
�

On Constraint Sampling in the Linear Programming

Approach to Approximate Dynamic Programming

D.P. de Farias and B. Van Roy

Abstract
In the linear programming approach to approximate dynamic programming, one tries to solve

a certain linear program — the ALP — which has a relatively small number K of variables but an
intractable number M of constraints. In this paper, we study a scheme that samples and imposes a
subset of m ≥ M constraints. A natural question that arises in this context is: How must m scale
with respect to K and M in order to ensure that the resulting approximation is almost as good
as one given by exact solution of the ALP? We show that, given a idealized sampling distribution
and appropriate constraints on the K variables, m can be chosen independently of M and need
grow only as a polynomial in K. We interpret this result in a context involving controlled queueing
networks.

1 Introduction

Due to the “curse of dimensionality,” Markov decision processes typically have a prohibitively large
number of states, rendering exact dynamic programming methods intractable and calling for the
development of approximation techniques. This paper represents a step in the development of a
linear programming approach to approximate dynamic programming [4, 12, 13, 14]. This approach
relies on solving a linear program that generally has few variables but an intractable number of
constraints. In this paper, we propose and analyze a constraint sampling method for approximating
the solution to this linear program. We begin in this section by discussing our working problem
formulation, the linear programming approach, constraint sampling, results of our analysis, and
related literature.

1.1 Markov Decision Processes

We consider a Markov decision process (MDP) with a finite state space S = {1, . . . , |S|}. In each
state x ⊆ S, there is a finite set of admissible actions Ax. Further, given a choice of action a ⊆ Ax,
a cost ga(x) → 0 is incurred, and the probability that the next state is y ⊆ S is given by Pa(x, y).
A policy u is a mapping from states to admissible actions. Our interest is in finding an optimal
policy: one that minimizes expected infinite-horizon discounted costs

↑

Ju(x) = κt(Pu
t gu)(x),

t=0

simultaneously for all initial states x ⊆ S. Here, κ ⊆ (0, 1) is the discount factor, Pu is a matrix
whose xyth component is equal to Pu(x)(x, y), and gu is a vector whose xth component is equal to
gu(x)(x).

The cost-to-go function Ju associated with a policy u is the unique solution to Ju = TuJu,
where the operator Tu is defined by TuJ = gu + κPuJ. Furthermore, the optimal cost-to-go function
J� = minu Ju is the unique solution to Bellman’s equation: J� = TJ�, where the operator T is
defined by TJ = minu TuJ . Note that the minimization here is carried out component-wise. For
any vector J , we call a policy u greedy with respect to J if TJ = TuJ . Any policy that is greedy
with respect to the optimal cost-to-go function J � is optimal.

1

�

�

1.2 The Linear Programming Approach

An optimal policy can be obtained through computing J �, and employing a respective greedy policy.
However, in many practical contexts, each state is associated with a vector of state variables, and
therefore, the cardinality of the state space grows exponentially with the number of state variables.
This makes it infeasible to compute or even to store J � . One approach to addressing this difficulty
involves approximation of J� .

We consider approximating J� by a linear combination of preselected basis functions βk : S ∈�
�, k = 1, . . . , K. The aim is to generate a weight vector r̃ ⊆ �K such that

K

J�(x) �
�

βk (x)r̃k ,
k=1

and to use a policy that is greedy with respect to the associated approximation. We will use matrix
notation to represent our approximation: �˜ =

�K rk , where r k=1 βk (x)˜

⎦ �
| |

⎝ ⎣

� =
� β1 · · · βK ⎠ .

| |

In the linear programming approach, weights r̃ are generated by solving a certain linear program
— the approximate linear program (ALP):

maximize	 cT �r
�	 (1)

subject to ga(x) + κ y∗S Pa(x, y)(�r)(y) → (�r)(x), �x ⊆ S, a ⊆ Ax,

where c is a vector of state-relevance weights for which every component is positive, and cT denotes
the transpose of c. As discussed in [4], the ALP minimizes �J � −�r�1,c, subject to the constraints.
For any positive vector �, we define the weighted L1 and L↑ norms

�J�1,� = �(x)|J(x)|, �J�↑,� = max �(x)|J(x)|.
x

x

Further, [4] discusses the role of state-relevance weights c and why, given an appropriate choice of
c, minimization of �J� − �r�1,c is desirable.

1.3 Constraint Sampling

While the ALP may involve only a small number of variables, there is a potentially intractable
number of constraints — one per state-action pair. As such, we cannot in general expect to solve
the ALP exactly. The focus of this paper is on a tractable approximation to the ALP: the reduced
linear program (RLP).

Generation of an RLP relies on three objects: (1) a constraint sample size m, (2) a probability
measure � over the set of state-action pairs, and (3) a bounding set N ∀ �K . The probability
measure � represents a distribution from which we will sample constraints. In particular, we
consider a set X of m state-action pairs, each independently sampled according to �. The set N
is a parameter that restricts the magnitude of the RLP solution. This set should be chosen such
that it contains �r̃. The RLP is defined by

maximize	 cT �r
subject to	 ga(x) + κ y∗S Pa(x, y)(�r)(y) → (�r)(x), �(x, a) ⊆ X (2)

r ⊆ N .

2

�	 �

�	 � ��

� �	 ��

Let ˜	 r be an optimal solution of the RLP. In order r be an optimal solution of the ALP and let ˆ
r�1,c to be close to �J� −�˜for the solution of the RLP to be meaningful, we would like �J � −�ˆ r�1,c.

To formalize this, we consider a requirement that
⎡�	 � ⎢

Pr � �J� − �ˆ r�1,c� ≈ ξ → 1 − ψ, r�1,c − �J� − �˜

where ξ > 0 is an error tolerance parameter and ψ > 0 parameterizes a level of confidence 1−ψ. This
paper focusses on understanding the sample size m needed in order to meet such a requirement.

