
The Linear Programming Approach to

Approximate Dynamic Programming

D.P. d e F arias and B. Van Roy

Department of Management Science and Engineering

Stanford University, Stanford, CA 94305-4023

Abstract

The curse of dimensionality gives rise to prohibitive computational requirements that render

infeasible the exact solution of large-scale stochastic control problems. We study an eÆcient

method based on linear programming for approximating solutions to such problems. The ap-

proach \�ts" a linear combination of pre-selected basis functions to the dynamic programming

cost-to-go function. We d e v elop error bounds that o�er performance guarantees and also guide

the selection of b o t h basis functions and \state-relevance weights" that in
uence quality of

the approximation. Experimental results in the domain of queueing network control provide

empirical support for the methodology.

1 Introduction

Dynamic programming o�ers a uni�ed approach to solving problems of stochastic control. Cen-

tral to the methodology is the cost-to-go function, which is obtained via solving Bellman's equa-

tion. The domain of the cost-to-go function is the state space of the system to be controlled, and

dynamic programming algorithms compute and store a table consisting of one cost-to-go value

per state. Unfortunately, the size of a state space typically grows exponentially in the numb e r

of state variables. Known as the curse of dimensionality, this phenomenon renders dynamic

programming intractable in the face of problems of practical scale.

One approach t o dealing with this diÆculty is to generate an approximation within a pa-

rameterized class of functions, in a spirit similar to that of statistical regression. In particular,

to approximate a cost-to-go function J

� mapping a state space S to reals, one would design a

parameterized class of functions J~ : S� <

K 7! < , and then compute a parameter vector r 2 <

K

to \�t" the cost-to-go function; i.e., so that

J~(�; r) � J

�:

Note that there are two important preconditions to the development of an e�ective ap-

proximation. First, we need to choose a parameterization J~ that can closely approximate the

desired cost-to-go function. In this respect, a suitable choice requires some practical experience

or theoretical analysis that provides rough information on the shape of the function to be ap-

proximated. \Regularities" associated with the function, for example, can guide the choice of

representation. Designing an approximation architecture is a problem-speci�c task and it is not

the main focus of this paper; however, we provide some general guidelines and illustration via

case studies involving queueing problems.

Given a parameterization for the cost-to-go function approximation, we need an eÆcient

algorithm that computes appropriate parameter values. The focus of this paper is on an algo-

rithm for computing parameters for linearly parameterized function classes. Such a class can be

represented by

K X

J~(�; r) = rk

�k

;

k=1

1

where each �k

is a \basis function" mapping S to < and the parameters r1

; : : : ; r K

represent

basis function weights. The algorithm we study is based on a linear programming formulation,

originally proposed by Schweitzer and Seidman [27], that generalizes the linear programming

approach to exact dynamic programming [5, 12, 1 3 , 1 4 , 1 9 , 2 2].

Over the years, interest in approximate dynamic programming has been fueled to a large

extent b y stories of empirical success in applications such as backgammon [30], job shop schedul-

ing [37], elevator scheduling [8] and pricing of American options [21, 33]. These case studies

p o i n t t o wards approximate dynamic programming as a potentially powerful tool for large-scale

stochastic control. However, signi�cant trial and error is involved in most of the success stories

found in the literature, and duplication of the same success in other applications has proven diÆ-

cult. Factors leading to such diÆculties include poor understanding of how and why a p p r o ximate

dynamic programming algorithms work and a lack of streamlined guidelines for implementation.

These de�ciencies pose a barrier to the use of approximate dynamic programming in industry.

Limited understanding also a�ects the linear programming approach; in particular, though the

algorithm was introduced by S c hweitzer and Seidmann more than �fteen years ago, there has

been virtually no theory explaining its behavior.

We develop a variant of approximate linear programming which represents a signi�cant

improvement over the original formulation. While the original algorithm may exhibit p o o r

scaling properties, our version enjoys strong theoretical guarantees and is provably well-behaved

for a fairly general class of problems involving queueing networks | and we expect the same

to be true for other classes of problems. Speci�cally, our contributions can be summarized as

follows:

�	 We d e v elop an error bound that characterizes the quality of approximations produced by

approximate linear programming. The error is characterized in relative terms, compared

against the \best possible" approximation of the optimal cost-to-go function given the

selection of basis functions | \best possible" is taken under quotations because it involves

choice of a metric by w h i c h to compare di�erent approximations. In addition to providing

performance guarantees, the error bounds and associated analysis o�er new interpretations

and insights pertaining to approximate linear programming. Furthermore, insights from

the analysis o�er guidance in the selection of basis functions, motivating our variant of the

algorithm.

Our error bound is the �rst to link quality of the approximate cost-to-go function to qual-

ity of the \ best" approximate cost-to-go function within the approximation architecture

not only for the linear programming approach b u t also for any algorithm that approxi-

mates cost-to-go functions of general stochastic control problems by computing weights

for arbitrary collections of basis functions.

�	 We provide analysis, theoretical results and numerical examples that explain the impact of

state-relevance weights on the performance of approximate linear programming and o�er

guidance on how t o c hoose them for practical problems. In particular, appropriate choice

of state-relevance weights is shown to be of fundamental importance for the scalability o f

the algorithm.

�	 We develop a bound on the cost increase due to using policies generated by the approx-

imation of the cost-to-go function instead of the optimal policy. The bound suggests a

natural metric by which to compare di�erent approximations to the cost-to-go function

and provides further guidance on the choice of state-relevance weights.

The linear programming approach has been studied in the literature, but almost always with

a focus di�erent from ours. Much of the e�ort has been directed toward eÆcient implementation

of the algorithm. Trick and Zin [31, 3 2] developed heuristics for combining the linear program-

ming approach with successive state aggregation/grid re�nement i n t wo-dimensional problems.

Some of their grid generation techniques are based on stationary state distributions, which also

2

appear in our analysis of state-relevance weights. Paschalidis and Tsitsiklis [24] also apply the

algorithm to two-dimensional problems. An important feature of the linear programming ap-

proach is that it generates lower bounds as approximations to the cost-to-go function; Gordon

[15] discusses problems that may arise from that and suggests constraint relaxation heuristics.

One of these problems is that the linear program used in the approximate linear programming

algorithm may b e o verly constrained, which m a y lead to poor approximations or even infeasibil-

ity. The approach t a k en in our work prevents this | part of the di�erent b e t ween our variant

of approximate linear programming and the original one proposed by S c hweitzer and Seidmann

is that we include certain basis functions that guarantee feasibility and also lead to improved

b o u n d s on the approximation error. Morrison and Kumar [23] develop eÆcient implementa-

tions in the context of queueing network control. Guestrin et al. [17] and Schuurmans and

Patrascu [26] develop eÆcient implementations of the algorithm to factored MDP's. The linear

programming approach i n volves linear programs with a prohibitive n umber of constraints, and

the emphasis of the previous three articles is on exploiting problem-speci�c structure that allows

for the constraints in the linear program to be represented compactly. Alternatively, d e F arias

and Van Roy [11] suggest an eÆcient constraint sampling algorithm.

This paper is organized as follows. We �rst formulate in Section 2 the stochastic control prob-

lem under consideration and discuss linear programming approaches to exact and approximate

dynamic programming. In Section 3, we discuss the signi�cance of \state-relevance weights,"

and establish a b o u n d on the performance of policies generated by approximate linear pro-

gramming. Section 4 contains the main results of the paper, which o�er error bounds for the

algorithm, as well as associated analyses. The error bounds involve problem-dependent terms,

and in Section 5, we study characteristics of these terms in examples involving queueing net-

works. Presented in Section 6 are experimental results involving problems of queueing network

control. A �nal section o�ers closing remarks, including a discussion of merits of the linear

programming approach relative to other methods for approximate dynamic programming.

2 Stochastic Control and Linear Programming

We consider discrete-time stochastic control problems involving a �nite state space S of cardi-

nality jSj = N . For each state x 2 S , there is a �nite set of available actions Ax. Taking action

a 2 Ax

when the current state is x incurs cost ga(x). State transition probabilities pa(x; y)

represent, for each p a i r (x; y) o f states and each action a 2 A x, the probability that the next

state will be y given that the current state is x and the current action is a 2 A x.

A policy u is a mapping from states to actions. Given a policy u, the dynamics of the system

follow a Markov c hain with transition probabilities pu(x)

(x; y). For each policy u, w e de�ne a

transition matrix Pu

whose (x; y)th entry is pu(x)(x; y).

