time t� a customer of class 

i is just completing a service� and is moving on to bu�er i � � or� if i � K� the 

customer then leaves the system� The set of admissible control actions A
x� w hen 

the state is x � X is de�ned as follows for a � 
 a�� � � � � a K 

�� � A 
x� 	 f � �gK�� � 

�i� a� 

� �� and for any � � i � K� ai 

�  or �� 

�ii� For any � � i � K� xi 

�  � ai 

� � P 

�iii� For any station 
�  � i�s
i��� 

ai 

� �� P P 

�iv� For any station 
� i�s
i��� 

ai 

� � whenever xi 

� �i�s
i��� 

Condition 
iv� is the non�idling property that a server will always work if there P 

is work to b e done� With the one step cost cw 


x� � jxj �� xi 

� the non�idling i 

condition may be assumed without any loss of generality � Mey���� 

λ 

Machine 1 

Machine 2 

µ
1 

µ 
2 

µ3 

Φ (t)1 Φ (t)2 

Φ (t)3 

Figure �� A m ulticlass network with d � � and K � �� 

The random variables fI
t� � t � g are i�i�d� on f� �gK��� with Pf 

P 

Ii 


t� �i 

�g � �� and E�Ii 


t�� � �i 

� For � � i � K� �i 

denotes the service rate for class 

i customers� and for i �  we let �� 

�� � denote the arrival rate of customers of 

class �� For � � i � K we let ei denote the ith basis vector in R 

K � and we set 

e � eK�� �� � It is evident that these speci�cations de�ne a Markov Decision 

Process whose state transition function has the simple form� 

i
Pa
x� x � e 

i�� � e � � �iai 

�  � i � K�  

K X 

Pa
x� x� � � � �i 

ai 

� 

� 

We assume throughout the paper that the usual load conditions are satis�ed X � 

�

���� � 

� � �� � � 
 � d� 

i 

i�s
i��� 

For concreteness we consider exclusively the one step cost cw 


x� � jxj� It 

is now known that for a network model with this cost criterion� regularity of a 
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stationary policy w is closely connected with the stability o f an associated �uid 

limit model �Dai�	� DM�	�� For each initial condition 	w 
� � x �� � of the 

controlled chain �w we construct a continuous time process �x 
t� as follows� If jxjt 

is an integer� set 

� 

�x
t� � 	w 
jxjt�� 

jxj 

For all other t � � de�ne �x
t� b y linear interpolation� so that it is continuous and 

piecewise linear in t� Note that j�x
�j � � � and that �x is Lipschitz continuous� 

The collection of all ��uid limits� is de�ned by 

� � 

L �� f�x � jxj � n g 

n�� 

where the overbar denotes weak closure� The process � evolves on the state space 

K 

R� 

� We shall also call L the �uid limit model� in c o n trast to the �uid model which 

is de�ned as the set of all continuous solutions to the di�erential equation 

K X 


���� 

d
�
t� � �i 

�e 

i�� � e 

i�ui
t�� a�e� t � R� 

� 

dt 

i�� 

where the function u
t� is analogous to the discrete control� and satis�es similar 

constraints �CM���� 

The �uid limit model L is called Lp 

�stable if 

lim sup E�j�
t�jp � �  � 

t�� ��L 

It is shown in �KM��� M ey�� � that L��stability of the �uid limit model is equiv�
alent to a form of c�regularity for the network� 

Theorem ���� The following stability criteria are equivalent for the network 

under any nonidling� stationary Markov policy w� 

�i� The drift condition holds 


���� Pw 

V 
x� � V 
x� � j xj � �� x � X� 

where � � R� 

� and the function V � X � R� 

is equivalent to a quadratic in 

the sense that� for some � � � 

���jxj��� � �jxj� � V 
x� � � � x � X� 

�ii� For some quadratic function V � 

��h i X 

w 

Ex 

j	
n�j � V 
x�� x � X� 

n�� 

�iii� For some quadratic function V and some � � �� 

N X� w 

� 

Ex 

�j	
n�j� � V 
x� � �� for all x and N � �� 

N N 

n�� 

�iv� The �uid limit model L is L��stable�


�v� The total cost for the �uid limit L is uniformly bounded in the sense that
Z �h i 

sup E j�
� �j d� � �� 

��L � 

ut 
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Using Theorem ��� it is shown in �Mey��b� that the optimal control of a 

network and the optimal control of the �uid model are also related� As an illustra�
tion� consider the three bu�er example illustrated in Figure �� We h a ve t a k en the 

parameters 


���� � �  ������ �� 

�  ������ �� 

�  ������ �� 

�  ����� 

so that � 

� ���� 

� ���� 

� � ��� and � 

� ���� 

� � ���� The optimal policy for 

the �uid model illustrated in Figure � was computed in �Wei�	�� It can be de�ned 

succinctly as 

Serve bu�er one if and only if x� 

� � or x� 

� x� 

� � � 
�l
x� 

� ���� � 

The form of the policy is logical� If the second bu�er is non�empty� then the last 

bu�er receives exclusive service� When the second bu�er x� 

is empty a n d x� 

� x� 

then� because service at bu�er two is slow� the �rst bu�er releases �uid to avoid 

starvation at the second machine� 

The optimal p o l i c y was computed for the stochastic model with the perfor�
mance index 

n X� 

Jn
x� � Ex�j	
t�j�� 

n 

t�� 

To compute the policy numerically we used value iteration� terminated at n � 

�� � The bu�er levels were truncated so that xi 

� �� for all i� This gives rise to 

a �nite state space Markov Decision Process with ��� � �� � ��� states� In Figure � 

we see the result of this computation� Again there is a roughly linear or a�ne 

switching curve � bu�er one is served provided that bu�er two is small� and the 

population at bu�er one is reasonably large compared with that at bu�er three� 

The policy illustrated in Figure � is closely approximated by the formula 

Serve bu�er one if and only if x� 

� � or x� 

� x� 

� �� � � exp
x����� 

The �uid limit of this approximation is precisely the optimal �uid policy illustrated 