1.4 Results of our Analysis

To apply the RLP, given a problem instance, one must select parameters m, �, and N . In order
for the RLP to be practically solvable, the sample size m must be tractable. Results of our
analysis suggest that if � and N are well-chosen, an error tolerance of ξ can be accommodated
with confidence 1 − ψ given a sample size m that grows as a polynomial in K, 1/ξ, and log 1/ψ, and
is independent of the total number of ALP constraints.

Our analysis is carried out in two parts:

(i)	 Sample complexity of near-feasibility. The first part of our analysis applies to constraint
sampling in general linear programs – not just the ALP. Suppose that we are given a set of
linear constraints

δz
T r + θz → 0, �z ⊆ Z,

on variables r ⊆ �K , a probability measure � on Z, and a desired error tolerance ξ and
confidence 1 − ψ. Let z1, z2, . . . be independent identically distributed samples drawn from Z
according to �. We will establish that there is a sample size

1 1 1
m = O K ln + ln

ξ ξ ψ

such that, with probability at least 1 −ψ, there exists a subset Z ∀ Z of measure �(Z) → 1 − ξ
such that every vector r satisfying

δz
T
i
r + θzi → 0, �i = 1, . . . , m,

also satisfies
δz

T
i
r + θzi → 0, �z ⊆ Z.

We refer to the latter criterion as near-feasibility — nearly all the constraints are satisfied.
The main point of this part of the analysis is that near-feasibility can be obtained with high-
confidence through imposing a tractable number m of samples.

(ii)	 Sample complexity of a good approximation. We would like the the error �J � −�r̂�1,c

r to the RLP to be close to the error �J � − �˜of an optimal solution ˆ r�1,c of an optimal
solution to the ALP. In a generic linear program, near-feasibility is not sufficient to bound
such an error metric. However, because of special structure associated with the RLP, given
appropriate choices of � and N , near-feasibility leads to such a bound. In particular, given a
sample size

Aν Aν 1
m = O K ln + ln ,

(1 − κ)ξ (1 − κ)ξ ψ

where A = maxx |Ax|, with probability at least 1 − ψ we have

r�1,c ≈ �J� − �˜�J� − �ˆ r�1,c + ξ�J��1,c.

3

The parameter ν, which is to be defined precisely later, depends on the particular MDP
problem instance, the choice of basis functions, and the set N .

A major weakness of our error bound is that it relies on an idealized choice of �. In particular,
the choice we will put forth assumes knowledge of an optimal policy. Alas, we typically do
not know an optimal policy — that is what we are after in the first place. Nevertheless,
the result provides guidance on what makes a desirable choice of distribution. The spirit
here is analogous to one present in the importance sampling literature. In that context, the
goal is to reduce variance in Monte Carlo simulation through intelligent choice of a sampling
distribution and appropriate distortion of the function being integrated. Characterizations of
idealized sampling distributions guide the design of heuristics that are ultimately implemented.

The set N also plays a critical role in the bound. It influences the value of ν, and an appropriate
choice is necessary in order for this term to scale gracefully with problem size. Ideally, given
a class of problems, there should be a mechanism for generating N such that ν grows no
faster than a low-order polynomial function of the number of basis functions and the number
of state variables. As we will later discuss through an example involving controlled queueing
networks, we expect that it will be possible to design effective mechanisms for selecting N for
practical classes of problems.

It is worth mentioning that our sample complexity bounds are loose. Our emphasis is on showing
that the number of required samples can be independent of the total number of constraints and
can scale gracefully with respect to the number of variables. Furthermore, our emphasis is on
a general result that holds for a broad class of MDPs, and therefore we do not exploit special
regularities associated with particular choices of basis functions or specific problems. In the presence
of such special structure, one can sometimes provide much tighter bounds or even methods for exact
solution of the ALP, and results of this nature can be found in the literature, as discussed in the
following literature review. The significance of our results is that they suggest viability of the linear
programming approach to approximate dynamic programming even in the absence of such favorable
special structure.

1.5 Literature Review

We classify approaches to solving the ALP and, more generally, linear programs with large num
bers of constraints into two categories. The first focusses on exploiting problem-specific structure,
whereas the second devises general methods for solving problems with large numbers of constraints.
Our work falls into the second category.

We begin by reviewing work from the first category. Morrison and Kumar [10] formulate approx
imate linear programming algorithms for queueing problems with a specific choice of basis functions
that renders all but a relatively small number of constraints redundant. Guestrin et al. [7] exploit
the structure arising when factored linear architectures are used for approximating the cost-to-go
function in factored MDP’s. In some special cases, this allows for efficient exact solution of the
ALP, and in others, this motivates alternative approximate solution methods. Schuurmans and
Patrascu [11] devise a constraint generation scheme, also especially designed for factored MDP’s
with factored linear architectures. The worst-case compute time of this scheme grows exponentially
with the number of state variables, even for special cases treated effectively by methods of [7]. How
ever, the proposed scheme requires a smaller amount of compute time, on average. Grötschel and
Holland [6] present a cutting-plane method tailored for the travelling salesman problem.