The problem of stochastic control amounts to selection of a policy that optimizes a given

criterion. In this paper, we will employ a s an optimality criterion in�nite-horizon discounted

cost of the form " #

1 � X �
Ju

(x) = E �t gu(xt

)�

x0

= x ;

t=0

where gu(x) is used as shorthand for gu(x)

(x) and the discount factor � 2 (0; 1) re
ects inter-

temporal preferences. It is well known that there exists a single policy u that minimizes Ju

(x)

simultaneously for all x, and the goal is to identify that policy.

Let us de�ne operators Tu

and T by

TuJ = gu

+ �Pu

J and TJ = min (gu

+ �Pu

J) ;

u

where the minimization is carried out component-wise. Dynamic programming involves solution

3

of Bellman's equation

J = T J:

The unique solution J

� of this equation is the optimal cost-to-go function

J

� = min Ju

;

u

and optimal control actions can be generated based on this function, according to 0 1 X

u(x) = argmin

@ga(x) + � pa(x; y)J

�(y)A :

a2Ax y2S

Dynamic programming o�ers a number of approaches to solving Bellman's equation. One

of particular relevance to our paper makes use of linear programming, as we will now discuss.

Consider the problem

max c

0J (1)

s:t: TJ � J;

where c is a vector with positive components, which w e will refer to as state-relevance weights.

It can b e shown that any feasible J satis�es J � J

�. It follows that, for any set of positive

weights c, J

� is the unique solution to (1).

Note that T is a nonlinear operator, and therefore the constrained optimization problem

written above is not a linear program. However, it is easy to reformulate the constraints to

transform the problem into a linear program. In particular, noting that each constraint

(TJ)(x) � J (x)

is equivalent to a set of constraints X

ga(x) + � pa(x; y)J (y) � J (x) 8a 2 A x;

y2S

we can rewrite the problem as

max c

0J X

s:t: ga(x) + � pa(x; y)J (y) � J (x); 8x 2 S; a 2 A x:

y2S

We will refer to this problem as the exact LP.

As mentioned in the introduction, state spaces for practical problems are enormous due to

the curse of dimensionality. Consequently, the linear program of interest involves prohibitively

large numbers of variables and constraints. The approximation algorithm we study reduces

dramatically the numb e r o f v ariables.

Let us now i n troduce the linear programming approach to approximate dynamic program-

ming. Given pre-selected basis functions �1

; : : : ; � K

, de�ne a matrix 2 3 j j 6 7
� = 4 �1

... �K

5

:

j j

With an aim of computing a weight v ector ~r 2 <

K such that �~r is a close approximation to J

�,

one might pose the following optimization problem

max c

0�r (2)

s:t: T �r � �r:

4

Given a solution ~r, one might then hope to generate near-optimal decisions according to
0 1 X

u(x) = argmin

@ga(x) + � pa(x; y)(�~r)(y)A :

a2Ax y2S

We will call such a policy a greedy policy with respect to �~r. More generally, a greedy policy u

with respect to a function J is one that satis�es 0 1 X

u(x) = argmin

@ga(x) + � pa(x; y)J (y)A :

a2Ax y2S

As with the case of exact dynamic programming, the optimization problem (2) can be recast

as a linear program

max c

0�r X

s:t: ga(x) + � pa(x; y)(�r)(y) � (�r)(x); 8x 2 S; a 2 A x:

y2S

We will refer to this problem as the approximate LP. Note that, though the numb e r o f v ariables

is reduced to K, the number of constraints remains as large as in the exact LP. F ortunately, most

of the constraints become inactive, and solutions to the linear program can b e approximated

eÆciently. In numerical studies presented in Section 6, for example, we sample and use only

a relatively small subset of the constraints. We expect that subsampling in this way suÆces

for most practical problems, and have developed sample-complexity bounds that qualify this

expectation [11]. There are also alternative approaches studied in the literature for alleviating

the need to consider all constraints. Examples include heuristics presented in [31] and problem-

speci�c approaches making use of constraint generation methods (e.g., [16, 26]) or structure

allowing constraints to be represented compactly (e.g., [23, 1 7]).

In the next four sections, we assume that the approximate LP can be solved, and we study

the quality of the solution as an approximation to the cost-to-go function.

3 The Importance of State-Relevance Weights

In the exact LP, for any v ector c with positive components, maximizing c0J yields J

�. In other

words, the choice of state-relevance weights does not in
uence the solution. The same statement

does not hold for the approximate LP. In fact, the choice of state-relevance weights may bear

a signi�cant impact on the quality of the resulting approximation, as suggested by theoretical

results in this section and demonstrated by n umerical examples later in the paper.

To motivate the role of state-relevance weights, let us start with a lemma that o�ers an

interpretation of their function in the approximate LP. The proof can be found in the appendix.

Lemma 3.1. A v e ctor ~r solves

max c

0�r

s:t: T �r � �r;

if and only if it solves

min kJ

� � �rk1;c

s:t: T �r � �r:

5

The preceding lemma points to an interpretation of the approximate LP as the minimization

of a certain weighted norm, with weights equal to the state-relevance weights. This suggests

that c imposes a tradeo� in the quality of the approximation across di�erent states, and we can

lead the algorithm to generate better approximations in a region of the state space by assigning

relatively larger weight to that region.

Underlying the choice of state-relevance weights is the question of how to compare di�erent

approximations to the cost-to-go function. A possible measure of quality is the distance to the

optimal cost-to-go function; intuitively, we expect that the better the approximate cost-to-go

function captures the real long-run advantage of being in a given state, the better the policy it

generates. A more direct measure is a comparison between the actual costs incurred by using

the greedy policy associated with the approximate cost-to-go function and those incurred by a n

optimal policy. We now provide a bound on the cost increase incurred by using approximate

cost-to-go functions generated by approximated linear programming.

We consider as a measure of the quality of policy u the expected increase in the in�nite-

horizon discounted cost, conditioned on the initial state of the system being distributed according

to a probability distribution �; i.e.,

EX ��

[Ju(X) � J

�(X)] = kJu

� J

�k1;�

:

It will be useful to de�ne a measure �u;�

over the state space associated with each policy u

and probability distribution �, given by

1 X

�T = (1 � �)�T �t Pu
t : (3)u;�

t=0 P1Note that, since t=0

�t P

t = (I � �Pu

)�1 , w e also have u

�T = (1 � �)�T (I � �Pu

)�1 :u;�

The measure �u;�

captures the expected frequency of visits to each state when the system

runs under policy u, conditioned on the initial state being distributed according to �. Future

visits are discounted according to the discount factor �.

Proofs for the following lemma and theorem can be found in the appendix.

Lemma 3.2. �u;�

is a probability distribution.

We are now poised to prove the following bound on the expected cost increase associated

with policies generated by approximate linear programming. Henceforth we will use the norm

k � k 1;

, de�ned by X

kJ k1;

=
(x)jJ (x)j:

x2S

Theorem 3.1. Let J : S 7! < be such that TJ � J . Then

1 kJuJ

� J

�k1;�

� kJ � J

�k1;�uJ

;�

: (4)

1 � �

Theorem 3.1 o�ers some reassurance that, if the approximate cost-to-go function J is close

to J

�, the performance of the policy generated by J should similarly be close to the performance

of the optimal policy. Moreover, the bound (4) also establishes how approximation errors in

di�erent states in the system map to losses in performance, which is useful for comparing

di�erent approximations to the cost-to-go function.

Contrasting Lemma 3.1 with the bound on the increase in costs (4) given by Theorem 3.1, we

may w ant t o c hoose state-relevance weights c that capture the (discounted) frequency with which

di�erent states are expected to be visited. Note that the frequency with which di�erent states

6

J*

J = Φr

Φr ~

Φr*

J(1)

J(2)

TJ J>

Figure 1: Graphical interpretation of approximate linear programming

are visited in general depends on the policy being used. One possibility i s t o h a ve an iterative

scheme, where the approximate LP is solved multiple times with state-relevance weights adjusted

according to the intermediate policies being generated. Alternatively, a plausible conjecture is

that some problems will exhibit structure making it relatively easy to make guesses about which

states are desirable and therefore more likely to b e visited often by reasonable policies, and

which ones are typically avoided and rarely visited. We expect structures enabling this kind of

procedure to b e reasonably common in large-scale problems, in which desirable policies often

exhibit some form of \stability," guiding the system to a limited region of the state space and

allowing only infrequent excursions from this region. Selection of state-relevance weights in

practical problems is illustrated in Sections 5 and 6.

