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1 Markov decision processes 

In this class we will study discrete-time stochastic systems. We can describe the evolution (dynamics) of 

these systems by the following equation, which we call the system equation: 

xt+1 = f(xt, at, wt), (1) 

where xt → S, at → Axt and wt → W denote the system state, decision and random disturbance at time 

t, respectively. In words, the state of the system at time t + 1 is a function f of the state, the decision 

and a random disturbance at time t. An important assumption of this class of models is that, conditioned 

on the current state xt, the distribution of future states xt+1, xt+2, . . . is independent of the past states 

xt−1, xt−2, . . . . This is the Markov property, which rise to the name Markov decision processes. 

An alternative representation of the system dynamics is given through transition probability matrices: for 

each state-action pair (x, a), we let Pa(x, y) denote the probability that the next state is y, given that the 

current state is x and the current action is a. 

We are concerned with the problem of how to make decisions over time. In other words, we would like to 

pick an action at → A at each time t. In real-world problems, this is typically done with some objective in 

mind, such as minimizing costs, maximizing profits or rewards, or reaching a goal. Let u(x, t) take values in 

Ax, for each x. Then we can think of u as a decision rule that prescribes an action from the set of available 

actions Ax based on the current time stage t and current state x. We call u a policy. 

In this course, we will assess the quality of each policy based on costs that are accumulated additively 

xt 

over time. More specifically, we assume that at each time stage t a cost g (xt) is incurred. In the next 

section, we describe some of the optimality criteria that will be used in this class when choosing a policy. 

Based on the previous discussion, we characterize a Markov decision process by a tuple (S,A·, P·(·, ·), g·(·)), 

consisting of a state space, a set of actions associated with each space, transition probabilities and costs as

sociated with each state-action pair. For simplicity, we will assume throughout the course that S and Ax 

are finite. Most results extend to the case of countably or uncountably infinite state and action spaces under 

certain technical assumptions. 

at 

2 Optimality Criteria 

In the previous section we described Markov decision processes, and introduced the notion that decisions 

are made based on certain costs that must be minimized. We have established that, at each time stage t, a 

cost g (xt) is incurred. In any given problem, we must define how costs at different time stages should be at 

combined. Some optimality criterions that will be used in the course are the following: 

1. Finite-horizon total cost: 
⎫⎬ ⎭ 

T −1 
⎫ 
⎫

E g (xt) ⎫ x0 = x (2)at 
⎫ 

t=0 
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2. Average cost: 
⎫⎬ ⎭ 

T −1 
⎫1 
⎫

lim sup E g (xt) ⎫ x0 = x (3) 
T �� T at 

⎫ 
t=0 

3. Infinite-horizon discounted cost: 
⎬ ⎫

⎭ 
� 

⎫ 
⎫

E �t g (xt) ⎫ x0 = x , (4)at 
⎫ 

t=0 

where � → (0, 1) is a discount factor expressing temporal preferences. The presence of a discount 

factor is most intuitive in problems involving cash flows, where the value of the same nominal amount 

of money at a later time stage is not the same as its value at a earlier time stage, since money at 

the earlier stage can be invested at a risk-free interest rate and is therefore equivalent to a larger 

nominal amount at a later stage. However, discounted costs also offer good approximations to the 

other optimality criteria. In particular, it can be shown that, when the state and action spaces are 

¯ ¯finite, there is a large enough � < 1 such that, for all � � �, optimal policies for the discounted-cost 

problem are also optimal for the average-cost problem. However, the discounted-cost criterion tends 

to lead to simplified analysis and algorithms. 

Most of the focus of this class will be on discounted-cost problems. 

Examples 

The Markov decision processes has a broad range of applications. We introduce some interesting applications 

in the following. 

Queueing Networks 

Consider the queueing network in Figure 1. The network consists of three servers and two different external 

jobs, fixed routes 1, 2, 3 and 4, 5, 6, 7, 8, forming a total of 8 queues of jobs at distinct processing stage. We 

assume the service times are distributed according to geometric random variables: When a server i devotes 

a time step to serving a unit from queue j, there is a probability µij that it will finish processing the unit in 

that time step, independent of the past work done on the unit. Upon completion of that processing step, the 

unit is moved to the next queue in its route, or out of the system if all processing steps have been completed. 

New units arrive at the system in queues j = 1, 4 with probability �j in any time step, independent of the 

previous arrivals. 
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Figure 1: A queueing system 
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A common choice for the state of this system is an 8-dimensional vector containing the queue lengths. 

Since each server serves multiple queues, in each time step it is necessary to decide which queue each of 

the different servers is going to serve. A decision of this type may be coded as an 8-dimensional vector a 

indicating which queues are being served, satisfying the constraint that no more than one queue associated 

with each server is being served, i.e., ai → {0, 1}, and a1 + a3 + a8 � 1, a2 + a6 � 1, a4 + a5 + a7 � 1. We can 

impose additional constraints on the choices of a as desired, for instance considering only non-idling policies. 

