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1 RealTime Value Iteration 

Recall the realtime value iteration (RTVI) algorithm 

choose xk+1 = f(xk , uk, wk) 

choose ut in some fashion 

update Jk+1(xk) = (TJk)(xk), Jk+1(x) = (TJk)(x), ∀x = xk 

We thus have � � 

TJk(xk ) = min ga(xk) + α Pa(xk , y)Jk (y) 
a 

y 

We encounter the following two questions in this algorithm. 

1. what if we do not know Pa(x, y)? 

2. even if we know/can simulate Pa(x, y), computing y Pa(x, y)J(y) may be expensive. 

To overcome these two problems, we consider the Qlearning approach. 

2 QLearning 

2.1 Qfactors 

For every stateaction pair, we consider 

Q∗(x, a) = ga(x) + αPa(xk, y)J∗(y) (1) 

J∗(x) = min Q∗(x, a) (2) 
a 

We can interpret these equations as Bellman’s equations for an MDP with expanded state space. We have 

the original states x ∈ S, with associated sets of feasible actions Ax, and extra states (x, a), x ∈ S, a ∈ Ax, 
corresponding to stateaction pairs, for which there is only one action available, and no decision must be 

made. Note that, whenever we are in a state x where a decision must be made, the system transitions 
deterministically to state (x, a) based on the state and action a chosen. Therefore we circumvent the need 

to perform expectations y Pa(x, y)J(y) associated with greedy policies. 
We define the operator 

(HQ)(x, a) = ga(x) + α Pa(x, y) min Q(y, a�) (3) 
a� 

y 

It is easy to show that the operator H has the same properties as operator T defined in previous lectures 
for discountedcost problems: 
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¯ ¯ ¯Monotonicity ∀ Q, and Q such that Q ≤ Q, HQ ≤ HQ.

Offset H(Q + Ke) = HQ + αKe.


¯ ¯
Contraction �HQ − H ¯ QQ�∞ ≤ α||Q − Q||∞, ∀ Q, 

It follows that H has a unique fixed point, corresponding to the Q factor Q∗. 

2.2 QLearning 

We now develop a realtime value iteration algorithm for computing Q∗. An algorithm analogous to RTVI 
for computing the costtogo function is as follows: 

Qt+1(xt, ut) = gut (xt) + α Put (x, y) min Qt(y, a�). 
a� 

y 

However, this algorithm undermines the idea that Qlearning is motivated by situations where we do not 
know Pa(x, y) or find it expensive to compute expectations Pa(x, y)J(y). Alternatively, we consider a 

variants that implicitly estimate this expectation, based on state transitions observed in system trajectories. 
Based on this idea, one possibility is to utilize a scheme of the form 

Qt+1(xt, at) = gat (xt) + α min Qt(xt+1, a
�) 

a� 

However, note that such an algorithm should not be expected to converge; in particular, Qt(xt+1, a
�) is a 

noisy estimate of y Put (x, y) mina� Qt(y, a�). We consider a smallstep version of this scheme, where the 

noise is attenuated: 

Qt+1(xt, at) = (1 − γt)Qt(xt, at) + γt gat (xt) + α min Qt(xt+1, a
�) . (4) 

a� 

We will study the properties of (4) under the more general framework of stochastic approximations, which 

are at the core of many simulationbased or realtime dynamic programming algorithms. 

3 Stochastic Approximation 

In the stochastic approximation setting, the goal is to solve a system of equations 

r = Hr, 

where r is a vector in �n for some n and H is an operator defined in �n . If we know how to compute Hr 

for any given r, it is common to try to solve this sytem of equations by value iteration: 

rk+1 = Hrk . (5) 

Now suppose that we cannot compute Hr but have noisy estimates (Hr+ w) with E[w] = 0. One alternative 

is to approximate (5) by drawing several samples Hr+ wi and averaging them, in order to obtain an estimate 

of Hr. In this case, we would have 

1 
k

rt+1 = (Hrt + wi)
k 

i=1 
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We can also do the summation recursively by setting 

(i) 1 
i

r	 = (Hrt + wi),t i 
j=1 

(i+1) i 1 
r = 

i + 1 
r
(i) + 

i + 1
(Hrt + wi+1).t	 t 

Therefore, rt+1 = rt 
(k) . Finally, we may consider replacing samples Hrt + wi with samples Hr

(i−1) + wi,t 

obtaining the final form 

rt+1 = (1 − γt)rt + γt(Hrt + wt). 

A simple application of these ideas involves estimating the expected value of a random variable by drawing 

i.i.d. samples. 

Example 1 Let v1, v2, . . . be i.i.d. random variables. Given 

t 1 
rt+1 = 

t + 1 
rt + 

t + 1 
vt+1 

we know that rt → v̄ by strong law of large numbers. We can actually prove 

(General Version) rt+1 = (1 − γt)rt + γtvt+1 → v̄ w.p. 1, 

if ∞
γt = ∞ and ∞

t=1 t=1 γt 
2 < ∞. 