4 Error Bounds for the Approximate LP

When the optimal cost-to-go function lies within the span of the basis functions, solution of the

approximate LP yields the exact optimal cost-to-go function. Unfortunately, it is diÆcult in

practice to select a set of basis functions that contains the optimal cost-to-go function within

its span. Instead, basis functions must be based on heuristics and simpli�ed analysis. One can

only hope that the span comes close to the desired cost-to-go function.

For the approximate LP to be useful, it should deliver good approximations when the cost-to-

go function is near the span of selected basis functions. Figure 1 illustrates the issue. Consider

an MDP with states 1 and 2. The plane represented in the �gure corresponds to the space of

all functions over the state space. The shaded area is the feasible region of the exact LP, and

J

� is the pointwise maximum over that region. In the approximate LP, w e restrict attention to

the subspace J = � r.

In Figure 1, the span of the basis functions comes relatively close to the optimal cost-to-go

function J

�; if we w ere able to perform, for instance, a maximum-norm projection of J

� onto

the subspace J = �r, we would obtain the reasonably good approximate cost-to-go function

�r�. At the same time, the approximate LP yields the approximate cost-to-go function �~r. In

this section, we develop bounds guaranteeing that �~r is not too much farther from J

� than �r�

is.

We begin in Section 4.1 with a simple bound capturing the fact that, if e is within the span of

the basis functions, the error in the result of the approximate LP is proportional to the minimal

error given the selected basis functions. Though this result is interesting in its own right, the

b o u n d i s v ery loose | perhaps too much so to be useful in practical contexts. In Section 4.2,

7

however, we remedy this situation by providing a re�ned b o u n d , which constitutes the main

result of the paper. The b o u n d motivates a modi�cation to the original approximate linear

programming formulation so that the basis functions span Lyapunov functions, de�ned later.

4.1 A Simple Bound

Let k � k 1

denote the maximum norm, de�ned by kJ k1

= maxx2S

jJ (x)j, and e denote the

vector with every component equal to 1. Our �rst bound is given by the following theorem.

Theorem 4.1. Let e be in the span of the columns of � and c be a probability distribution.

Then, if ~r is an optimal solution to the approximate LP,

2 kJ

� � � r~k1;c

� min kJ

� � �rk1:

1 � �

r

Proof: Let r� be one of the vectors minimizing kJ

� � �rk1

and de�ne � = kJ

� � �r�k1. The

�rst step is to �nd a feasible point r� such that ��r is within distance O(�) of J

�. Since

kT �r� � J

�k1

� �k�r� � J

�k1;

we have

T �r� � J

� � ��e: (5)

We also recall that for any v ector J and any scalar k,

T (J � ke) = min fgu

+ �Pu

(J � ke)g

u

= min fgu

+ �Pu

J � �keg

u

= min fgu

+ �Pu

J g � �ke

u

= TJ � �ke: (6)

Combining (5) and (6), we h a ve

T (�r� � ke) = T �r� � �ke

� J

� � ��e � �ke

� �r� � (1 + �)�e � �ke

= �r� � ke + [(1 � �)k � (1 + �)�] e:

Since e is within the span of the columns of �, there exists a vector �r such that

(1 + �)�

� r� = � r� � e;

1 � �

and �r is a feasible solution to the approximate LP. By the triangular inequality, � �

1 + � 2� k� r�� J

�k1

� k J

� � �r�k1

+ k�r� � � r�k1

� � 1 + = :

1 � � 1 � �

If ~r is an optimal solution to the approximate LP, b y Lemma 3.1, we h a ve

kJ

� � � r~k1;c

� kJ

� � � r�k1;c

� kJ

� � � r�k1

2� �

1 � �

8

where the second inequality holds because c is a probability distribution. The result follows. 2

This bound establishes that when the optimal cost-to-go function lies close to the span of

the basis functions, the approximate LP generates a good approximation. In particular, if the

error minr

kJ

� � �rk1

goes to zero (e.g., as we make use of more and more basis functions) the

error resulting from the approximate LP also goes to zero.

Though the above bound o�ers some support for the linear programming approach, there

are some signi�cant w eaknesses:

1. The bound calls for an element of the span of the basis functions to exhibit uniformly low

error over all states. In practice, however, minr

kJ

� � �rk1

is typically huge, especially

for large-scale problems.

2. The bound does not take i n to account the choice of state-relevance weights. As demon-

strated in the previous section, these weights can signi�cantly impact the approximation

error. A sharp bound should take them into account.

In Section 4.2, we will state and prove the main result of this paper, which p r o vides an improved

bound that aims to alleviate the shortcomings listed above.

4.2 An Improved Bound

To set the stage for development of an improved bound, let us establish some notation. First,

we i n troduce a weighted maximum norm, de�ned by

kJ k1;

= max
(x)jJ (x)j; (7)

x2S

for any
 : S 7! <

+ . As opposed to the maximum norm employed in Theorem 4.1, this norm

allows for uneven weighting of errors across the state space.

We also introduce an operator H , de�ned by X

(HV)(x) = max Pa

(x; y)V (y);

a2Ax

y

for all V : S 7! < . For any V , (HV)(x) represents the maximum expected value of V (y) if the

current state is x and y is a random variable representing the next state. For each V : S 7! < ,

we de�ne a scalar �V

given by

�(HV)(x)

�V

= max : (8)

x V (x)

We can now i n troduce the notion of a \Lyapunov function."

De�nition 4.1 (Lyapunov function). We call V : S 7! <

+ a Lyapunov function if �V

< 1.

Our de�nition of a Lyapunov function translates into the condition that there exist V > 0

and � < 1 such that

�(HV)(x) � �V (x); 8x 2 S : (9)

If � were equal to 1, this would look like a L y apunov stability condition: the maximum expected

value (HV)(x) at the next time step must be less than the current v alue V (x). In general, � is

less than 1, and this introduces some slack in the condition.

Our error bound for the approximate LP will grow proportionately with 1=(1 � �V

), and

we therefore want �V

to b e small. Note that �V

becomes smaller as the (HV)(x)'s become

small relative t o t h e V (x)'s; �V

conveys a degree of \stability," with smaller values representing

stronger stability. Therefore our bound suggests that, the more stable the system is, the easier

it may be for the approximate LP to generate a good approximate cost-to-go function.

9

We n o w state our main result. For any given function V mapping S to positive reals, we use

1=V as shorthand for a function x 7! 1=V (x).

Theorem 4.2. Let ~r be a solution of the approximate LP. Then, for any v 2 <K such that

(�v)(x) > 0 for all x 2 S and �H �v < �v,

2c0�v kJ

� � � r~k1;c

� min kJ

� � �rk1;1=�v

: (10)

1 � ��v r

Proof: We will �rst present three preliminary lemmas leading to the main result. Omitted

proofs can be found in the appendix.

The �rst lemma bounds the e�ects of applying T to two di�erent v ectors.

Lemma 4.1. For any J and J ,

jTJ � TJ�j � � max Pu

jJ � J�j:

u

Based on the preceding lemma, we can place the following bound on constraint violations in

the approximate LP.

Lemma 4.2. For any vector V with positive components and any vector J ,

TJ � J � (�H V + V) kJ

� � J k1;1=V

: (11)

The next lemma establishes that subtracting an appropriately scaled version of a Lyapunov

function from any � r leads us to the feasible region of the approximate LP.

Lemma 4.3. Let v be a vector such that �v is a Lyapunov function, r be an arbitrary vector,

and � �

2

r = r � k J

� � �rk1;1=�v

� 1 v:

1 � ��v

Then,

T � r�� � r� :

Given the preceding lemmas, we are poised to prove Theorem 4.2. � �

2Proof of Theorem 4.2 From Lemma 4.3, we know that r = r��kJ

���r�k1;1=�v 1���v

� 1 v

is a feasible solution for the approximate LP. F rom Lemma 3.1, we h a ve

kJ

� � � r~k1;c

� kJ

� � � r�k1;c X jJ

� (x) � (��r)(x)j

= c(x)(�v)(x)

(�v)(x)

x ! X jJ

�(x) � (��r)(x)j � c(x)(�v)(x) max

x (�v)(x)

x

= c

T �vkJ

� � � r�k1;1=�v � � c

T �v

� kJ

� � �r�k1;1=�v

+ k� r�� �r�k1;1=�v � � � �

� c

T �v kJ

� � �r�k1;1=�v

+ kJ

� � �r�k1;1=�v

2 � 1 k�vk1;1=�v
1 � ��v

2 � c

T �vkJ

� � �r�k1;1=�v

;

1 � ��v

and Theorem 4.2 follows. 2

Let us now discuss how this new theorem addresses the shortcomings of Theorem 4.1 listed

in the previous section. We treat in turn the two items from the aforementioned list.