Policies are described by a mapping u returning an allocation of server effort a as a function of system 

x. We represent the evolution of the queue lengths in terms of transition probabilities - the conditional 

probabilities for the next state x(t + 1) given that the current state is x(t) and the current action is a(t). 

For instance 

Prob(x1(t + 1) = x1(t) + 1 |x(t), a(t)) = �1,


Prob(x3(t + 1) = x3(t) + 1, x2(t + 1) = x2(t) − 1 | (x(t), a(t)) = µ22I(x2(t) > 0, a2(t)) = 1),


Prob(x3(t + 1) = x3(t) − 1 | (x(t), a(t)) = µ13I(x3(t) > 0, a3(t)) = 1),


corresponding to an arrival to queue 1, a departure from queue 2 and an arrival to queue 3, and a departure 

from queue 3. I(·) is the indication function. Transition probabilities related to other events are defined 

similarly. 

We may consider costs of the form g(x) = xi, the total number of unfinished units in the system. For i 

instance, this is a reasonably common choice of cost for manufacturing systems, which are often modelled 

as queueing networks. 

Tetris 

Tetris is a computer game whose essence rule is to fit a sequence of geometrically different pieces, which fall 

from the top of the screen stochastically, together to complete the contiguous rows of blocks. Pieces arrive 

sequentially and the geometric shape of the pieces are independently distributed. A falling piece can be 

rotated and moved horizontally into a desired position. Note that the rotation and move of falling pieces 

must be scheduled and executed before it reaches the remaining pile of pieces at the button of the screen. 

Once a piece reaches the remaining pile, the piece must resite there and cannot be rotated or moved. 

To put the Tetris game into the framework of Markov decision processes, one could define the state to 

correspond to the current configuration and current falling piece. The decision in each time stage is where 

to place the current falling piece. Transitions to the next board configuration follow deterministically from 

the current state and action; transitions to the next falling piece are given by its distribution, which could 

be, for instance, uniform over all piece types. Finally, we associate a reward with each state-action pair, 

corresponding to the points achieved by the number of rows eliminated. 

Portfolio Allocation 

Portfolio allocation deals with the question of how to invest a certain amount of wealth among a collection 

of assets. One could define the state as the wealth of each time period. More specifically, let x0 denote the 

initial wealth and xt as the accumulated wealth at time period t. Assume there are n risky assets, which 

correspond to random rate of return e1, . . . , en. Investors distribute fractions a = (a1, . . . , an) of their wealth 
n

among the n assets, and consume the remaining fraction 1 − i=1 a
n . The evolution of wealth xt is given 
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by 

n 
i xt+1 = ateixt. 

i=1 

Therefore, transition probabilities can be derived from the distribution of the rate of return of each risky 
n

assets. We associate with each state-action pair (x, a) a reward ga(x) = x(1 − i=1 a i, corresponding to the 

amount of wealth consumed. 

4 Solving Finite-Horizon Problems 

Finding a policy that minimizes the finite-horizon cost corresponds to solving the following optimization 

problem: 
⎬ ⎭ 

T −1 

min E gu(xt ,t)(xt)|x0 = x (5) 
u(·,·) 

t=0 

A naive approach to solving (5) is to enumerate all possible policies u(x, t), evaluate the corresponding 

expected cost, and choose the policy that maximizes it. However, note that the number of policies grows 

exponentially on the number of states and time stages. A central idea in dynamic programming is that the 

computation required to find an optimal policy can be greatly reduced by noting that (5) can be rewritten 

as follows: 
� ⎧ 

⎬ ⎭ 
� T −1 

⎨ 
min ga(x) + Pa(x, y) min E gu(xt ,t)(xt)|x1 = y . (6) 
a→Ax � u(·,·) ⎩ 

y→S t=1 

Define J�(x, t0) as follows: 
⎬ ⎭ 

T −1 

J�(x, t0) = min E gu(xt ,t)(xt)|x1 = y . 
u(·,·) 

t=t0 

It is clear from (6) that, if we know J�(·, t0 + 1), we can easily find J�(x, t0) by solving 
� ⎧ 
� ⎨ 

J�(x, t0) = min ga(x) + Pa(x, y)J�(y, t0 + 1) . (7) 
a→Ax � ⎩ 

y→S 

Moreover, (6) suggests that an optimal action at state x and time t0 is simply one that minimizes the 

right-hand side in (7). It is easy to verify that this is the case by using backwards induction. 

We call J�(x, t) the cost-to-go function. It can be found recursively by noting that 

J�(x, T − 1) = min ga(x) 
a 

and J�(x, t), t = 0, . . . , T − 2, can be computed via (7). 