in Figure �� 

�� Initialization of the VIA 

For the optimal scheduling policy the relative v alue function h� 

is equivalent 

Kto a quadratic on X � Z� 

in the sense that for some � � � 

�jxj� �
�
h�
x� � h�
�� 

� 

� ���jxj�� x � X� 

where � is the vector of zeros in X �Mey��b�� However� in the standard VIA� for 

each n h 

n�� i X 

wVn 


x� � min Ex 

j	
t�j 

t�� h 

n�� i X 

w� min Ex 


j	
�j � t� 

t�� 

� njxj � � 

�n 

�� 

where we are using the skip�free property of the network that j	
t � �� j � j 	
t�j � �� 

t � Z�� It follows that� for each n� the function hn
x� � Vn 


x� � Vn 


�� is bounded 

from above b y a linear function of x� Hence the approximation hn
x�  h�
x� is 

grossly inaccurate for any �nite n when the state x is large� 
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x1 

x2 > 0 
x2 = 0 x3 

Figure �� Optimal policy for the �uid model with � 

� � �� and 

� 

� ����� In this illustration� the grey regions indicate those 

states for which bu�er three is given exclusive service� 

x1 

x 

x2 = 0 x3 

x = 12 

x = 22 

= 32 

µ  = µ1 3 

Serve buffer 3 

Figure �� Optimal policy for the discrete network� There is an 

approximately a�ne switching curve w h i c h is similar to the linear 

switching curve found for the �uid model policy illustrated in Fig�
ure �� 

As one might then expect� for any n the actions wn 
x�� x � X� de�ned by 

the feedback law wn may b e far from optimal when the state x is large� We 

illustrate how the feedback laws fwn g generated by the standard VIA can give 

poor performance with the following two examples� 

Example �� a simple queue with controlled service� Here we describe a 

model which satis�es all of the conditions of �Cav���� Hence with V� 

� � the VIA 

does converge to give a n optimal policy� However� for each iteration n the state 

n �feedback l a w wn induces a transient M a r k ov c hain �� so that J 
w � �� 



�� RONG�RONG CHEN AND SEAN MEYN 

The state space is taken as X � Z�� and the action space is A
x� � f� �g� 

x ��  � with A
� � fg� There is an arrival rate � and a v ariable service rate � 

which takes on the small value ��� or the larger value �� 

� ��� depending upon the 

control� We assume that � � �� 

� �� 

� �� and de�ne the transition law a s f o l l o ws 

Pa 


x� x � �� � � 

Pa 


x� x � �� � �� 

� ��a 

Pa 


x� x� � 
� � �� 

� ��a � ��� 

That is� if w
x� � � then a customer receives maximal service during the current 

time slot when there are x customers in the queue� Assuming that  � ��
������ � 

�� the feedback l a w de�ned as w� 
x� � �� x � �� is regular for any � � �� and the 

optimal policy is of this form for some �� We assume that ���� 

� �� so that the 

lasy server de�ned by w
x� �  g i v es rise to a transient c hain �� 

Suppose that cw 


x� � 
� � w
x��x� so that the one�step cost of serving a 

customer is proportional to the total number of customers in the system� Then for 

the standard VIA it may b e shown inductively that there exists f�n 

� n � Z�g 

such that wn 
x� �  for all x � �n 

� Since no services are initiated when x � �n 

� it 

n 

follows that the chain �w obtained with the stationary policy wn is transient for 

any n� although the policies fwn � n � g do converge pointwise to give an optimal 

policy� 

To obtain a version of the VIA which generates regular policies� initialize the 

algorithm with the function V�
x� � x��
�� 

� �� 

� ��� With the feedback law 

;�w��
x� � �l
x � � we do have Pw;� V� 

� V� 

� cw � � for some � � �� It 

follows from Theorem ��� that each successive feedback l a w wn is regular� and that 

the policies converge to an optimal policy as n � �� In fact� it may b e shown 

directly by induction that wn 
x� � � for all n and all x su�ciently large� which 

immediately implies that wn is regular� We also note that in this case the function 

hn
x� � Vn 


x� � Vn 


� is equivalent to a quadratic for all n � � Hence� when 

properly initialized� the VIA returns the correct form of b o t h the optimal policy 

and the relative value function for large x� and only modi�es the intermediate 

policies for x in a �nite subset of X� ut 

Example 
� The Rybko�Stolyar Model� The next example treats a model 

introduced independently in the papers �RS�
� KS���� Consider the network 

illustrated in Figure � consisting of four bu�ers and two machines fed by separate 

arrival streams� It is shown in �RS�
� that the last bu�er��rst served policy where 

bu�ers � and � receive priority at their respective m a c hines will make the controlled 

process � transient� even when the load conditions 
���� are satis�ed� if the cross�
machine condition ���� 

� ���	 

� � is violated� 

If the VIA is applied to this model with V� 

� � then one obtains V�
x� � jxj� 

and 

V�
x� � jxj� min
jxj� � � � ��w�
x� � �	w	
x��� 

w 

The minimizing feedback l a w w� is evidently given by 

w�
�
x� � �l
x� 

� �� w	
�
x� � �l
x	 

� �� 

We conclude that J 
w� � � � when ���� 

� ���	 

� � since this is precisely the 

destabilizing policy introduced in �RS�
� KS���� ut 
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λ 