10

1. The norm k � k 1

appearing in Theorem 4.1 is undesirable largely because it does not scale

well with problem size. In particular, for large problems, the cost-to-go function can take

on huge values over some (possibly infrequently visited) regions of the state space, and so

can approximation errors in such regions.

Observe that the maximum norm of Theorem 4.1 has been replaced in Theorem 4.2 by

k �k 1;1=�v

. Hence, the error at each state is now w eighted by the reciprocal of the Lyapunov

function value. This should to some extent alleviate diÆculties arising in large problems.

In particular, the Lyapunov function should take on large values in undesirable regions of

the state space - regions where J

� is large. Hence, division by the Lyapunov function acts

as a normalizing procedure that scales down errors in such regions.

2. As opposed to the bound of Theorem 4.1, the state-relevance weights do appear in our new

b o u n d . In particular, there is a coeÆcient c0�v scaling the right-hand side. In general,

if the state-relevance weights are chosen appropriately, w e expect that this factor of c0�v

will be reasonably small and independent of problem size. We defer to Section 5 further

quali�cation of this statement and a discussion of approaches to choosing c in contexts

posed by concrete examples.

5 On the Choice of Lyapunov Function

The Lyapunov function �v plays a central role in the bound of Theorem 4.2. Its choice in
uences

three terms on the right-hand side of the bound:

1. the error minr

kJ

� � �rk1;1=�v

;

2. the Lyapunov stability factor k�v

;

3. the inner product c0�v with the state-relevance weights.

An appropriately chosen Lyapunov function should make all three of these terms relatively

small. Furthermore, for the bound to b e useful in practical contexts, these terms should not

grow m uch with problem size.

In the following subsections, we present three examples involving choices of Lyapunov func-

tions in queueing problems. The intention is to illustrate more concretely how L y apunov func-

tions might b e chosen and that reasonable choices lead to practical error bounds that are in-

dependent of the number of states, as well as the number of state variables. The �rst example

involves a single autonomous queue. A second generalizes this to a context with controls. A

�nal example treats a network of queues. In each case, we study the three terms enumerated

above and how they scale with the number of states and/or state variables.

5.1 An Autonomous Queue

Our �rst example involves a model of an autonomous (i.e., uncontrolled) queueing system. We

consider a Markov process with states 0; 1; :::; N � 1, each representing a possible number of jobs

in a queue. The system state xt

evolves according to �

min(xt

+ 1 ; N � 1); with probability p;

xt+1

=

max(xt

� 1; 0); otherwise;

and it is easy to verify that the steady-state probabilities �(0); : : : ; � (N � 1) satisfy � �x
p

�(x) = �(0) :

1 � p

11

If the state satis�es 0 < x < N � 1, a cost g(x) = x2 is incurred. For the sake of simplicity, w e

assume that costs at the boundary states 0 and N � 1 are chosen to ensure that the cost-to-go

function takes the form

J

�(x) = �2

x2 + �1

x + �0

;

for some scalars �0

; � 1

; � 2

with �0

> 0 and �2

> 01 . We assume that p < 1=2 so that the system

is \stable." Stability h e r e i s t a k en in a loose sense indicating that the steady-state probabilities

are decreasing for all suÆciently large states.

Suppose that we wish to generate an approximation to the optimal cost-to-go function using

the linear programming approach. Further suppose that we have chosen the state-relevance

weights c to be the vector � of steady-state probabilities and the basis functions to be �1

(x) = 1

and �2

(x) = x2 .

How good can we expect the approximate cost-to-go function �~r generated by a p p r o ximate

linear programming to be as we increase the number of states N ? First note that

min kJ

� � �rk1;c

� kJ

� � (�0

�1

+ �2

�2

)k1;c

r

N �1 X

= �(x)j�1

jx

x=0 � �xN �1 X p

= j�1

j �(0) x

1 � p

x=0

p

1�p� j�1

j ;

1 �

p

1�p

for all N . The last inequality follows from the fact that the summation in the third line

corresponds to the expected value of a geometric random variable conditioned on its being

less than N . Hence, minr

kJ

� � �rk1;c

is uniformly bounded over N . One would hope that

kJ

� � � r~k1;c, with ~r being an outcome of the approximate LP, would b e similarly uniformly

bounded over N . It is clear that Theorem 4.1 does not o�er a uniform bound of this sort. In

particular, the term minr

kJ

� � �rk1

on the right-hand-side grows proportionately with N and

is unbounded as N increases. Fortunately, this situation is remedied by Theorem 4.2, which

does provide a uniform bound. In particular, as we will show in the remainder of this section, for

an appropriate Lyapunov function V = � v, the values of minr

kJ

� � �rk1;1=V

, 1 =(1 � �V

) and

cT V are all uniformly bounded over N , and together these values o�er a bound on kJ

� � � r~k1;c

that is uniform over N .

We will make use of a Lyapunov function

V (x) = x2 +
2

;

1 � �

which is clearly within the span of our basis functions �1

and �2

. Given this choice, we h a ve

j�2

x2 + �1

x + �0

� �2

x2 � �0

j

min kJ

� � �rk1;1=V

� max

r x�0 x2 + 2 =(1 � �)

1 It is easy to verify that such a c hoice of boundary conditions is possible. In particular, given the desired functional

form for J

� , w e can solve fo r �0

, �1

, and �2

, based on Bellman's equation for states 1; : : : ; N � 2:

� 2
J (x) = x + �(pJ

� (x + 1) + (1 � p)J

� (x � 1); 8x = 1 ; : : : ; N � 2:

Note that the solution is unique as long as N > 5. We can then set g(0) � J

� (0) � �(pJ

� (1) + (1 � p)J

� (0)) and

g(N � 1) � J

� (N � 1) � �(pJ

� (N � 1) + (1 � p)J

� (N � 2)) so that Bellman's equation is also satis�ed for states 0

and N � 1.

12

j�1

jx

=	 max

x�0	 x2 + 2 =(1 � �)

j�1

j �

p :

2 2=(1 � �)

Hence, minr

kJ

� � �rk1;1=V

is uniformly bounded over N .

We next show that 1=(1 � �V

) is uniformly bounded over N . In order to do that, we �nd

bounds on HV in terms of V . For 0 < x < N � 1, we have � �	 � � ��

2

�(H	V)(x) = � p x2 + 2 x + 1 +

2

+ (1 � p) x2 � 2x + 1 +

1 � �	 1 � � �	 �

=	 � x2 +

2

+ 1 + 2 x(2p � 1)

1 � � � �

�	 � x2 +

2

+ 1

1 � � � �

�

=	 V (x) � +

V (x) � �

1 �	 V (x) � +

V (0)

1 + �

=	 V (x) :

2

For x = 0, we have � � � �

2 2

�(H	V)(0) = � p 1 + + (1 � p)

1 � � 1 � �

2

=	 �p + �

1 � � � �

1 � � �	 V (0) � +

2

1 + �

=	 V (0) :

2

Finally, w e clearly have

1 + �

�(HV)(N � 1) � �V (N � 1) � V (N � 1) ;

2

since the only possible transitions from state N � 1 are to states x � N � 1 and V is a

nondecreasing function. Therefore, �V

� (1 + �)=2 and 1=(1 � �V

) is uniformly bounded on N .

We n o w treat cT V . Note that for N � 1, � � � �N �1 x X

x2 +
2

c

T V = �(0)

p

1 � p 1 � �

x=0

N �1 x� � � �

1 � p=(1 � p)

X p
x2 +

2

=

1 � [p=(1 � p)]N 1 � p 1 � �

x=0

x1

� � � �

1 � p=(1 � p)

X p
x2 +

2 �

1 � p=(1 � p) 1 � p 1 � �

x=0 �	 �

1 � p 2 p2 p

=	 + 2 + ;

1 � 2p 1 � � (1 � 2p)2 1 � 2p

so cT V is uniformly bounded for all N .

13

5.2 A Controlled Queue

In the previous example, we treated the case of an autonomous queue and showed how the terms

involved in the error bound of Theorem 4.2 are uniformly bounded on the number of states N .