As for the second category, Trick and Zin [13, 14] study several constraint generation heuristics
for the ALP. They apply these heuristics to solve fairly large problems, involving thousands of
variables and millions of constraints. This work demonstrates promise for constraint generation
methods in the context of the ALP. However, it is not clear how the proposed heuristics can be

4

applied to larger problems involving intractable numbers of constraints.
Clarkson’s Las Vegas algorithm [9] is another general-purpose constraint sampling scheme for

linear programs with large numbers of constraints. Las Vegas is a constraint generation algorithm
where constraints are iteratively selected by a method designed to identify binding constraints.
There are a couple of important differences between Las Vegas and our constraint sampling scheme.
First, Las Vegas is an exact algorithm, meaning that it produces the optimal solution, whereas all
that can be proved about the RLP is that it produces a good approximation to an optimal solution
of the ALP with high probability. Second, Las Vegas’ expected run-time is polynomial in the
number of constraints, whereas the RLP entails run-time that is independent of the number of
constraints. Given the prohibitive number of constraints in the ALP, Las Vegas will generally not
be applicable.

Finally, we note that, about a year after this paper was submitted for publication, Calafiore
and Campi [3] independently developed a very similar constraint sampling scheme and sample
complexity bound. Their work focusses on the number of samples needed for near-feasibility of
an optimal solution to an optimization problem with sampled constraints. It is not intended to
address relations between near-feasibility and approximation error. Their work is an important
additional contribution to the topic of constraint sampling, as there are several notable differences
from what is presented in this paper. First, their work treats general convex programs, rather
than linear programs. Second, their analysis is quite different and focusses on near-feasibility of
a single optimal solution to an analog of the RLP, rather than uniform near–feasibility over all
feasible solutions to an RLP. If their result is applied to a linear program as discussed in Item (i)
of Section 1.4, their sample complexity bound is O(K/ξψ). Depending on the desired confidence
1 − ψ, their sample complexity bound of O(K/ξψ) can be greater than or less than the bound of
O((1/ξ)(K ln 1/ξ + ln 1/ψ)) that we use. The bounds may be reconciled by the opportunity to
“boost confidence” [8]. In particular, as discussed in [8], in the design of learning algorithms a
factor of ln 1/ξ can generally be traded for a multiple of 1/ψ. Interestingly, this implies that the
bound of [3], which ensures near-feasibility of a single optimal solution to the RLP is equivalent
– up to a constant factor – to a bound that ensures near-feasibility of all feasible solutions. It is
worth noting, however, that the constant factor that distinguishes the two bounds is significant.

1.6 Organization of the Paper

The remainder of the paper is organized as follows. In Section 2, we establish a bound on the
number of constraints to be sampled so that the RLP generates a near-feasible solution. In Section
3, we extend the analysis to establish a bound on the number of constraints to be sampled so that
the RLP generates a solution that well-approximates an optimal solution to the ALP. To facilitate
understanding of this bound, we study in Section 4 properties of the bound in a context involving
controlled queueing networks. Our bounds require sampling a number of constraints that grows
polynomially on the number of actions per state, which may present difficulties for problems with
large action spaces. We propose an approach for dealing with large action spaces in Section 5.
Section 6 concludes the paper.

2 Sample Complexity of Near-Feasibility

Consider a set of linear constraints

δT r + θz → 0, �z ⊆ Z (3)z

where r ⊆ �K and Z is a set of constraint indices. We make the following assumption on the set
of constraints:

5

1 0 1

0

1

2

0.5 0.5 1.5

0.5

1.5

Figure 1: Large number of constraints in a low-dimensional feasible space. No constraint can be re
moved without affecting the feasible region. Shaded area demonstrates the impact of not satisfying one
constraint on the feasible region.

Assumption 2.1 There exists a vector r ⊆ �K that satisfies the system of inequalities (3).

We are interested in situations where there are relatively few variables and a possibly huge
finite or infinite number of constraints, i.e., K ≥ |Z|. In such a situation, we expect that almost
all the constraints will be irrelevant, either because they are always inactive or because they have
a minor impact on the feasible region. Therefore one might speculate that the feasible region
specified by all constraints can be well-approximated by a sampled subset of these constraints. In
the sequel, we show that this is indeed the case, at least with respect to a certain criterion for a
good approximation. We also show that the number of constraints necessary to guarantee a good
approximation does not depend on the total number of constraints, but rather on the number of
variables.

Our constraint sampling scheme relies on a probability measure � over Z. The distribution
� will have a dual role in our approximation scheme: on one hand, constraints will be sampled
according to �; on the other hand, the same distribution will be involved in the criterion for
assessing the quality of a particular set of sampled constraints.

In general, we cannot guarantee that all constraints will be satisfied over the feasible region of
any subset of constraints. Figure 1, for instance, illustrates a worst-case scenario in which it is
necessary to include all constraints in order to ensure that all of them are satisfied. Note however
that the impact of any one of them on the feasible region is minor and might be considered negligible.
In this spirit, we consider a subset of constraints to be good if we can guarantee that, by satisfying
this subset, the set of constraints that are not satisfied has small measure. In other words, given a
tolerance parameter ξ ⊆ (0, 1), we want to have W ∀ Z satisfying

�⎡ ⎢⎞
sup � y : δT r + θy < 0 ≈ ξ. (4)y

{r|�T
z r+�z ∀0, �z∗W}

Whenever (4) holds for a subset W, we say that W leads to near-feasibility.
The next theorem establishes a bound on the number m of (possibly repeated) sampled con

straints necessary to ensure that the set W leads to near-feasibility with probability at least 1 − ψ.

6

� �
Theorem 2.1 For any ψ ⊆ (0, 1) and ξ ⊆ (0, 1), and

4 12 2
m → K ln + ln , (5)

ξ ξ ψ

a set W of m i.i.d. random variables drawn from Z according to distribution �, satisfies
�⎡ ⎢⎞

sup � y : δT r + θy < 0 ≈ ξ, (6)y
{r:�T

z r+�z ∀0, �z∗W}

with probability at least 1 − ψ.