λ 

Machine 1 

µ
1 

µ4 

Φ (t)1 Φ (t)1 

Φ (t)3 Φ (t)3 

Machine 2 

µ
2 

µ3 

Figure �� A m ulticlass network with d � � and K � �� 

These examples show that the standard VIA may return policies which are not 

stabilizing� and we h a ve evidence to suspect that convergence may b e s l o w� given 

the mismatch b e t ween the functions hn 

and the limiting relative v alue function h�� 

We have conducted numerical experiments to test the rate of convergence of the 

VIA for the three�bu�er example illustrated in Figure � with the parameters de�ned 

in 
����� Figure � shows the results from two implementations of the VIA� In the 

�rst we consider the standard algorithm with V� 

� � For comparison purposes we 

also consider the case V�
x� � jxj� � This might appear to be a natural choice since 

it will result in lower values for the terminal cost� However� assumption 
A�� is 

violated in both of these choices for V� 

since the drift inequality 
���� is violated 

for any policy� 

The vertical axis is the approximate value of the steady state cost J 
wn �� where 

w
n is the stationary policy obtained at the nth iteration of the VIA� Because the 

problem is large we cannot compute this cost exactly� but instead use 

��� X� wn 

J 
w 

n �  

�� � 

E� 

�j	
t�j�� 

t�� 

In either case we found that it takes several thousand iterations to reach c o n vergence 

for this model� The �gure shows results from the �rst � steps of the algorithm� 

Data was saved for n equal to multiples of ten� n � � � � � � � �� 

In summary� the standard VIA su�ers from two potential drawbacks� interme�
diate policies may perform poorly� and may e v en give rise to a transient M a r k ov 

chain� and the convergence of the algorithm can be slow� In the following two sec�
tions we propose methods to improve this situation by establishing general methods 

for constructing a more appropriate initial value function V�� Although in practice 

we will never optimize the full in�nite dimensional model� the approach described 

here may be used even in the �nite state space truncated model to speed conver�
gence� We see in the next section that for a network with bu�er levels truncated 

to ��� the standard VIA requires thousands of iterations for convergence� while the 

VIA implemented with an appropriate initial value function converges to the same 

level of performance in less than twenty steps� even though the chain possesses 

��� � �� � ��� states� 

	� Initialization through the �uid model 

From Theorem ��� 
i� and Theorem ��� we conclude that the VIA will converge 

if the algorithm is initialized with a stationary policy w
�� whose �uid model is L� 

�
stable� since the network model will then satisfy Assumptions 
A���
A�� when 

initialized with a solution to 
����� Assumption 
A�� will hold since the relative 
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nJ(w ) 

11.2 

11.4 

11.6 

11.8 

12 

12.2 

12.4 

12.6 

V (x) =  x0 
2 

Standard VIA 

11 n 
50 100 150 200 250 300 

Figure �� Convergence of the VIA with V� 

taken to be zero� and 

with V�
x� � jxj� � The vertical axis is an approximation to the 

steady state cost J 
wn �� and the horizontal axis is n� the numb e r 

of iterations of the algorithm� 

value function is equivalent to a quadratic for any s u c h policy� and the accessibility 

Assumption 
A�� holds with � equal to the empty state �Mey���� There are many 

stabilizing policies which m a y serve a s t h e initial policy w
�� 
see �CZ����� This 

leads to several algorithmic approaches to constructing the initial value function 

V� 

based on the value function for the �uid model� We b e g i n with the following 

suggestive proposition� The result 
ii� is proven in �Mey��b�� For the sake of 

brevity w e omit the proof of 
i�� 

Proposition ���� If the feedback law w gives rise to a network whose �uid 

limit model L is L��stable� then 

�i� the function V below is a solution to 
���� for any b � � and all T su��
ciently large� 

Z Th i 


���� V 
x� � bjxj� 

E 

w j�x 
� �j d� �x 

� 

�ii� There exists a solution h to the Poisson equation Pw 

h � h � j xj � ���� 

and the function h approximates the value function V as follows� 


� � 	
jxj� T ��V 
x� � h
x� � 
� � 	
jxj� T ��V 
x�� 

where 	 �  and satis�es lim supT �� 

lim supr�� 

	
r� T � � � 

ut 
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While the function V given in 
���� is not easily computable in general� if the 

�uid limit model L is purely deterministic then we m a y use the limiting function 

Z � 


���� V 
x� � bjxj� j�
� �j d�� �
� � 

x
� 

� 

jxj 

We can also obtain an approximation to 
���� based upon a �nite dimensional 

linear program �DEM���� If a su�ciently tight approximation to 
���� is found 

then one can expect that 
���� will hold for this approximation� We illustrate this 

approach with the three bu�er example illustrated in Figure �� We h a ve computed 

explicitly the function V in 
���� for two policies� LBFS� and the optimal policy 

illustrated in Figure �� 

nJ(w )
12.6 

12.4 

12.2 

12 

11.8 

11.6 

11.4 

11.2 

11 

i

i ion 

Standard VIA 

Initialized w th optimal fluid value function 

Initialized w th LBFS fluid value funct

n
50 100 150 200 250 300 

Figure �� Convergence of the VIA with V� 

taken as the value 

function for the associated �uid control problem� Two v alue func�
tions are found� one with the optimal �uid policy� and the other 

taken with the LBFS �uid policy� Both choices lead to remark�
ably fast convergence� Surprisingly� the �suboptimal� choice using 

LBFS leads to the fastest convergence of J 
wn � to the optimal cost 

�� 

 ���� 

Two experiments were performed to compare the performance of the VIA ini�
tialized with these two v alue functions� The results from two experiments are shown 

in Figure �� For comparison� data from the standard VIA shown earlier is also given� 

We h a ve again taken � steps of value iteration� saving data for n � � � � � � � �� 

The parameter values 
�� ��� � �� � �� are again de�ned in 
����� The convergence is 

exceptionally fast in both experiments� Surprisingly� the �suboptimal� choice using 

LBFS leads to the fastest convergence� 
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�� Initialization through a linear program 

The computation of 
���� is currently possible only for very simple models� We 

present here an alternative initialization of the VIA based upon the stability L P 

of �KM�	� w h i c h is computationally feasible even for networks with hundreds of 

bu�ers� 

Since the relative v alue function for an optimal policy is known to be equivalent 

to a quadratic� it is natural to attempt to �nd a quadratic form which g i v es the 

required negative drift� Let I denote the set of ordered pairs I � f
i� j� � � � i� j � 