We n o w address a more general case in which w e can control the queue service rate. For any

time t and state 0 < x t

< N � 1, the next state is given by 8 <

xt

� 1; with probability q(xt

);

xt+1

=
xt

+ 1 ; with probability p; :

xt

; otherwise:

From state 0, a transition to state 1 or 0 occurs with probabilities p or 1 � p, respectively. From

state N �1, a transition to state N �2 or N �1 occurs with probabilities q(N �2) or 1�q(N �2),

respectively. The arrival probability p is the same for all states and we assume that p < 1=2.

The action to be chosen in each state x is the departure probability or service rate q(x), which

takes values in a �nite set fqi; i = 1 ; :::; Ag. We assume that qA

= 1 � p > p , therefore the queue

is \stabilizable". The cost incurred at state x if action q is taken is given by

g(x; q) = x2 + m(q);

where m is a nonnegative and increasing function.

As discussed before, our objective i s t o s h o w that the terms involved in the error bound of

Theorem 4.2 are uniformly bounded over N . We start by �nding a suitable Lyapunov func-

tion based on our knowledge of the problem structure. In the autonomous case, the choice of

the Lyapunov function was motivated by the fact that the optimal cost-to-go function was a

quadratic. We n o w proceed to show that in the controlled case, J

� can be bounded above b y a

quadratic

J

�(x) � �2

x2 + �1

x + �0

for some �0

> 0, �1

and �2

> 0 that are constant independent of the queue bu�er size N � 1.

Note that J

� is bounded above b y the value of a policy �� that takes action q(x) = 1 � p for all

x, hence it suÆces to �nd a quadratic upper bound for the value of this policy. We will do so by

making use of the fact that for any policy � and any v ector J , T�J � J implies J � J�

. Take

1

�2

= ;

1 � �

� [2�2

(2p � 1)]

�1

= ;

1 � � � �

�p(�2

+ �1

) m(1 � p) + � [�2

+ �1

(2p � 1)]

�0

= max ; :

1 � � 1 � �

For any state x such that 0 < x < N � 1, we can verify that

J (x) � (T��J)(x) = �0

(1 � �) � m(1 � p) � � [�2

+ �1

(2p � 1)]

m(1 � p) + � [�2

+ �1

(2p � 1)] � (1 � �) � m(1 � p) �

1 � �

�� [�2

+ �1

(2p � 1)]

= 0:

For state x = N � 1, note that if N > 1 � �1

=2�2

we have J (N) > J (N � 1) and

J (N � 1) � (T��J)(N � 1) = J (N � 1) � (N � 1)2 � m(1 � p) � (12)

�� [(1 � p)J (N � 2) + pJ (N � 1)]

14

� J (N � 1) � (N � 1)2 � m(1 � p) � (13)

�� [(1 � p)J (N � 2) + pJ (N)]

= �0

(1 � �) � m(1 � p) � � [�2

+ �1

(2p � 1)]

� 0:

Finally, for state x = 0 we have

J (0) � (T��J)(0) = (1 � �)�0

� �p(�2

+ �1

)

�p(�2

+ �1

) � (1 � �) � �p(�2

+ �1

)

1 � �

= 0:

It follows that J � T�J , and for all N > 1 � �1

=2�2,

0 � J

� � J�� � J = �2

x2 + �1

x + �0

:

A natural choice of Lyapunov function is, as in the previous example, V (x) = x2 + C for

some C > 0. It follows that

min kJ

� � �rk1;1=V

� kJ

�k1;1=V

r

�2

x2 + �1

x + �0� max

x�0 x2 + C

�1

�0
< �2

+

p + :

2 C C

Now note that �

�(HV)(x) � � p(x2 + 2 x + 1 + C) + (1 � p)(x2 + C)

�

� �

�p(2x + 1)

= V (x) � +

x2 + C

and for C suÆciently large and independent of N, there is � < 1 also independent o f N such

that �H V � �V and 1=(1 � �) is uniformly bounded on N .

It remains to be shown that cT V is uniformly bounded on N . For that, we need to specify

the state-relevance vector c. As in the case of the autonomous queue, we might want it to

b e close to the steady-state distribution of the states under the optimal policy. Clearly, it is

not easy to choose state-relevant w eights in that way since we do not know the optimal policy.

Alternatively, w e will use the general shape of the steady-state distribution to generate sensible

state-relevance weights.

Let us analyze the in�nite bu�er case and show that, under some stability assumptions,

there should b e a geometric upper bound for the tail of steady-state distribution; we expect

that results for �nite (large) bu�ers should be similar if the system is stable, since in this case

most of the steady-state distribution will b e concentrated on relatively small states. Let us

assume that the system under the optimal policy is indeed stable { that should generally be the

case if the discount factor is large. For a queue with in�nite bu�er the optimal service rate q(x)

is nondecreasing in x [1], and stability therefore implies that

q(x) � q(x0

) > p

for all x � x0

and some suÆciently large x0

. It is easy then to verify that the tail of the

steady-state distribution has an upper bound with geometric decay since it should satisfy

�(x)p = �(x + 1) q(x + 1) ;

15

and therefore

�(x + 1) p � < 1;

�(x) q(x0

)

for all x � x0

. Thus a reasonable choice of state-relevance weights is c(x) = �(0)�x, where

1���(0) = 1��N

is a normalizing constant making c a probability distribution. In this case,

�

c

T V = E

�

X

2 + C j X < N

�2 � � 2 + + C;

(1 � �)2 1 � �

where X represents a geometric random variable with parameter 1 � �. We conclude that cT V

is uniformly bounded on N .

5.3 A Queueing Network

Both previous examples involved one-dimensional state spaces and had terms of interest in the

approximation error bound uniformly bounded over the numb e r of states. We now consider

a queueing network with d queues and �nite bu�ers of size B to determine the impact of

dimensionality on the terms involved in the error bound of Theorem 4.2.

We assume that the numb e r o f exogenous arrivals occuring in any time step has expected

value less than or equal to Ad, for a �nite A. The state x 2 <

d indicates the number of jobs in

each queue. The cost per stage incurred at state x is given by

d Xjxj 1

g(x) = = xi

;

d d

i=1

the average number of jobs per queue.

Let us �rst consider the optimal cost-to-go function J

� and its dependency on the numb e r

of state variables d. Our goal is to establish bounds on J

� that will o�er some guidance on the

choice of a Lyapunov function V that keeps the error minr

kJ

� � �rk1;1=V

small. Since J

� � 0,

we will only derive upper bounds.

Instead of carrying the bu�er size B throughout calculations, we will consider the in�nite

bu�er case. The optimal cost-to-go function for the �nite bu�er case should be bounded above

by that of the in�nite bu�er case, as having �nite bu�ers corresponds to having jobs arriving at

a full queue discarded at no additional cost.

We have

Ex

[jxtj] � j xj + Adt;

since the expected total numb e r of jobs at time t cannot exceed the total numb e r of jobs at

time 0 plus the expected number of arrivals between 0 and t, which is less than or equal to Adt.

Therefore we h a ve " #

1 1 X X

Ex

�t jxt

j = �tEx

[jxtj]

t=0 t=0

1 X

� �t(jxj + Adt)

t=0

jxj Ad

= + : (14)

1 � � (1 � �)2

The �rst equality holds because jxt

j � 0 for all t; by the monotone convergence theorem, we

can interchange the expectation and the summation. We conclude from (14) that the optimal

16

cost-to-go function in the in�nite bu�er case should be bounded above b y a linear function of

the state; in particular,

�1
0 � J

�(x) � jxj + �0

;

d

for some positive scalars �0

and �1

independent of the number of queues d.

As discussed before, the optimal cost-to-go function in the in�nite bu�er case provides an

upper bound for the optimal cost-to-go function in the case of �nite bu�ers of size B. Therefore,

the optimal cost-to-go function in the �nite bu�er case should be bounded above b y the same

linear function regardless of the bu�er size B.

As in the previous examples, we will establish bounds on the terms involved in the error

bound of Theorem 4.2. We consider a Lyapunov function V (x) =

1 jxj + C for some constant d

C > 0, which implies

min kJ

� � �rk1;1=V

� kJ

�k1;1=V

r

�1

jxj + d�0� max

x�0 jxj + dC

�0� �1

+ ;

C

and the bound above is independent of the number of queues in the system.

Now let us study �V

. We have � � jxj + Ad

�(HV)(x) � � + C

d !