This theorem implies that, even without any special knowledge about the constraints, we can
ensure near-feasibility, with high probability, through imposing a tractable subset of constraints.
The result follows immediately from Corollary 8.4.2 on page 95 of [1] and the fact that the collection
of sets {{(δ, θ)|δT r + θ → 0}|r ⊆ �K } has VC-dimension K, as established in [5].

Theorem 2.1 may be perceived as a puzzling result: the number of sampled constraints necessary
for a good approximation of a set of constraints indexed by z ⊆ Z depends only on the number
of variables involved in these constraints and not on the set Z. Some geometric intuition can
be derived as follows. The constraints are fully characterized by vectors [δ T θz] of dimension z
equal to the number of variables plus one. Since near-feasibility involves only consideration of
whether constraints are violated, and not the magnitude of violations, we may assume without
loss of generality that �[δT θz]� = 1, for an arbitrary norm. Hence constraints can be thought of z
as vectors in a low-dimensional unit sphere. After a large number of constraints is sampled, they
are likely to form a cover for the original set of constraints — i.e., any other constraint is close to
one of the already sampled ones, so that the sampled constraints cover the set of constraints. The
number of sampled constraints necessary in order to have a cover for the original set of constraints
is bounded above by the number of sampled vectors necessary to form a cover to the unit sphere,
which naturally depends only on the dimension of the sphere, or alternatively, on the number of
variables involved in the constraints.

3 Sample Complexity of a Good Approximation

In this section, we investigate the impact of using the RLP instead of the ALP on the error in the
approximation of the cost-to-go function. We show in Theorem 3.1 that, by sampling a tractable
number of constraints, the approximation error yielded by the RLP is comparable to the error
yielded by the ALP.

The proof of Theorem 3.1 relies on special structure of the ALP. Indeed, it is easy to see that
such a result cannot hold for general linear programs. For instance, consider a linear program with
two variables, which are to be selected from the feasible region illustrated in Figure 2. If we remove
all but a small random sample of the constraints, the new solution to the linear program is likely to
be far from the solution to the original linear program. In fact, one can construct examples where
the solution to a linear program is changed by an arbitrary amount by relaxing just one constraint.

Let us introduce certain constants and functions involved in our error bound. We first define a
family of probability distributions on the state space S, given by

T µ = (1 − κ)c T (I − κPu)−1 , (7)u

for each policy u. Note that, if c is a probability distribution, µu(x)/(1 − κ) is the expected
discounted number of visits to state x under policy u, if the initial state is distributed according to
c. Furthermore, limκ�1 µu(x) is a stationary distribution associated with policy u. We interpret µu

as a measure of the relative importance of states under policy u.
We will make use of a Lyapunov function V : S ∈� �+, which is defined as follows.

7

�

0

1

2

0.5

1.5

1 0.5 0 0.5 1 1.5

Figure 2: A feasible region defined by a large number of redundant constraints. Removing all but a
random sample of constraints is likely to bring about a significant change the solution of the associated
linear program.

Definition 3.1 (Lyapunov function) A function V : S ∈� �+ is called a Lyapunov function if
there is a scalar �V < 1 and an optimal policy u� such that

κPu� V ≈ �V V. (8)

Our definition of a Lyapunov function is similar to that found in [4], with the difference that
here the Lyapunov inequality (8) must hold only for an optimal policy, whereas in [4] it must hold
simultaneously for all policies.

Lemma 3.1 Let V be a Lyapunov function for an optimal policy u� . Then Tu� is a contraction
with respect to � · �↑,1/V .

¯Proof: Let J and J be two arbitrary vectors in �|S|. Then

¯Tu� J − Tu� J = κPu� (J − J̄) ≈ �J − J̄�↑,1/V κPu� V ≈ �J − J̄�↑,1/V �V V.

For any Lyapunov function V , we also define another family of probability distributions on the
state space S, given by

µu(x)V (x)
µu,V (x) = . (9)

µT Vu

We also define a distribution over state-action pairs

µu,V (x)
�u,V (x, a) = , �a ⊆ Ax.

|Ax|

Finally, we define constants

A = max |Ax|

x

and
T

ν =
µu� V

sup �J � − �r�↑,1/V . (10)
cT J �

r∗N

8

� �

�

� �

� �

�

�

� �

� � � �
� � � �

We now present the main result of the paper — a bound on the approximation error introduced
by constraint sampling.

Theorem 3.1 Let ξ and ψ be scalars in (0, 1). Let u� be an optimal policy and X be a (random) set
of m state-action pairs sampled independently according to the distribution �u�,V (x, a), for some
Lyapunov function V , where

16Aν 48Aν 2
m → K ln + ln , (11)

(1 − κ)ξ (1 − κ)ξ ψ

Let r̃ be an optimal solution of the ALP that is in N , and let r̂ be an optimal solution of the
corresponding RLP. If r̃ ⊆ N then, with probability at least 1 − ψ, we have

r�1,c ≈ �J � − �˜�J � − �ˆ r�1,c + ξ�J ��1,c. (12)

Proof: From Theorem 2.1, given a sample size m, we have, with probability no less than 1 − ψ,

(1 − κ)ξ
→ �u�,V ({(x, a) : (Ta�ˆ r)(x)})r)(x) < (�ˆ

4Aν
� µu�,V (x)

=
|Ax|

1(Ta�ˆ r)(x)r)(x)<(�ˆ

x∗S a∗Ax

1 �
→

A
µu�,V (x)1(T � �ˆ r)(x). (13)r)(x)<(�ˆ

x∗S
u

For any vector J , we denote the positive and negative parts by

J + = max(J, 0), J − = max(−J, 0),

where the maximization is carried out componentwise. Note that

T � �
r�1,c = c �(I − κPu�)−1(gu� − (I − κPu�)�ˆ�J � − �ˆ r)�

T≈ c (I − κPu�)−1 |gu� − (I − κPu�)�r̂|
T = c (I − κPu�)−1 (gu� − (I − κPu�)�ˆ r)− r)+ + (gu� − (I − κPu�)�ˆ