Kg� For I � I and � a v ector of dimension jIj � K� we de�ne X 

hI 


x� � xi 

xj 

� h�
x� � �I 

hI 


x�� 

I �I 

Given a state feedback law w� let z � z
x� denote the vector in R 

jIj whose Ith 

component is given by zI 

� wi 


x�xj 

� I � I � For any non�idling policy w� the cost 

can be expressed in terms of the vector z as jxj � cT z� w here c � R 

jIj is the vector 

whose Ith component is de�ned as cI 

� �l
s
i� � s
j��� 

jIj � �IFor any I there exist vectors cI � R � R 

K and a constant BI such that 

Pw 

hI 


x� � hI 


x� � c 

IT 

z � �I
T 

w
x� � BI � 

The vector cI is de�ned as follows� Let eI be the vector that is zero except for a 

one in the I � 
 i� j�th position� so that eI
T 

z � zI 

� Then for i � j� i � j � � and 

i � j � �� the vector cI � cij is given by 

��i��e
i���i ii �� ��ie


�i��e
i���i�� � �ie

i�i��
 � �i 

zii 

� �i��e
i���i � and 

i���j � �i 

eij � �j��e
j���i � �j 

eji�i��e

respectively� In addition� the non�idling constraint m a y b e expressed as a linear 

inequality constraint o n t h e v ariables z through the expression X X 

zi�k 

� zi�k 

� � � 
 � d� � � k � K�  

i�s
i��s
k� i�s
i��� 

Letting d��k denote the vector whose 
i� j�th entry is de�ned as � ��� if s
i� � s
j� and j � k� � 

d��k � �� if s
i� � 
 and j � k�i�j � �
 otherwise� 

K� 

this constraint m a y be expressed d��k
T 

z � � � � 
 � d� � � k � K� For � � R� 

d Kand � � R� 

� R� 

de�ne the two v ectors 

d K X XX 

c 

� �� �I 

c 

I � d� �� ���k 

d��k � 

I �I 

��� k�� 

The stability L P of �KM�	� can b e interpreted as follows� Find � � 

K� 

� � �R� 

d K 

R� 

� R� 

such that 

�
���� c � d� � c� 
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where inequalities between vectors are interpreted component�wise� If this lower 

bound holds� then we obtain the desired Lyapunov drift inequality 

h�
x� � 
c 

�Pwh� 


x� � � d��T x � ��T w
x� � B� 

� h�
x� � j xj � ��T w
x� � B�� P P 

where �� � �I 

�I � B� � �I 

BI � 

There can be many v alues of �� � satisfying the lower bound 
����� To � n d a 

value which i s b e s t in an average sense� �rst note that by the Comparison Theo�
rem A�� we h a ve the steady state bound 


���� E�w 

�jxj� � E�w 

�c 

�T z� � E�w 

���T w� � B�� 

The right hand side is computed in the construction of the performance LP of 

�KK��� DBT�
� giving the following formula� � � 

���� if i � j� 

ij 

w Bij � 
�� if j � i � � �E�w 

��T � � � 

� if j � i � � � 

�

A natural choice of 
�� �� is a minimizer of the right hand side of 
����� subject 

to the constraint t h a t c� � d� � c� which g i v es the best upper bound E�w 

�jxj� � 

�T 

E�w 

�w�� B� over all such 
 �� ��� This strong connection between the existence 

o f a L y apunov function� and the existence of a bound on steady state performance 

is precisely the principle of duality established in �KM���� 

If vectors 
�� �� exist which satisfy these constraints� then the simultaneous 

Lyapunov condition of Hordijk is also satis�ed �Hor���� Unfortunately� in many 

examples of interest it is not possible to �nd a single quadratic Lyapunov function 

suitable for all policies� One such example is the three bu�er example given in 

Figure �� For this example� the stability L P o f � KM�	� is not feasible for certain 

service rates� even though the load condition 
���� is satis�ed� 

If the feedback l a w w is speci�ed� then it is often possible to relax some of the 

constraints on �� For example� for the three�bu�er model under the LBFS policy 

we have z�� 

� w�
x�x� 

� � so that the constraint o n c� is relaxed to 

� � c � dI 

� cI 

� 
I� �� 
� � ���I 

The stability L P w as run for this speci�c example� maintaining the earlier system 

parameters 
����� giving the following Lyapunov function for the model� 		 � 

������� �� �� 


����	 h�� 


x� � x 

T Q�x� Q� 

� 


 �� ��  

A 

��  ��� 

Another quadratic which solves 
���� is 		 � 

������� ������� ������� 


����	 h�� 


x� � x 

T Q�x� Q� 

� 


������� �������  

A 

�������  ������ 

The two matrices are almost multiples of one another� Q� 

 ���Q�� and in fact 

the latter choice gives a correspondingly worse upper bound on E�jxj� through the 

inequality 
����� 

Two experiments were performed to compare the performance of the VIA ini�
tialized with these two quadratic Lyapunov functions� The results are shown in 

Figure �� The speed of convergence is not as fast as what was found using the �uid 
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Figure �� Convergence of the VIA with V� 

taken as a quadratic� 

The quadratic h�� 

was found using the stability L P � and the second 

quadratic h�� 

was found through direct calculation� In both cases 

we see relatively fast convergence of J 
wn � to the optimal cost 

�� 

 ���� 

model to construct V�� b u t w e see in Figure � that it is signi�cantly faster than the 

standard algorithm� 

�� Conclusions 

We have seen that one can obtain excellent steady state performance� even 

when the time horizon is very short compared with the size of the state space� 

by adding an appropriate penalty term to the �nite horizon cost criterion used in 

the VIA� For the network scheduling problem two approaches have been described 

for constructing a useful penalty term� That based upon a � u i d model gives the 

b e s t results in the examples considered� but the simpler approach based upon a 

quadratic approximation also performs well� Either approach can p o t e n tially be 

used in the online optimization of a large manufacturing system� 

For other control problems it will b e necessary to have some understanding 

of the right form for the optimal relative v alue function in order to initialize the 

algorithm� One general approach is to apply one step of policy iteration� since the 

resulting relative v alue function is a Lyapunov function satisfying 
A�� under mild 

conditions on the process 
see �Mey��b��� 

It is likely that the modi�ed policy iteration algorithm of �Put��� can b e 

analyzed using a modi�cation of the proof given in the appendix� We are also 

considering sample�path based on�line optimization methods using the approaches 

introduced here� 
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Appendices 