�A � V (x) � +

jxj + Cd � �

�A � V (x) � + ;

C

and it is clear that, for C suÆciently large and independent o f d, there is a � < 1 independent

of d such that �H V � �V , and therefore

1 is uniformly bounded on d.1��V

Finally, let us consider cT V . We expect that under some stability assumptions, the tail

of the steady-state distribution will have an upper b o u n d with geometric decay [3] and we � �d

1��take c(x) = 1��B+1

�jxj. The state-relevance weights c are equivalent to the conditional joint

distribution of d independent and identically distributed geometric random variables conditioned

on the event that they are all less than B + 1 . Therefore, " #

d � X

T V

1

c = E Xi

+ C ��

Xi

< B + 1 ; i = 1 ; :::; d

d

i=1

< E [X1

] + C

�

= + C;

1 � �

where Xi; i = 1; :::; d are identically distributed geometric random variables with parameter

1 � �. It follows that cT V is uniformly bounded over the number of queues.

6 Application to Controlled Queueing Networks

In this section, we discuss numerical experiments involving application of the linear programming

approach to controlled queueing problems. Such problems are relevant to several industries

17

including manufacturing and telecommunications and the experimental results presented here

suggest approximate linear programming as a promising approach to solving them.

In all examples, we assume that at most one event (arrival/departure) occurs at each time

step. We also choose basis functions that are polynomial in the states. This is partly mo-

tivated by the analysis in the previous section and partly motivated by the fact that, with

linear(quadratic) costs, our problems have cost-to-go functions that are asymptotically lin-

ear(quadratic) functions of the state. Hence our approach is to exploit the problem structure

to select basis functions. It may not be straightforward to identify properties of the cost-to-go

function in other applications; in Section 7, we brie
y discuss an alternative approach.

The �rst example illustrates how state-relevance weights in
uence the solution of the ap-

proximate LP.

6.1 Single Queue with Controlled Service Rate

In Section 5.2, we studied a queue with a controlled service rate and determined that the

b o u n d s on the error of the approximate LP were uniform over the numb e r of states. That

example provided some guidance on the choice of basis functions; in particular, we n o w know

that including a quadratic and a constant function guarantees that an appropriate Lyapunov

function is in the span of the columns of �. Furthermore, our analysis of the (unknown) steady-

state distribution revealed that state-relevance weights of the form c(x) = (1 � �)�x are a

sensible choice. However, how t o c hoose an appropriate value of � was not discussed there. In

this section, we present results of experiments with di�erent v alues of � for a particular instance

of the model described in Section 5.2. The values of � chosen for experimentation are motivated

by ideas developed in Section 3.

We assume that jobs arrive at a queue with probability p = 0 :2 in any unit of tim e. Service

rates/probabilities q(x) are chosen from the set f0:2; 0:4; 0:6; 0:8g. The cost incurred at any time

for being in state x and taking action q is given by

g(x; q) = x + 60 q3:

We take the bu�er size to b e 49999 and the discount factor to b e � = 0:98. We select

basis functions �1

(x) = 1, �2

(x) = x, �3

(x) = x2 , �4

(x) = x3 and state-relevance weights

c(x) = (1 � �)�x. The approximate LP is solved for � = 0 :9 and � = 0 :999 and we denote the

solution of the approximate LP by r� . The numerical results are presented in Figures 2, 3, 4

and 5.

Figure 2 shows the approximations �r� to the cost-to-go function generated by the approx-

imate LP. Note that the results agree with the analysis developed in Section 3; small states are

approximated better when � = 0 :9 whereas large states are approximated almost exactly when

� = 0 :999.

In Figure 3 we see the greedy action with respect to �r� . We get the optimal action for

almost all \small" states with � = 0 :9. On the other hand, � = 0 :999 yields optimal actions for

all relatively large states in the relevant range.

The most important result is illustrated in Figure 4, which depicts the cost-to-go functions

associated with the greedy policies. Note that despite taking suboptimal actions for all relatively

large states, the policy induced by � = 0 :9 performs better than that generated with � = 0 :999

in the range of relevant states, and it is close in value to the optimal policy even in those states

for which it does not take the optimal action. Indeed, the average cost incurred by the greedy

policy with respect to � = 0 :9 is 2.92, relatively close to the average cost incurred by the optimal

(discounted cost) policy, which is 2.72. The average cost incurred when � = 0 :999 is 4.82, which

is signi�cantly higher.

Steady-state probabilities for each of the di�erent greedy policies, as well as the corresponding

(rescaled) state-relevance weights are shown in Figure 5. Note that setting � to 0.9 captures the

18

0 5 10 15 20 25 30 35 40 45 50
500

0

500

1000

1500

2000

2500

optimal
ξ = 0.9
ξ = 0.999+

.

Figure 2: Approximate cost-to-go function for the example in Section 6.1.

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

optimal
ξ = 0.9
ξ = 0.999

.
+

Figure 3: Greedy action for the example in Section 6.1.

19

--

0 5 10 15 20 25 30 35 40 45 50
0

500

1000

1500

2000

2500

optimal
ξ = 0.9
ξ = 0.999

.
+

Figure 4: Cost-to-go function for the example in Section 6.1.

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

optimal policy (steady-state probabilities)
ξ
ξ
ξ
ξ

.
+

- .

 = 0.9 (steady-state probabilities of the greedy policy)
 = 0.999 (steady-state probabilities of the greedy policy)
 = 0.9 (state-relevance weights)
 = 0.999 (state-relevance weights)

0 5 10 15 20 25 30 35 40 45 50

Figure 5: Steady-state probabilities for the example in Section 6.1.

20

= 0.12µ1 = 0.12µ

= 0.28µ= 0.28µ4 3

2

λ = 0.08

λ = 0.08

Figure 6: System for the example in Section 6.2.

Policy

� = 0.95

LONGEST

FIFO

LBFS

Average cost

33.37

45.04

45.71

144.1

Table 1: Performance of di�erent policies for Example 6.2. Average cost estimated by simulation

after 50000000 iterations, starting with empty system.

relative frequencies of states, whereas setting � to 0.999 weights all states in the relevant range

almost equally.

6.2 A Four-Dimensional Queueing Network

In this section we study the performance of the approximate LP algorithm when applied to a

queueing network with two servers and four queues. The system is depicted in Figure 6 and has

been previously studied in [6, 20, 2 5]. Arrival (�) and departure (�i

; i = 1 ; :::; 4) probabilities

are indicated. We assume a discount factor � = 0 :99. The state x 2 <

4 indicates the numb e r o f

jobs in each queue and the cost incurred in any period is g(x) = jxj, th e to ta l n umber of jobs in

4
the system. Actions a 2 f 0; 1g satisfy a1

+ a4

� 1, a2

+ a3

� 1 and the non-iddling assumption,

i.e., a server must be working if any of its queues is nonempty. We h a ve ai

= 1 i� queue i is

being served.

Constraints for the approximate LP are generated by sampling 40000 states according to the

distribution given by the state-relevance weights c. We c hoose the basis functions to span all of

the polynomials in x of degree 3; therefore, there are � � � � �� � � �� �� � � � � ��

4 4 4 4 4 4 4

+ + + + + 2 + = 35

0 1 1 2 1 2 3

basis functions. The terms in the above expression denote the numb e r of basis functions of

degree 0, 1, 2, and 3, respectively.

We c hoose the state-relevance weights to be c(x) = (1 � �)4 �jxj. Experiments were performed

for a range of values of �. The best results were generated when 0:95 � � � 0:99. The average

cost was estimated by simulation with 50,000,000 iterations, starting with an empty system.

We compare the average cost obtained by the greedy policy with respect to the solution of

the approximate LP with that of several di�erent heuristics, namely, �rst-in-�rst-out (FIFO),

last-bu�er-�rst-served (LBFS), and a policy that always serves the longest queue (LONGEST).

Results are summarized in Table 1 and we can see that the approximate LP yields signi�cantly

better performance than all of the other heuristics.

21

=1/11.5λ1

= 1/11.5λ 2

1

= 2.5/11.5µ8

= 3/11.5µ3
= 2/11.5µ2

= 2.2/11.5µ6 = 3.1/11.5µ4

= 3/11.5µ5

= 3/11.5µ7

= 4/11.5 µ

Figure 7: System for the example in Section 6.3.

6.3 An Eight-Dimensional Queueing Network

In our last example, we consider a queueing network with eight queues. The system is depicted

in Figure 7, with arival (�i

; i = 1 ; 2) and departure (�i; i = 1 ; :::; 8) probabilities indicated.