T r)+ − (gu� − (I − κPu�)�ˆ= c (I − κPu�)−1 (gu� − (I − κPu�)�ˆ r)− +

r)−+2 (gu� − (I − κPu�)�ˆ

T = c (I − κPu�)−1 gu� − (I − κPu�)�ˆ r − �ˆr + 2 (Tu� �ˆ r)−

T = c (J � − �ˆ r − �ˆr) + 2c T (I − κPu�)−1 (Tu� �ˆ r)− . (14)

The inequality comes from the fact that c > 0 and

↑

(I − κPu�)−1 =
�

κnPu
n
� → 0,

n=0

where the inequality is componentwise, so that

r)� ≈ �(I − κPu�)−1
� |(gu� − (I − κPu�)�ˆ�(I − κPu�)−1(gu� − (I − κPu�)�ˆ r)|

= (I − κPu�)−1 |(gu� − (I − κPu�)�r̂)| .

9

�

Now let ˜ r is feasible for the RLP. Since ˆr be any optimal solution of the ALP1. Clearly, ˜ r is the
r → cT �˜optimal solution of the same problem, we have cT �ˆ r and

T T r) ≈ c (J � − �˜c (J � − �ˆ r)

= �J � − �r̃�1,c, (15)

therefore we just need to show that the second term in (14) is small to guarantee that the perfor
mance of the RLP is not much worse than that of the ALP.

Now

2c T (I − κPu�)−1 (Tu� �ˆ r)− =
2

µ T r − �ˆr − �ˆ u� (Tu� �ˆ r)−

1 − κ
2 �

r)(x) − (Tu� �ˆ r)(x)<(�ˆ= µu� (x) ((�ˆ r)(x)) 1(Tu��ˆ r)(x)1 − κ
x∗S

2 � (�ˆ r)(x)r)(x) − (Tu� �ˆ
= µu� (x)V (x)1(Tu��ˆ r)(x)1 − κ V (x) r)(x)<(�ˆ

x∗S
T2µu� V �

r − �ˆ r)(x)<(�ˆ≈
1 − κ

�Tu� �ˆ r�↑,1/V µu�,V (x)1(Tu��ˆ r)(x)
x∗S

ξ T≈ µu� V �Tu� �ˆ r�↑,1/Vr − �ˆ
2ν
ξ T≈ µu� V (�Tu� �ˆ r�↑,1/V)r − J ��↑,1/V + �J � − �ˆ
2ν
ξ T≈ µu� V (1 + �V)�J � − �r̂�↑,1/V2ν

≈ ξ�J ��1,c,

with probability greater than or equal to 1 − ψ, where second inequality follows from (13) and the
fourth inequality follows from Lemma 3.1. The error bound (12) then follows from (14) and (15).

Three aspects of Theorem 3.1 deserve further consideration. The first of them is the dependence
of the number of sampled constraints (11) on ν. Two parameters of the RLP influence the behavior
of ν: the Lyapunov function V and the bounding set N . Graceful scaling of the sample complexity
bound depends on the ability to make appropriate choices for these parameters. In Section 4, we
demonstrate how, for a wide class of queueing network problems, V and N can be chosen so as to
ensure that the number of sampled constraints grows quadratically in the system dimension.

The number of sampled constraints also grows polynomially with the maximum number of
actions available per state A, which makes the proposed approach inapplicable to problems with a
large number of actions per state. In Section 5, we show how complexity in the action space can
be exchanged for complexity in the state space, so that such problems can be recast in a format
that is amenable to our approach.

Finally, a major weakness of Theorem 3.1 is that it relies on sampling constraints according to
the distribution �u� ,V . In general, �u�,V is not known, and constraints must be sampled according
to an alternative distribution �. Suppose that �(x, a) = µ(x)/|Ax| for some state distribution µ. If
µ is “similar” to µu�,V , one might hope that the error bound (12) holds with a number of samples
m close to the number suggested in the theorem. We discuss two possible motivations for this:

1Note that all optimal solutions of the ALP yield the same approximation error �J � − �r�1,c, hence the error bound
(12) is independent of the choice of r̃.

10

� �

(i) It is conceivable that sampling constraints according to � leads to a small value of

µu�,V ({x : (�ˆ r)(x)}) ≈ (1 − κ)ξ/2,r)(x) → (Tu� �ˆ

with high probability, even though µu�,V is not identical to µ. This would lead to a graceful
sample complexity bound, along the lines of (11). Establishing such a guarantee is closely
related to the problem of computational learning when the training and testing distributions
differ.

(ii) If
T T µu� (Tu� �r − �r)− ≈ C ̃µ (Tu� �r − �r)− ,

for some scalar C and all r, where

µ(x)/V (x)
µ̃(x) = � ,

y∗S µ(y)/V (y)

then the error bound (12) holds with probability 1 − ψ given

16AνC 48AνC 2
m →

(1 − κ)ξ
K ln

(1 − κ)ξ
+ ln

ψ
,

samples. It is conceivable that this will be true for a reasonably small value of C in relevant
contexts.

How to choose µ is an open question, and most likely to be addressed adequately having in mind
the particular application at hand. As a simple heuristic, noting that µu� (x) � c(x) as κ � 0, one
might choose µ(x) = c(x)V (x). This is the approach taken in the examples presented in [4].