Appendix A� Some stability theory for Markov chains 

Here we collect together some general results on Poisson�s equation and regu�
larity for a countable state space Markov c hain with transition law P and resolvent 

� X 

K � ��
i���P 

i � 

i�� 

Suppose that c is a function on X with c � �� The Markov c hain is called c�regular 

if for some � � X and every x � X� h 

�� 

�� i X 

Ex 

c
	
i�� � �� 

i�� 

where the �rst entrance time and �rst return time to the p o i n t � are de�ned re�
spectively as 
� 

� m in
t �  � 	
 t� � ��� �� 

� m in
t � � � 	
 t� � ��� 

A c�regular chain always possesses a unique invariant probability � such that Z 

�
c� �� c
x� �
dx� � �� 

A set S 	 X is called petite if there is a � �  and � � X such that 


A��� K
x� �� � �� x � S� 

If the chain is irreducible in the usual sense then every �nite set is petite� 

The connections b e t ween Poisson�s equation� the Lyapunov drift 
����� and 

regularity are largely based upon the following general result� which is a minor 

generalization of the Comparison Theorem of �MT���� 

Theorem A�� 
Comparison Theorem�� Let � be a Markov chain on X satis�
fying the drift inequality PV � V � c � s� The functions s and c take values in R� 

� 

and the function V takes values in �� �� with V 
x�� � � for at least one x� 

� X� 

Then for any stopping time � �  �  

� �� � �� X X 

Ex�V 
	
� ��� � Ex 

c
	
t�� � V 
x� � Ex 

s
	
t�� � 

t�� t�� 

ut 

The following result is a consequence of the f �Norm Ergodic Theorem of 

�MT���� 

Theorem A��� Suppose that the conditions of the Comparison Theorem A�� 

hold� c � �� s is a constant� and the set S � fx � c
x� � �sg is petite� Then � 

is a c�regular Markov chain with a unique invariant probability �� The function V 

satis�es V 
x� � � whenever �
x� � � 

The proof of the following result is identical to that of Theorem ������� of 

�MT���� For any probability distribution a on Z� 

de�ne the generalization of the 

resolvent k ernel 

� X 

Ka
x� y� � a
n�P 

n
x� y�� x� y � X� 

n�� P 

We denote the mean of a by m
a� � na
n�� 
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Lemma A��� For the Markov chain � or X� suppose that there is a set S � X� 

a p oint � � X� and a constant � �  such that Ka
x� �� � � for x � S� Then for 

all x� �  

�� 

�� X 

Ex 

�lS 


	
t�� � m
a���� 

t�� 

ut 

Suppose that � is a c�regular Markov c hain with invariant probability �� and 

denote � � �
c�� The Poisson equation is de�ned as 


A��� Ph � h � c � �� 

where h � X � R� The computation of h in the �nite state space case involves a 

simple matrix inversion which can b e generalized to the present setting provided 

that the chain is c�regular� 

Given a function s � X � �� ��� and a probability � on X� the kernel s � � � X � 

X � �� �� is de�ned as the product s � � 
x� y� � s
x��
y�� x� y � X� Letting � 

denote the point�mass at �� and s � ��lS 

� the minorization condition 
A��� may b e 

expressed K � s � �� Letting G denote the kernel 

� X 

G � 
K � s � ��t � 

t�� 

a solution to Poisson�s equation may be explicitly written as 

� X 


A��� h
x� � GKc�
x� � 
K � s � ��i Kc�
x�� 

i�� 

where �c
x� � c
x� � �
c�� provided the sum is absolutely convergent �GM��� 

Mey��b�� 

The paper �GM��� uses these ideas to establish the following su�cient condi�
tion for the existence of suitably bounded solutions to Poisson�s equation� De�ne 

the set S by 


A��� S � fx � Kc 
x� � �
c�g� 

If the chain is positive recurrent w e h a ve �
S� � � 

Theorem A��� Suppose that the Markov chain � is positive recurrent� As�R 

sume further that � � c
x� �
dx� � �� and that the set S de�ned in �A�
� is 

petite� Then there exists a solution h to Poissons equation �A��� which is �nite for 

every x � X satisfying �
x� � � and is bounded f r om below everywhere� 

inf h
x� � ��� 

x�X 

If � is also c�regular then h can be taken as �A�	�� which satis�es the bound 

h 

�� 

�� i X 

h
x� � d�Ex 

c
	
t�� � x � X� 

t�� 

where d� 

is a �nite constant� ut 

Uniqueness of the solution to Poisson�s equation is established in �Mey��b� 

using the previous lower bound� 
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Theorem A��� Suppose that the Markov chain � is positive recurrent� that 

� � �
c� � �� and assume that S de�ned in �A�
� is petite� Let g be �nite�valued� 

bounded f r om below� and satisfy 

Pg � g � c � �� 

Then � is c�regular and for some constant b� 

�i� g
x� � GKc�
x� � b for almost every x � X ���� 

�ii� g
x� � GKc�
x� � b for every x � X� 

ut 

Closely related is the following 

Lemma A��� Suppose that � is c�regular with invariant probability �� and sup�
pose that z � X � R is bounded f r om below� and is superharmonic� Pz � z� Then 