The state x 2 <

8 represents the number of jobs in each queue. The cost-per-state is g(x) =

jxj, and the discount factor � is 0.995. Actions a 2 f0; 1g8 indicate which queues are being

served; ai

= 1 i� a job from queue i is being processed. We consider only non-iddling policies

and, at each time step, a server processes jobs from one of its queues exclusively.

We c hoose state-relevance weights of the form c(x) = (1 � �)8 �jxj. The basis functions are

chosen to span all polynomials in x of degree at most 2; therefore, the approximate LP has 47

variables. Due to the relatively large number of actions per state (up to 18), we c hoose to sample

a relatively small number of states. Note that we take a slightly di�erent approach from that

proposed in [11] and include constraints relative to all actions associated with each state in the

system. Constraints for the approximate LP are generated by sampling 5000 states according

to the distribution associated with the state-relevance weights c. Experiments were performed

for � = 0 :85; 0:9 and 0 :95, and � = 0 :9 yielded the policy with smallest average cost. We do not

specify a maximum bu�er size. The maximum number of jobs in the system for states sampled

in the LP was 235, and the maximum single queue length, 93. During simulation of the policy

obtained, the maximum number of jobs in the system was 649, and the maximum numb e r o f

jobs in any single queue, 384.

To e v aluate the performance of the policy generated by the approximate LP, w e compare it

with �rst-in-�rst-out (FIFO), last-bu�er-�rst-serve (LBFS) and a policy that serves the longest

queue in each server (LONGEST). LBFS serves the job that is closest to leaving the system;

for example, if there are jobs in queue 2 and in queue 6, a job from queue 2 is processed since

it will leave the system after going through only one more queue, whereas the job from queue 6

will still have to go through two more queues. We also choose to assign higher priority to queue

8 than to queue 3 since queue 8 has higher departure probability.

We estimated the average cost of each policy with 50,000,000 simulation steps, starting with

an empty system. Results appear in Table 2. The policy generated by the approximate LP

performs signi�cantly better than each of the heuristics, yielding more than 10% improvement

over LBFS, the second b e s t policy. We expect that even better results could b e obtained by

re�ning the choice of basis functions and state-relevance weights.

The constraint generation step took 74.9 seconds and the resulting LP was solved in ap-

proximately 3.5 minutes of CPU time with CPLEX 7.0 running on a Sun Ultra Enterprise 5500

machine with Solaris 7 operating system and a 400 MHz processor.

22

ALP 136.67

LBFS 153.82

163.63

LONGEST 168.66

Policy Average cost

FIFO

Table 2: Average numb e r of jobs in the system for the example in Section 6.3, after 50,000,000

simulation steps.

7 Closing Remarks and Open Issues

In this paper we studied the linear programming approach to approximate dynamic program-

ming for stochastic control problems as a means of alleviating the curse of dimensionality. We

provided an error bound for a variant of approximate linear programming based on certain as-

sumptions on the basis functions. The bounds were shown to be uniform in the number of states

and state variables in certain queueing problems. Our analysis also led to some guidelines in

the choice of the so-called \state-relevance weights" for the approximate LP.

An alternative to the approximate LP are temporal-di�erence learning (TD) methods [2, 9,

10, 28, 29, 34, 35, 36]. In such methods, one tries to �nd a �xed p o i n t for an \approximate

dynamic programming operator" by simulating the system and learning from the observed costs

and state transitions. Experimentation is necessary to determine when TD can o�er better

results than the approximate LP. H o wever, it is worth mentioning that due to its complexity,

much of TD's behavior is still to b e understood; there are no convergence proofs or e�ective

error bounds for general stochastic control problems. Such poor understanding leads to imple-

mentation diÆculties; a fair amount of trial and error is necessary in order to get the method

to perform well or even to converge. The approximate LP, on the other hand, bene�ts from

the inherent simplicity of linear programming: its analysis is simpler, and error bounds such

as those provided here provide guidelines on how to set the algorithm's parameters most eÆ-

ciently. Packages for large-scale linear programming developed in the recent past also make the

approximate LP relatively easy to implement.

A central question in approximate linear programming not addressed here is the choice

of basis functions. In the applications to queueing networks, we have chosen basis functions

polynomial in the states. This was largely motivated by the fact that, with linear/quadratic

costs, it can be shown in these problems that the optimal cost-to-go function is asymptotically

linear/quadratic. Reasonably accurate knowledge of structure the cost-to-go function may b e

diÆcult in other problems. An alternative approach i s to extract a numb e r of features of the

states which are believed to b e relevant to the decision being made. The hope is that the

mapping from features to the cost-to-go function might be smooth, in which case certain sets

of basis functions such as polynomials might l e a d t o g o o d a p p r o ximations.

We h a ve motivated many of the ideas and guidelines for choice of parameters through ex-

amples in queueing problems. In future work, we i n tend to explore how these ideas would be

interpreted in other contexts, such as portfolio management and inventory control.

Several other questions remain open and are the object of future investigation: Can the

state-relevance weights in the objective function be chosen in some adaptive w ay? Can we add

robustness to the approximate LP algorithm to account for errors in the estimation of costs

and transition probabilities, i.e., design an alternative LP with meaningful performance bounds

when problem parameters are just known to be in a certain range? How do our results extend

to the average cost case? How do our results extend to the in�nite-state case?

Finally, in this paper we utilize linear architectures to represent a p p r o ximate cost-to-go func-

23

tions. It may b e i n teresting to explore algorithms using nonlinear representations. Alternative

representations encountered in the literature include neural networks [4, 18] and splines [7, 32],

among others.

Acknowledgements

The authors would like to thank John Tsitsiklis and Sean Meyn for valuable comments. This

research w as supported by NSF CAREER Grant ECS-9985229, by the ONR under Grant MURI

N00014-00-1-0637, and by an IBM Research F ellowship.

References

[1] D. Bertsekas. Dynamic Programming and Optimal Control. Athena Scienti�c, 1995.

[2] D. Bertsekas and J.N. Tsitsiklis. Neuro-Dynamic Programming. Athena Scienti�c, 1996.

[3] D. Bertsimas, D. Gamarnik, and J.N. Tsitsiklis. Performance of multiclass Markovian

queueing networks via piecewise linear Lyapunov functions. Annals of Applied P r obability,

11(4):1384{1428, 2001.

[4] C.M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press, 1995.

[5] V. Borkar. A c o n vex analytic approach to Markov decision processes. Probability Theory

and Related Fields, 78:583{602, 1988.

[6] R-R. Chen and S. Meyn. Value iteration and optimization of multiclass queueing networks.

Queueing Systems, 32:65{97, 1999.

[7] V.C.P. Chen, D. Ruppert, and C.A. Shoemaker. Applying experimental design and regres-

sion splines to high-dimensional continuous-state stochast dynamic programming. Opera-

tions Research, 47(1):38{53, 1999.

[8] R.H. Crites and A.G. Barto. Improving elevator performance using reinforcement learning.

In Advances in Neural Information Processing Systems, v olume 8, 1996.

[9] P. D a yan. The convergence of TD(�) for general �. Machine Learning, 8:341{362, 1992.

[10] D.P. d e F arias and B. Van Roy. On the existence of �xed points for appproximate value iter-

ation and temporal-di�erence learning. Journal of Optimization Theory and Applications,

105(3), 2000.

[11] D.P. de Farias and B. Van Roy. On constraint sampling in the linear programming ap-

proach t o a p p r o ximate dynamic programming. Conditionally accepted to Mathematics of

Operations Research, 2001.

[12] G. de Ghellinck. Les probl�emes de d�ecisions s�equentielles. Cahiers du Centre d'Etudes de

Recherche Op�erationnelle, 2:161{179, 1960.

[13] E.V. Denardo. On linear programming in a Markov decision problem. Management Science,

16(5):282{288, 1970.

[14] F. D'Epenoux. A probabilistic production and inventory problem. Management Science,

10(1):98{108, 1963.

[15] G. Gordon. Approximate Solutions to Markov Decision Processess. PhD thesis, Carneggie

Mellon University, 1999.

[16] M. Gr}otschel and O. Holland. Solution of large-scale symmetric travelling salesman prob-

lems. Mathematical Programming, 51:141{202, 1991.

[17] C. Guestrin, D. Koller, and R. Parr. EÆcient solution algorithms for factored MDPs.

Submitted to Journal of Arti�cial Intelligence Research, 2001.