Note that finding J�(x, t) for all x → S and t = 0, . . . , T −1 requires a number of computations that grow 

linearly in the number of states and time stages, even though there are exponentially many policies. 

5 Introduction to Discounted-Cost Problems 

Based on the discussion for the finite-horizon problem, we may conjecture that an optimal decision for the 

infinite-horizon, discounted-cost problem may be found as follows: 
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1. Find (somehow) for every x and t0, 
⎬ ⎭ 

J�(x, t0) = min E �t−t0 gu(xt ,t)(xt)|xt0 = x (8) 
u(·,·) 

t=t0 

2. The optimal action for state x at time t0 is given by 
� ⎧ 
� ⎨ 

u (x, t0) = argmina→Ax ga(x) + � Pa(x, y)J�(y, t0 + 1) . (9) 
� ⎩ 

y→S 

We may also conjecture that, as in the finite-horizon case, J �(x, t) satisfies a recursive relation of the form 
� ⎧ 
� ⎨ 

J�(x, t) = min ga(x) + � Pa(x, y)J�(y, t + 1) . 
a→Ax � ⎩ 

y→S 

The first thing to note in the infinite-horizon case is that, based on expression (8), we have J �(x, t) = 
∗ ∗ J�(x, t ) = J�(x) for all t and t . Indeed, note that, for every u, 

⎬ ⎭ 

E �t−t0 gu(xt ,t)(xt)|xt0 = x = �t−t0 P robu(xt = y|xt0 = x)gu(y)(y) 
t=t0 t=t0 

= �t−t0 P robu(xt−t0 = y|x0 = x)gu(y)(y) 
t=t0 

= �tP robu(xt = y|x0 = x)gu(y)(y). 
t=0 

Intuitively, since transition probabilities Pu(x, y) do not depend on time, infinite-horizon problems look the 

same regardless of the value of the initial time state t, as long as the initial state is the same. 

Note also that, since J�(x, t) = J�(x), we can also infer from (9) that the optimal policy u�(x, t) does 

not depend on the current stage t, so that u�(x, t) = u�(x) for some function u�(·). We call policies that do 

not depend on the time stage stationary. Finally, J� must satisfy the following equation: 
� ⎧ 
� ⎨ 

J�(x) = min ga(x) + � Pa(x, y)J�(y) . 
a→Ax � ⎩ 

y→S 

This is called Bellman’s equation. 

We will show in the next lecture that the cost-to-go function is the unique solution of Bellman’s equation 

and the stationary policy u� is optimal. 

The Dynamic Programming Operators T and Tu 

We now introduce some shorthand notation. For every stationary policy u, we let gu denote the vector with 

entries gu(x)(x), and Pu denote the matrix with entries Pu(x)(x, y). We define the dynamic programming 

operators Tu and T as follows. For every function J : S ≤� ≥, we have 

TuJ = gu + �PuJ, 
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and 

T J = min TuJ. 
u 

With this new notation, Bellman’s equation becomes 

J� = T J� , 

and the policy u� defined in the previous section satisfies 

Tu� J� = T J� . 

More generally, for any function J , we call a policy u greedy with respect to J if 

TuJ = T J. 

We denote any policy that is greedy with respect to J by uJ . 

The following basic properties about the operator T are relevant to much of the analysis in this course. 

¯ ¯Lemma 1 (Monotonicity) Let J � J be arbitrary. Then T J � TJ . 

Proof Since Pu � 0, we have for all u 

TuJ = gu + �PuJ 

¯� gu + �PuJ 

¯= TuJ. 

Now 

T J � Tu 

� Tu 

J̄ 

J̄ 

J 

J̄ 

= T J̄ 

� 

We let e denote the vector with all entries equal to one. 

Lemma 2 (Offset) For all J and k → ≥, we have T (J + ke) = T J + �ke. 

Proof We have 

T (J + ke) = min {gu + �Pu(J + ke)} 
u 

= min {gu + �PuJ + �ke} 
u 

= T J + �ke. 

� 
The second inequality follows from the fact that Pue = e, since y→S Pu(x, y) = 1. � 

Lemma 3 (Maximum-Norm Contraction) For all J and J̄ , we have ∈T J − T J̄∈� � �∈J − J̄∈�. 
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Proof First, we have 

¯ ¯J = J + J − J 

¯ ¯� J + ∈J − J ∈�e. 

. We now have 

¯ ¯ ¯ ¯T J − TJ � T (J + ∈J − J ∈�e) − TJ 

¯ ¯ ¯= TJ + �∈J − J ∈�e − TJ 

¯= �∈J − J ∈�e. 

¯The first inequality follows from monotonicity and the second from the offset property of T . Since J and J 
¯ ¯are arbitrary, we conclude by the same reasoning that TJ − T J � �∈J − J ∈�e. The lemma follows. � 
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