�i� z
x� � �
z� for almost every x � X ���� 

�ii� z
x� � �
z� for every x � X� 

ut 

Appendix B� Convergence of the value iteration algorithm 

We present here proofs of our main results� Throughout this section we assum e 

that 
A���
A�� are satis�ed� even when this is not mentioned explicitly� 

Central to the analysis is the incremental cost gn 

and function hn 

de�ned in 


����� In the standard version of the VIA where V� 

� � the functions fgn 

� n � Z�g 

are positive�valued for each n� but may b e unbounded� In the present case we 

�nd that the opposite situation arises� When V� 

is a Lyapunov function for some 

policy� the functions fgng are strictly bounded from above� but may b e u n b o u n d e d 

from below� This is a desirable situation since an upper bound on the sequence 

fgn 

� n � Z�g permits us to conclude that the each of the stationary policies 

fwn � n � Z�g is regular� These results are summarized in Proposition B��� We 

�rst require the following two lemmas� 

Lemma B��� Suppose that for the state feedback law w there exists a solution 

V � X � R� 

to the inequality 


B��� Pw 

V 
x� � V 
x� � cw 


x� � �� x � X� 

Then the controlled chain has the following properties� 

�i� The feedback law is regular� and hence the controlled chain has a unique 

invariant probability �w 

� 

�ii� There exists a constant B� 

depending only on � and � such that 

h 

�� 

�� i X 

w 

Ex 

cw 


	
t�� � B�
V 
x� � �� x � X� 

t�� 

�iii� �w 

� �w 


cw 

� � �� 

�iv� �w 


�� � �� w 


S�� � � 

�v� V 
x� � V 
�� � � ���� x � X� 

Proof� From 
B��� and the de�nition of S� 

we obtain the inequality 

� 

cw 


x� � ��lS� 


x��Pw 

V 
x� � V 
x� � 

� 
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Applying the Comparison Theorem A�� then gives 

h 

�� 

�� i h 

�� 

�� X X� w w
B��� 

� 

Ex 

cw 


	
t�� � V 
x� � V 
�� � �Ex 

�lS� 


	
t�� � 

t�� t�� 

From 
A�� the minorization condition 
���� holds for Kw 

� 


B��� Kw 


x� �� � ��lS� 


x� x � X� 

Applying Lemma A�� then gives 

h 

�� 

�� i X 

w 

Ex 

cw 


	
t�� � �V 
x� � � ���� 

t�� 

This proves 
ii� with B� 

� � � � ��� � Result 
i� and 
iii� follow immediately from 


ii� and the Comparison Theorem� 

To prove 
 i v � observe that �w 


 c�� � �w 

� �� Hence the sublevel set S� 

must 

have positive �w 

�measure� From the inequality 
B��� we can invoke i n variance to 

deduce 
iv�� 

Finally� 
v� also follows from 
B��� and Lemma A��� 

h 

�� 

�� i X 

 � V 
x� � V 
�� � 

w �lS� 


	
t�� � V 
x� � V 
�� � ����Ex 

t�� 

ut 

Let � � sup x�X 

gn
x� and � � infx�X 

gn
x��n n 

Lemma B��� For each n � Z�� 

�i� Pn��gn
x� � gn��
x� 

�ii� � � � 

n n�� 

�iii� gn��
x� � Pngn
x� 

�iv� � � �n�� 

� �n 

Proof� Result 
i� follows from the bound Vn�� 

� PnVn 

� cn 

� Pn��Vn 

� cn��� 

as shown here� 

gn�� 

� Vn�� 

� Vn�� 

� Vn�� 

� 
Pn��Vn 

� cn��� 

� Pn��Vn�� 

� cn�� 

� Pn��Vn 

� cn�� 

� Pn��gn� 

To p r o ve 
ii�� we apply 
i� and the de�nition of � � 

n 

� � inf gn��
x� � inf Pn��gn
x� � inf gn
y� � � � 

nn�� x�X x�X y�X 

We n o w p r o ve 
iii�� First observe that 

PnVn�� 

� Pn
Vn 

� gn� � Pn 

Vn 

� Pngn 

� Vn�� 

� cn 

� Pngn� 

From the de�nition of fVng we then have 

Vn�� 

� Pn��Vn�� 

� cn�� 

� Pn 

Vn�� 

� cn 

� Vn�� 

� Pn 

gn� 

from which the result follows� Result 
iv� then follows immediately� as in 
ii�� ut 

We m a y n o w establish the desired stability properties of the VIA under 
A���

A��� 

Proposition B��� The policy w 

n satis�es� for each n� 
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�i�	 The following identity holds for all x� 


B���	 PnVn 


x� � Vn
x� � cn
x� � gn
x�� 

�ii� The sequence fgn 

� n � Z�g is uniformly bounded from above� 


B���	 gn
x� � �� x � X� n � Z�� 

�iii�	 The chain �n is cn�regular� and there exists a constant depending only 

on � and � such that for each n� 

h 

�� 

�� i X 

n 

Ex 

cn
	
t�� � B�
Vn 


x� � �� � x � X� 

t�� 

�iv� The stationary policy w 

n is regular with unique invariant probability �n� 

and the invariant probability satis�es 

J 
w 

n � � �n 


cn� � � �n

Proof� Result 
i� is essentially the de�nition of Vn� g n� For each n� 

Pn 

Vn 

� Vn�� 

� cn 

� Vn 

� cn 

� 
 Vn�� 

� Vn 

� � Vn 

� cn 

� gn� 

Result 
ii� follows from Lemma B��� and 
iii� directly from Lemma B��� Result 
iv� 

follows from 
ii�� 
iii�� and the Comparison Theorem applied to 
B���� ut 

An application of this proposition and Lemma B�� gives a lower bound on the 

sequences fgng� fhng� 

Lemma B��� For all n � Z�� 

gn
�� � � 
��� � hn
x� � � 
��� �� x � X� 

Proof� The lower bound on hn 

follows immediately from Lemma B�� and 

Proposition B��� We t h e n h a ve� 

�
��� � � Pnhn 


�� � hn
�� � cn
�� � gn
�� � gn
��� 

ut 

These bounds can now be used to establish a uniform upper bound on fhng� 

Lemma B��� There is a � n ite constant B�� independent of n� k or x� such that 

hn
x� � B�
Vk 


x� � �� �  � k � n� x � X� 

Proof� It is enough to prove the result for k �  since we m a y treat the kth 

step of the algorithm as a new starting point� We h a ve from minimality o f Vn 

� for 

any n � Z�� �� 	 �  

n�� X 

�Vn 


x� � Ex 

c�
	
t�� � V�
	
n�� �l
�� 

� n � 

t�� �� 	 �  

�� 

�� X 

�� c�
	
t�� � Vn��� 


�� �l
�� 

� n� �Ex 

t�� 
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where E 

� is the expectation operator obtained with the policy w� � Subtracting 

Vn
�� from both sides then gives �� �  

n�� X 

�hn
x� � Ex 

c�
	
t�� � V�
	
n�� �l
�� 

� n � 

t�� �  

�� 

�� X 


B��� � 

� c�
	
t��Ex 

t�� 

�� Ex 

�
Vn��� 


�� � Vn 


��� �l
�� 

� n�� � 

We n o w proceed to bound each of these terms� First� letting Ln
x� denote the �rst 