24

[18] S. Haykin. Neural Networks: A Comprehensive Formulation. McMillan, 1994.

[19] A. Hordijk and L.C.M. Kallenberg. Linear programming and Markov decision chains.

Management Science, 25:352{362, 1979.

[20] P.R. Kumar and T.I. Seidman. Dynamic instabilities and stabilization methods in dis-

tributed real-time scheduling of manufacturing systems. IEEE Transactions on Automatic

Control, 35(3):289{298, 1990.

[21] F. Longsta� and E.S. Schwartz. Valuing American options by s i m ulation: A simple least

squares approach. The Review of Financial Studies, 14:113{147, 2001.

[22] A.S. Manne. Linear programming and sequential decisions. Management Science, 6(3):259{

267, 1960.

[23] J.R. Morrison and P.R. Kumar. New linear program performance bounds for queueing

networks. Journal of Optimization Theory and Applications, 100(3):575{597, 1999.

[24] I.C. Paschalidis and J.N Tsitsiklis. Congestion-dependent pricing of network services.

IEEE/ACM Transactions on Networking, 8(2):171{184, 2000.

[25] A.N. Rybko and A.L. Stolyar. On the ergodicity of stochastic processes describing the

operation of open queueing networks. Problemy Peredachi Informatsii, 28:3{26, 1992.

[26] D. Schuurmans and R. Patrascu. Direct value-approximation for factored MDPs. In Ad-

vances in Neural Information Processing Systems, v olume 14, 2001.

[27] P. Schweitzer and A. Seidmann. Generalized polynomial approximations in Markovian

decision processes. Journal of Mathematical Analysis and Applications, 110:568{582, 1985.

[28] R.S. Sutton. Learning to predict by the methods of temporal di�erences. Machine Learning,

3:9{44, 1988.

[29] R.S. Sutton and A.G. Barto. Learning to Predict by the Methods of Temporal Di�erences.

MIT Press, 1998.

[30] G.J. Tesauro. Temporal di�erence learning and TD-gammon. Communications of the ACM,

38:58{68, 1995.

[31] M. Trick and S. Zin. A linear programming approach to solving dynamic programs. Un-

published manuscript, 1993.

[32] M. Trick and S. Zin. Spline approximations to value functions: A linear programming

approach. Macroeconomic Dynamics, 1, 1997.

[33] J.N. Tsitsiklis and B. Van Roy. Regression methods for pricing complex American-style

options. IEEE Transactions on Neural Networks, 12(4):694{703, 2001.

[34] J.N. Tsitsiklis and B. Van Roy. An analysis of temporal-di�erence learning with function

approximation. IEEE Transactions on Automatic Control, 42(5):674{690, 1997.

[35] B. Van Roy. Learning and Value Function Approximation in Complex Decision Processes.

PhD thesis, Massachusetts Institute of Technology, 1998.

[36] B. Van Roy. Neuro-dynamic programming: Overview and recent trends. In E. Feinberg

and A. Schwartz, editors, Markov Decision Processes: Models, Methods, Directions, and

Open Problems. K l u wer, 2000.

[37] W. Zhang and T.G. Dietterich. High-performance job-shop scheduling with a time-delay

TD(�) n etwork. In Advances in Neural Information Processing Systems, v olume 8, 1996.

25

A Proofs

Lemma 3.1: A v ector ~r solves

max c

0�r

s:t: T �r � �r;

if and only if it solves

min kJ

� � �rk1;c

s:t: T �r � �r:

Proof: It is well known that the dynamic programming operator T is monotonic. From this

and the fact that T is a contraction with �xed point J

�, it follows that, for any J with J � TJ ,

we have

J � TJ � T

2J � ::: � J

�:

Hence, any r that is a feasible solution to the optimization problems of interest satis�es �r � J

�.

It follows that X

kJ

� � �rk1;c

= c(x)jJ

�(x) � (�r)(x)j = c

0J

� � c

0�r;

x2S

and maximizing c0�r is therefore equivalent to minimizing kJ

� � �rk1;c.	 2

Lemma 3.2: �u;�

is a probability distribution.

Proof: Let e b e th e v ector of all ones. Then we h a ve

1 X	 X

�u;�

(x) = (1 � �)�T �t Pu
t e

x2S

t=0

1 X

= (1 � �)�T �t e

t=0

= (1 � �)�T (1 � �)�1 e

= 1;

and the claim follows.	 2

Theorem 3.1: Let J : S 7! < be such that TJ � J . Then

1 kJuJ

� J

�k1;�

� kJ � J

�k1;�uJ

;�

:

1 � �

Proof: We have

JuJ

� J	 = (I � �PuJ

)�1 guJ

� J

= (I � �PuJ

)�1 [guJ

� (I � �PuJ

)J]

= (I � �PuJ

)�1 (guJ

+ �PuJ

J � J)

= (I � �PuJ

)�1 (TJ � J):

Since J � TJ , w e have J � TJ � J

� � JuJ

. Hence

kJuJ

� J

�k1;�

= �T (JuJ

� J

�)

26

� �T (JuJ

� J)

= �T (I � �PuJ

)�1 (TJ � J)

1

= �T TJ � J)uJ

;�

(
1 � �

1 � �T

uJ

;�

(J

� � J)

1 � �

1

= kJ

� � J k1;�T ;

uJ

;�1 � �

and the claim follows. 2

�

Lemma 4.1: For any J and J ,

jTJ � TJ�j � � max Pu

jJ � J�j:

u

�

Proof: Note that, for any J and J�, �

TJ � TJ� = min fgu

+ �Pu

J g � min gu

+ �Pu

J�
	

u u

= � �PuJ

J�
J

guJ

+ �PuJ

J � gu

J�� gu

+ �Pu

J � gu

� �Pu ����J J J J

� � max Pu

(J � J�)

u

� � max Pu

jJ � J�j;

u

where uJ

and uJ� denote greedy policies with respect to J and J�, respectively. An entirely

analogous argument g i v es us

TJ�� TJ � � max Pu

jJ � J�j;

u

and the result follows. 2

Lemma 4.2: For any v ector V with positive components and any v ector J ,

TJ � J � (�H V + V) kJ

� � J k1;1=V

:

Proof: Note that

jJ

�(x) � J (x)j � k J

� � J k1;1=V

V (x):

By Lemma 4.1, X

j(TJ

�)(x) � (TJ)(x)j � � max Pa(x; y)jJ

�(y) � J (y)j

a

y2S X

� �kJ

� � J k1;1=V

max Pa(x; y)V (y)

a2Ax

y2S

= �kJ

� � J k1;1=V

(HV)(x):

Letting � = kJ

� � J k1;1=V

, it fo llo ws that

(TJ)(x) � J

�(x) � ��(HV)(x)

� J (x) � �V (x) � ��(HV)(x):

27

The result follows.	 2

Lemma 4.3: Let v b e a v ector such that �v i s a L y apunov function, r be an arbitrary vector,

and � �

2

r = r � k J

� � �rk1;1=�v

� 1 v:

1 � ��v

Then,

T � r�� � r� :

Proof: Let � = kJ

� � �rk1;1=�v

. By Lemma 4.1, �	 � �	 � � � �� �	 2

� �j(T �r)(x) � (T �r) (x)j =

�(T �r)(x) � T (�r � � � 1 �v (x) � 1 � ��v

� � � X 2 � � max Pa(x; y)� � 1 (�v)(y)

a	 1 � ��v
y2S � �

2

= �� � 1 (H �v)(x);

1 � ��v

since �v i s a L y apunov function and therefore 2=(1 � ��v

) � 1 > 0. It follows that � �

2

T �r � T �r � �� � 1 H �v:

1 � ��v

By Lemma 4.2,

T �r � �r � � (�H �v +� v) ;

and therefore � �

2

T �r � �r � � (�H �v +� v) � �� � 1 H �v

1 � ��v � �

2

=	 �r � � (�H �v +� v) + � � 1 (�v � �H �v)

1 � ��v

� �r � � (�H �v +� v) + �(�v + �H �v)

=	 �r;

where the last inequality follows from the fact that �v � �H �v > 0 and

2	 2 � 1 =	 � 1

1 � maxx
�(H�v)(x)1 � ��v

(�v)(x)

2(�v)(x)

=	 max � 1

x	 (�v)(x) � �(H �v)(x)

(�v)(x) + �(H �v)(x)

= max	 :

x	 (�v)(x) � �(H �v)(x)

2

28