4 Example: Controlled Queueing Networks

In order for the error bound (12) to be useful, the parameter

T

ν =
µu� V

sup �J� − �r�↑,1/V , cT J�
r∗N

should scale gracefully with problem size. We anticipate that for many relevant classes of MDPs,
natural choices of V and N will ensure this. In this section, we illustrate this point through an
example involving controlled queueing networks. The key result is Theorem 4.1, which establishes
that – given certain reasonable choices of �, N , and V – ν grows at most linearly with the number
of queues.

4.1 Problem Formulation

We begin by describing the class of problems we will address. Consider a queueing network with d
queues, each with a finite buffer of size B → 2dφ/(1 − φ), for some parameter φ ⊆ (0, 1). The state
space is given by S = {0, . . . , B}d, with each component xi of each state x ⊆ S representing the
number of jobs in queue i. The cost per stage is the average queue length: g(x) = (1/d)

�d
i=1 xi.

Rewards are discounted by a factor of κ per time step. At each time step, an action a ⊆ Ax is
selected. Transition probabilities Pa(x, y) govern how jobs arrive, move from queue to queue, or
leave the network. We assume that the number of exogenous arrivals at each time step is less than
or equal to γd, for some scalar γ ⊆ (0, ≤).

Each class of problems we consider – denoted by Q(φ, κ, γ) is constrained by parameters φ ⊆
(0, 1), κ ⊆ (0, 1), and γ ⊆ (0, ≤). Each problem instance Q ⊆ Q(φ, κ, γ) is identified by a quadruple:

11

�

�

�

�

�

�
�

• number of queues dQ → 1;

• buffer size BQ → dQφ/(1 − φ);

• action sets AQ
· ;

• transition probabilities P·
Q(·, ·).

Let uQ and J�
Q denote an optimal policy and the optimal cost-to-go function for a problem instance

Q. We have the following upper bound on J�
Q.

Lemma 4.1 For any φ ⊆ (0, 1), κ ⊆ (0, 1), γ ⊆ (0,≤), and Q ⊆ Q(φ, κ, γ), we have

d d1 �
xi ≈ J� 1 � κγ

xi + .
dQ

Q(x) ≈
dQ(1 − κ) (1 − κ)2

i=1 i=1

Proof: The first inequality follows from the fact that g(x) ≈ J �
Q(x). Recall that the expected

Qnumber of exogenous arrivals in any time step is less than or equal to γd Therefore, (PQ. �
Q

u

g + γt. It follows that

↑ ↑ dQ
� � 1 �

((PQ κγ
�
Q

)tg ≈

J�
Q(x) = κt

u)t g)(x) ≈ κt(g(x) + γt) = xi + .
dQ(1 − κ) (1 − κ)2

i=1t=0 t=0

4.2 The ALP and the RLP

Q via fitting a linear combination of basis functions βQWe consider approximating J�
k (x) = xk , k =

1, . . . , dQ and βQ
dQ+1(x) = 1 using an ALP:

maximize
�

x∗S cQ(x)
�dQ+1

rkxk + rd+1

⎞

k=1
1 �dQ

�
subject to dQ i=1 xi + κ y∗S Pa

Q(x, y)
�dQ

⎞
(16)

k=1 rkyk + rdQ+1
�dQ→ k=1 rk xk + rdQ+1, �x ⊆ SQ, a ⊆ AQ

x ,

where SQ = {0, . . . , BQ}
dQ and the state-relevance weights are given by

φ−
�dQ xii=1

cQ(x) = .
φ−

�dQ
i=1 yi

y∗SQ

The number of constraints imposed by the ALP (16) grows exponentially with the number of
queues dQ. For even a moderate number of queues (e.g., ten), the number of constraints becomes
unmanageable. Constraint sampling offers an approach to alleviating this computational burden.
To formulate an RLP, given a problem instance Q, we must define a constraint set NQ and a
sampling distribution �Q. We begin by defining and studying a constraint set. Let NQ to be the
set of vectors r ⊆ �d+1 that satisfy the following linear constraints:

γ

rdQ+1 ≈

(1 − κ)2 ,
 (17)

BQ γ
+ �k = 1, . . . , dQ, (18)BQrk + rdQ+1 ≈

(1 − κ)dQ (1 − κ)2

φ φBQ+1(BQ + 1)
� dQ

−
1 − φBQ+1 rk + rdQ+1 → 0. (19)

1 − φ
k=1

12

�

� �

Note that the resulting RLP is a linear program with m+ dQ + 2 constraints, where m is the number
of sampled ALP constraints.

A desirable quality of NQ is that it contains optimal solutions of the ALP (16), as asserted by
the following lemma.

Lemma 4.2 For each φ ⊆ (0, 1), κ ⊆ (0, 1), and γ ⊆ (0, ≤) and each Q ⊆ Q(φ, κ, γ), NQ contains
every optimal solution of the ALP (16).

Proof: Any feasible solution of the ALP is bounded above by J �
Q, therefore by Lemma 4.1, we

have
dQ

1 � κγ
(�r̃Q)(x) ≈

dQ(1 − κ)
xi +

(1 − κ)2 , (20)
i=1

for all optimal solutions r̃Q and all x ⊆ SQ. By considering the case of x = 0, we see that (20)
implies (17). Further, by considering the case where xk = B and xi = 0 for all i ∞= k, we see that
(20) implies (18). Because one-stage costs g(x) are nonnegative, r = 0 is a feasible solution to the

TALP. It follows that cQ�Qr̃Q → 0. With our particular choice of cQ and �Q, this implies (19). �

Another desirable quality of NQ is that it is uniformly bounded over Q(φ, κ, γ).

Lemma 4.3 For each φ ⊆ (0, 1), κ ⊆ (0, 1), and γ ⊆ (0, ≤), there exists a scalar Cν,κ,γ such that

sup �r�↑ ≈ Cν,κ,γ,
r∗NQ

for all Q ⊆ Q(φ, κ, γ).