term on the right hand side of 
B���� we h a ve �� �  

n�� X 

�Ln
x� �� Ex 

c�
	
t�� � V�
	
n�� �l
�� 

� n �


t��
�� �  

n�� X 

� 

� c�
	
t�� � E 

��V�
	
n�� j 	
�� � � � � 	
n � ��� �l
�� 

� n �Ex


t��
�� �  

n�� X 

� 

� c�
	
t�� � 
V�
	
n � ��� � c�
	
n � ��� � �� �l
�� 

� n �Ex


t��


� 

� Ln��
x� � �P 

w f�� 

� n j 	� 

� xg� 

Hence by iteration we h a ve for all n and x� 

�Ln
x� � L�
x� � �Ex��� 

� 

�� V�
x� � �Ex��� 

�� 

Proposition B�� 
iii� combined with this inequality then gives Ln
x� � V�
x� � 

B�
V�
x� � ��� 

The second term in 
B��� is also bounded using Proposition B�� 
iii�� �  

�� 

�� X 

� 

Ex 

c�
	
t�� � B�
V�
x� � �� �


t��


To bound the �nal term� note that by Lem m a B��� for any n � � � 

�


n��
X 

Vn��� 


�� � Vn
�� � � gk 


�� � 
��� ��� 

� 

k�n��� 

The third term on the right hand side of 
B��� is thus again bounded by Proposi�
tion B�� 
iii�� 

� � 

Ex 

�
Vn��� 


�� � Vn 


��� �l
�� 

� n�� � 
��� �Ex��� 

� � 
��� �B�
V�
x� � �� � 

Thus each of the expectations on the right hand side of 
B��� is bounded as desired� 

with B� 

� � � 
� � 
 ��� ��B�� ut 

From the optimality equations we h a ve for all n � Z� 

and x � X� 

Pnhn 


x� � hn��
x� � cn
x� � gn
��� 

This identity together with the b o u n d s already obtained on the sequence fhng 

are precisely what is needed to deduce a strong form of stability for the time�
n 

inhomogeneous chain �v � 
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Lemma B��� There i s a c onstant B� 

dependent only on � and � such that for 

all x and n� 

n��v
Ex 

�n � �� 

� � B�
V�
x� � �� � 

Proof� For n �xed denote 

t�� X 

M 
t� � hn���t
	
t�� � t� � c
	
i���  � t � n � � � 

i�� 

We sh o w here that 
M 
t�� Ft 

� is a supermartingale� with Ft 

� 

	�� � � � � 	t�� t � � 

For each  � t � n� 

t X
n�� n�� 

E 

v �M 
t � �� j F t� � E 

v �hn�t
	
t � ��� j F t� � 
t � �� � � c
	
i�� 

i�� 

t X 

� Pn�t 

hn�t
	
t�� � 
t � �� � � c
	
i�� 

i�� 

t X 

� hn�t��
	
t�� � cn�t
	
t�� � gn�t
�� � 
t � �� � � c
	
i�� 

i�� 

� M 
t�� 

where we h a ve used the bounds gt 

� �� cw 

� c� This establishes the supermartingale 

property� Now l e t � � �� 

� n� and apply the optional stopping theorem to obtain 

the bound h 

� �� i X
n�� n��v v

Ex 

hn���� 


	
� �� � 
c
	
i�� � �� � Ex 

�M 
� �� � M 
� � hn��
x� � B�
V�
x� � �� � 

i�� 

Since we also have hk 


x� � � ��� for all x and k� it follows that 

h 

� �� i X
n��v

Ex 


c
	
i�� � �� � B�
V�
x� � �� � ���� 

i�� 

Using the de�nition of S� 

we then obtain 

h 

� �� i h 

� �� i X X� vn�� n��v

� 

Ex 

c
	
i�� � B�
V�
x� � �� � ��� � �Ex 

�lS� 


	
i�� �


i�� i��


Exactly as in the proof of Lemma A�� given in Theorem ������� of �MT��� we m ay 

deduce via Assumption 
A�� that 

vn�� 

� 

P� �� 

�lS� 


	
i��� � ���� The lemma then Ex i�� 

follows with B� 

� �
 B� 

� � ��� �� ut


For x � X let �
g
x� � lim supn�� 

gn
x�� and g
x� � lim infn�� 

gn
x�� 

Lemma B��� 

g�
x� � g�
��� x � X� 

n�� 

Proof� Let m
t� � gn�t��
	
v 
t��� The adapted process 
m
t�� Ft� is a 

submartingale since by Lemma B��� 

n��v
E �m
t � �� j F t� � Pn�tgn�t
	
t�� � gn�t��
	
t�� � m
t�� 
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n�� 

From the optional stopping theorem with � � �� 

� n we have E 

v �m
� �� � m
�� 

or 

n��v
E �gn�� ��
	
� ��� � gn��
x�� 

gk 


x� � supi�k 

gi
x�� so that �For any k de�ne � gk 


x� � g�
x� as k �� � Letting sn 

denote the integer part of n�� w e then have from the previous bound 

n�� n�� 

gn��
x� � E 

v � g�sn 


	
� ���l
�� 

� s n�� � �E 

v ��l
�� 

� sn�� 

n�� n�� 

gsn 


��P 

v v� � 
�� 

� s n� � �Px 


�� 

� sn��x 

n�� n�� 

Since 

v 
�� 

� sn� � 
��n�E 

v �� � � 
��n�B�
V�
x� � � �� we may take limit Px x 

g
x� � g�
��� usupremums of both sides with respect to n to obtain � t 

Lemma B��� If gni 


�� � g�
��� i �� � then for any integer t� 

gni 

�t
�� � g�
��� i �� � 

Proof� The proof is similar to an argument g i v en in �Cav���� However in the 

present setting we d o n o t k n o w if the sequence of functions fgng is bounded from 