The conditions on the step sizes γt 
∞

γt = ∞	 (6) 
t=1 

and 
∞

γt 
2 < ∞ (7) 

t=1 

are standard in stochastic approximation algorithms. A simple argument illustrates the need for condition 

(6): if the total sum of step sizes is finite, iterates rt are confined to a region around the initial guess r0, so 

that, if r0 is far enough from any solution of r = Hr, the algorithm cannot possibly converge. Moreover, 
since we have noisy estimates of Hr, convergence of rt+1 = (1 − γt)rt + γHrt + γtw requires that the noisy 

term γtw decreases with time, motivating the condition (7). 
We will consider two approaches to analyzing the stochastic approximation algorithm 

rt+1	 = (1 − γt)rt + γt(Hrt + wt) 

= rt + γt(Hrt + wt − rt) 

= rt + γtS(rt, wt) (8) 

where we define S(rt, wt) = Hrt + wt − rt. The two approaches are 

1. Lyapunov function analysis 

2. ODE approach 
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3.1 Lyapunov function analysis 

The question we try to answer is “Does (8) converge? If so, where does it converge to?” 

We will first illustrate the basic ideas of Lyapunov function analysis by considering a deterministic case. 

3.1.1 Deterministic Case 

In deterministic case, we have S(r, w) = S(r). Suppose there exists some unique r∗ such that 

S(r∗) = Hr∗ − r∗ = 0. 

The basic idea is to show that a certain measure of distance between rt and r∗ is decreasing. 

Example 2 Suppose that F is a contraction with respect to � · �2. Then 

rt+1 = rt + γt(Frt − rt) 

converges. 

Proof: Since F is a contraction, there exists a unique r∗ s.t. Fr∗ = r∗. Let 

V (r) = �r − r∗ 2. 

We will show V (rt) ≥ V (rt+1). Observe 

V (rt+1) = rt+1 − r∗ 2 

= rt + γt(Frt − rt) − r∗ 2 

= �(1 − γt)(rt − r∗) + γt(Frt − r∗)�2 

(1 − γt)�rt − r∗ 2 + γt�Frt − r∗ 2≤ � �

(1 − γt)�rt − r∗ 2 + αγt�rt − r∗ 2≤ � �

= rt − r∗ 2 − (1 − α)γt�rt − r∗ 2. 

t 0 � →Therefore, �rt − r∗ 2 is nonincreasing and bounded below by zero. Thus, �rt − r∗ 2 −→ � ≥ 0. Then 

rt+1 − r∗ 2 rt − r∗ 2 − (1 − α)γt�rt − r∗ 20 ≤ � � ≤ � � �

rt − r∗ 2 − (1 − α)γt�≤ � �

rt−1 − r∗ 2 − (1 − α)(γt + γt−1)�≤ � �
. . . 

t

r0 − r∗ 2 − (1 − α) γl�≤ � �
l=1 

Hence 
r0 − r∗ 2� �t

�
, ∀ t� ≤ 

(1 − α) γtl=1 

we thus have � = 0. 2 

We can isolate several key aspects in the convergence argument used for the example above: 
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1. We define a “distance” V (rt) ≥ 0 indicating how far rt is from a solution r∗ satisfying S(r) = 01 

2. We show that the distance is ”nonincreasing” in t 

3. We show that the distance indeed converges to 0. 

The argument also involves the basic result that “every nonincreasing sequence bounded below converges” 

to show that the distance converges 
Motivated by these points, we introduce the notion of a Lyapunov function: 

Definition 1 We call function V a Lyapunov function if V satisfies 

(a) V (·) ≥ 0 

(b) (�r V )T S(r) ≤ 0 

(c) V (r) = 0 ⇔ S(r) = 0 

3.1.2 Stochastic Case 

The argument used for convergence in the stochastic case parallels the argument used in the deterministic 

case. Let Ft denote all information that is available at stage t, and let 

S̄ 
t(r) = E [S(r, wt)|Ft] . 

Then we require a Lyapunov function V satisfying 

V (·) ≥ 0 (9) 
2(�V (rt))T ¯ (10)St(rt) ≤ −c��V (rt)�

(11)��V (r) − �V (r̄)� ≤ L�r − r̄� 

S(rt, wt)2 2E |Ft ≤ K1 + K2��V (rt)� , (12) 

for some constants c,L,K1 and K2. 
Note that (9) and (10) are direct analogues of requiring existence of a distance that is nonincreasing in 

t; moreover, (10) ensures that the distance decreases at a certain rate if rt is far from a desired solution r∗ 

satisfying V (r∗ = 0). Condition (11) imposes some regularity on V which is required to show that V (rt) 
does indeed converge to 0, and condition (12) imposes some control over the noise. 

A last point worth mentioning is that (10) implies that the expected value of V (rt) is nonincreasing; 
however, we may have V (rt+1) > V (rt) occasionally. Therefore we need an stochastic counterpart to the 

result that “every nonincreasing sequence bounded below converges.” The stochastic counterpart of interest 
to our analysis is given below. 

Theorem 1 (Supermartingale Convergence Theorem) Suppose that Xt, Yt and Zt are nonnegative 
∞

Yt < ∞ with probability 1. Suppose also that t=1random variables and 

E Xt+1 Xi, Yi, Zi, i ≤ t ≤ Xt + Yt − Zt 

Then 
1V (r) = �r − r∗�2 ≥ 0 in the above example. 
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1. Xt converges to a limit (which can be a random variable) with probability 1, 

2. ∞
t=1 Zt < ∞. 

Theorem 2 If (9), (10), (11), and (12) are satisfied and we have ∞
γt = ∞ and ∞

γ2 < ∞, then t=1 t=1 t 

1. V (rt) converges. 

2. limt→∞ �V (rt) = 0. 

3. Every limit point of rt is a stationary point of V . 
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