Proof: Take an arbitrary r ⊆ NQ. Constraint (17) provides an upper bound on rd+1. We now
derive a lower bound on rdQ +1. For shorthand, let

φBQ+1(BQ + 1) Tθ = cQβQ =
φ

−
1 − φBQ+1 .1 1 − φ

We then have

dQ

rd+1 → −θ rk

k=1

dQ
� rdQ+1 1 γ

→ −θ − + +
BQ (1 − κ)dQ BQ(1 − κ)2

k=1

θdQrdQ+1 θ dQθγ
= − −

BQ 1 − κ BQ(1 − κ)2

θdQrdQ+1 θ γ
→ − −

BQ 1 − κ (1 − κ)2 ,

where the first inequality follows from (19), the second one follows from (18), and the final inequality
follows from the fact that BQ > 2dQθ. Gathering the terms involving rdQ+1, we obtain

� γ � �

rd+1 → −
1−κ +

(1−κ)2 θ γ
→ −2 + .

1 − �dQ 1 − κ (1 − κ)2
BQ

where the final inequality follows from the fact that BQ > 2dQθ.

13

�

� � � �

We now derive upper and lower bounds on rk , k = 1, . . . , d. For the upper bounds, we have

1 γ rd+1
rk ≈ + −

(1 − κ)dQ BQ(1 − κ)2 BQ

1 γ 2φ/(1 − φ) γ
≈ + + +

(1 − κ)dQ BQ(1 − κ)2 BQ(1 − κ) B(1 − κ)2

2 2γ
≈ + . (21)

(1 − κ)dQ BQ(1 − κ)2

The first inequality follows from BQ → 2θd and (18), and the second inequality follows from (17).
Finally, for the lower bounds, we have

dQ
� rd+1

rk → − rk� −
1 − θdQ/BQk�=1,k� ≥=k

2 2γdQ 2γ
→ − − −

1 − κ BQ(1 − κ)2 (1 − κ)2

2 γ(1 − φ) 2γ
→ − − −

1 − κ φ(1 − κ)2 (1 − κ)2 ,

where the first inequality follows from (19) and the second inequality follows from (17) and (21).
The result follows. �

We now turn to select and study our sampling distribution. We will use the distribution �Q =
�u

Q ,VQ , where
dQ

1 � 2γ
VQ(x) = xi + . (22)

dQ(1 − κ) (1 − κ)2
i=1

The following lemma establishes that VQ is a Lyapunov function.

Lemma 4.4 For each φ ⊆ (0, 1), κ ⊆ (0, 1) and γ ⊆ (0,≤) and each Q ⊆ Q(φ, κ, γ), VQ is a
Lyapunov function.

Proof: Recall that the expected number of exogenous arrivals in any time period is less than or
equal to γdQ. We therefore have

d 2γ
(κPQ

� VQ)(x) ≈ κ
1 �

xi + γdQ +
(1 − κ)2u

Q dQ(1 − κ)
i=1

dQ
1 � κ(3 − κ) 2γ

= κ xi +
dQ(1 − κ) 2 (1 − κ)2

i=1
⎤ ⎛

dQ
κ(3 − κ) 1 � 2γ

< ⎥ xi + �
2 dQ(1 − κ) (1 − κ)2

i=1

κ(3 − κ)
= VQ(x),

2

where the strict inequality holds because κ < κ(3 − κ)/2 for all κ < 1. Since κ(3 − κ)/2 < 1 for
all κ < 1, the result follows. �

14

� �

�

� �

� � ��

4.3 A Bound on �

Our bound on sample complexity for the RLP, as given by Equation (11), is affected by a parameter
ν. In our context of controlled queueing networks, we have a parameter νQ for each problem instance
Q ⊆ Q(φ, κ, γ):

T VQµu�
Q �J�

Q − �Qr�νQ = sup .↑,1/VQcT J�
Q r∗NQQ

Building on ideas developed in the previous subsections, for Q ⊆ Q(φ, κ, γ), we can bound νQ by a
linear function of the number of queues.

Theorem 4.1 For each φ ⊆ (0, 1), κ ⊆ (0, 1), and γ ⊆ (0, ≤), there exists a scalar Cν,κ,γ such that
νQ ≈ Cν,κ,γdQ.

T VQ/cT
QJ�

Q. We have Proof: We begin by bounding the term µ �
Q

u

T dVQ 1 2γ
Q(I − κP Q 1 �

�
Q

µ
 �
Q

u
(1 − κ)c T)−1 xi +=

T J� cT J�
Q Q (1 − κ)2u dQ(1 − κ)cQ Q i=1

2γ
= 1 + .

cT J�
Q Q(1 − κ)

T
QJ�VQ/cT

Q is bounded above and It then follows from Lemma 4.1 and the fact that φ > 0 that µ �
Q

u

below by positive scalars that do not depend on the problem instance Q.
We now turn attention over to the term supr∗NQ

�J�
Q −�Qr�↑,1/VQ

. From Lemma 4.1 and the
definition of VQ (22), we have

�J�
Q�↑,1/VQ

≈ 1. (23)

We also have, from Lemma 4.3, that
⎤ ⎛

dQ

|(�r̃)(x)| ≈ Cν,κ,γ ⎥ xi + 1 � ,
i=1

for some Cν,κ,γ. Therefore,

�dQ
i=1 xi + 1

��r̃�↑,1/VQ
≈ Cν,κ,γ max

x∗SQ 1 �dQ 2γ
(1−κ)dQ i=1 xi +

(1−κ)2

(1 − κ)2

≈ Cν,κ,γ (1 − κ)dQ + .
2γ

The result then follows from the triangle inequality and the fact that dQ → 1. �

Combining this theorem with the sample complexity bound of Theorem 3.1, we see that for any
Q ⊆ Q(φ, κ, γ), a number of samples

AQdQ AQdQ 1
m = O dQ ln + ln ,

(1 − κ)ξ (1 − κ)ξ ψ

where AQ = maxx∗SQ |A
Q|, suffices to guarantee that x

Q − �Qr̂�1,cQ ≈ �J�
Q�1,cQ ,�J�

Q − �Qr̃�1,cQ + ξ�J�

with probability 1 − ψ. Hence, the number of samples grows at most quadratically in the number
of queues.