b elow� 

It is enough to prove the result for t � �� By taking a further subsequence 

if necessary we may assume that there is a kernel P and a function g such that 

Pni 

��
x� y� � P 
x� y� and gni 

��
x� � g
x� as i � � pointwise� The kernel P is 

substochastic� P 
x� X� � �� x � X� Using the inequality Pni 

��gni 

�� 


�� � gni 


�� 

and Fatou�s Lemma then gives X 

g�
�� � lim sup Pni 

��
�� y �gni 

��
y� 

i�� 

y�X X 

� lim sup Pni 

��
�� y �gni 

��
y� 

i�� 

y�X 

� Pg 
�� � P 
�� X� g�
��� 

where in the last inequality we are using the fact that � is maximal� Fatou�s 

lemma is applicable because fgng is uniformly bounded from above� It follows 

that P 
�� X� � � and that g
y� � �g
�� for every y � X for which P 
�� y � � � 

Since P 
�� �� � � by assumption� we conclude that g
�� � g�
��� Since g
�� is an 

arbitrary limit point of the sequence fgni 

��
�� � i � g the conclusion of the lemma 

follows� ut 

Lemma B�	� �i� g�
x� � �� for every x � X� 

�ii� limn�� 

gn
�� � �� � 

Proof� We � rst p ro ve 
i�� From the previous lemma it is enough to show that 

g�
�� � �� � We show that there exists a sequence of functions fWt 

� t � g from X 

to R� 

such that for some B	 

� �� 


B��� Wt 


x� � B	
V�
x� � �� � x � X� t � Z�� 


B��� Pw� Wt 


x� � Wt��
x� � cw� 
x� � g�
��� x � X� t � Z�� 

Given these bounds� we then have b y iteration� 

n�� X 

B	 

� B	P 

n 

� 

V� 


x� � W�
x� � P 

t 

� 

cw� 
x� � ng�
���w w

t�� 
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Dividing by n and letting n �� then shows that 

n�� X 

g�
�� � lim 
��n� P 

t 

� 

cw� 
x� � ��� 

n�� w

t�� 

as claimed� 

To p r o ve that such a sequence exists� �rst consider the inequality Pw� hni 

�t 


x� � 

hni 

�t�� 

� cw� 
x� � gni 

�t
��� Letting W 


i�

x� � � � hni 

�t
x�� x � X� w e obtain for t 

each i� 

Pw� W 


i� 


x� � W 


i� 

t��
x� � cw� 
x� � gni 

�t
��� x � X� t � Z��t 

Assume that fnig is chosen so that gni 


�� � g�
�� as i � � � Then by choosing 

a subsequence if necessary we m a y �nd functions fWtg with W 


i� 

� Wt 

p o in twise t 

as t �� � Since the functions fhtg are bounded as desired� the inequalities 
B���� 


B��� then follow from Lemma B�� and the Dominated Convergence Theorem� 

�

To prove 
ii�� consider any limit point g
�� of the sequence fgn
�g� We can 

assume without loss of generality that there are functions g� h on X� a feedback l a w 

w� and that there is a subsequence fmig of Z� 

with gmi 


x� � g
x�� hmi 


x� � 

h
x�� wmi 


x� � w
x�� i � �� for all x � X� From Fatou�s Lemma we then 

have Pw 

h � h � cw 

� g� and from the Comparison Theorem A�� we then have 

w 


cw 

� � �
g� � ��� where the last inequality follows from 
i�� Since �w 


cw 

� � �� 

by optimality� it then follows that g
x� � �� for a�e� x � X ��w 

�� Lemma B�� 
iv� 

completes the proof� ut 

Lemma B��
� Under �A����A
� the solution h� 

to the ACOE is unique up to 

an additive constant over all solutions which are b ounded f r om below� 

Proof� To b e g i n we note that under 
A���
A�� there is a minimal relative 

value function given by h 

�� 

�� i X 

hmin
x� �� min 

w �c
	k 

� w k 


	k 

�� � ���Ex 

w 

k�� 

where the minimum is over all Markov policies� As in �BM��� w e m ay show that 

hmin 

solves the optimality equation 

min �Pahmin 


x� � c
x� a�� � hmin 

� ��� 

a�A
x� 

It may be shown that hmin 

is bounded from below as in Lemma B��� By Lemma A�� 

it then follows that this must be an equality� Let wmin 

b e a n y optimizing policy in 

the minimization above s o t h a t 

Pwmin 

hmin 

� hmin 

� cwmin 

� ��� 

Note that the feedback l a w wmin 

must be regular� 

If h is any solution to the ACOE for which i n f x�X 

h
x� � �� then by Lemma A�� 

we h a ve for some regular policy w� h 

�� 

�� i X 

h
x� � h
�� � 

w �cw 


	k 

� � ���Ex 

k�� 

By minimality o f hmin 

it then follows that the function s de�ned by s
x� � h
x� � 

h
�� � hmin
x�� x � X� is positive�valued� Moreover we have Pw 

s � s� so by 

Lemma A�� the function s must be constant� ut 
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Lemma B���� Under �A����A
�� 

hn
x� � h�
x� � h�
��� as n �� � 

Proof� Let h b e any p o in twise limit of the fhng� The function h is �nite 

valued by Lemma B��� Then using Fatou�s lemma we m a y �nd a limiting feedback 

law w such that Pw 

h � h � cw 

� ��� By Theorem A�� and 
A�� it follows that this 

is an equality 


B���	 Pw 

h � h � cw 

� ��� 

Thus by the previous lemma we h a ve h
x� � h�
x� � h�
���	 ut 
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