15

�

5 Dealing with Large Action Spaces

Cost-to-go function approximation aims to alleviate problems arising when one deals with large
state spaces. Some applications also involve large action spaces, with a possibly exponential num
ber of available actions per state. Large action spaces may impose additional difficulties to exact or
approximate dynamic programming algorithms; in the specific case of approximate linear program-
ming,the number of constraints involved in the reduced LP becomes intractable as the cardinality
of the action sets Ax increases. In particular, our bound (11) on the number of sampled constraints
grows polynomially in A, the cardinality of the largest action set.

Complexity in the action space can be exchanged for complexity in the state space by trans
forming each action under consideration into a sequence of actions taking values in smaller sets [2].
For instance, if actions are described by a collection of action variables, one could assign values the
action variables sequentially, instead of simultaneously. More generally, given an alphabet with N
symbols — assume for simplicity the symbols are 0,1,...,N-1 — and a finite set of actions Ax of
cardinality less than or equal to A, actions in this set can be mapped to words of length at most
�logN A�. Hence we can change the decision on an action a ⊆ Ax into a decision on a sequence â
of size �logN A�.

We define a new MDP as follows. It is not difficult to verify that it solves the same problem as
the original MDP.

• States ¯	 a, i), interpreted as follows: x ⊆ S represents the state in the x are given by a tuple (x, ˆ

original MDP; ˆ
a ⊆ {0, 1, . . . , N − 1}∞logN A∈ represents an encoding of an action in Ax being
taken; i ⊆ {1, 2, . . . , �logN A�} represents which entry in vector â we will decide upon next.

•	 There are N actions associated with each state (x, ˆ ai to 0, 1, . . . N−a, i), corresponding to setting ˆ
1.

+ ai to v” causes a deterministic transition from ˆ a+, where ˆ aj for
= i and ˆi = v. The system transitions from state (x, ˆ a+, i + 1) and no

•	 Taking action “set ˆ a to ˆ aj = ˆ

j ∞ x + a, i) to state (x, ˆ

a, �logN A�) to state (y, ˆ+ , 1)cost is incurred, if i < �logN A�. It transitions from state (x, ˆ a
awith probability Pa(x, y), where a is the action in Ax corresponding to the encoding ˆ+ . A

cost ga(x) is incurred in this transition.
A∈• The discount factor is given by κ1/∞logN .

The new MDP involves a higher dimensional state space and smaller action spaces, and is
hopefully amenable to treatment by approximate dynamic programming methods. In particular,
dealing with the new MDP instead of the original one affects the constraint sampling complexity
bounds provided for approximate linear programming. The following quantities involved in the
bound are affected:

•	 the number of actions per state.

In the new MDP, the number of actions per state is reduced from A to N . In principle,
N is arbitrary, and can be made as low as 2, but as we show next, it affects other factors
in constraint sampling complexity bound, hence we have to keep these effects in mind for a
suitable choice.

•	 the term 1/(1 − κ).
A∈In the new MDP, the discount factor is increased from κ to κ1/∞logN . Note that

1 − (κ1/∞logN A∈)∞logN A∈
1 − κ =
∞logN A∈−1

= (1 − κ1/∞logN A∈) κi

i=0

(1 − κ1/∞logN A∈≈)�logN A�,

16

so that 1/(1 − κ1/∞logN A∈) ≈ �logN A�/(1 − κ).

•	 the number of basis functions K.

In the new MDP, we have a higher dimensional state space, hence we may need a larger
number of basis functions in order to achieve an acceptable approximation to the optimal
cost-to-go function. The actual increase on the number of basis functions will depend on the
structure of the problem at hand.

The bound on the number of constraints being sampled is polynomial in the three terms above.
Hence implementation of the RLP for the modified version of an MDP will require a number of
constraints polynomial in N and in �logN A�, to be contrasted with the number of constraints
necessary for the original MDP, which is polynomial in A. However, the original complexity of
the action space is transformed into extra complexity in the state space, which may incur extra
difficulties in the selection and/or increase in the number of basis functions. (Recall that the
number of constraints is also polynomial in the number of basis functions.) Nevertheless, there is a
potential advantage of using the new MDP, as it provides an opportunity for structures associate
with the action space to be exploited in the same way as structures associated with the state space
are.

6 Conclusions

In this paper, we have analyzed a constraint sampling algorithm as an approximation method
for dealing with the large number of constraints involved in the ALP. We have shown how near-
feasibility can be ensured by sampling a tractable number of constraints. We have established
a bound on the number of samples required, under idealized conditions, to ensure small error in
approximating the optimal solution of the ALP. Through an example involving controlled queueing
networks, we demonstrated that this bound can scale gracefully with problem size.

There are several important directions in which the present results should be extended:

(i) The sampling	 scheme we have studied is idealized in that it makes use of the stationary
distribution of an optimal policy, which is generally unknown. We anticipate that in specific
contexts of practical relevance, it will be possible to derive similar sample complexity bounds
based on samples drawn from a known distribution. But for the moment, this remains an
open issue.

(ii) In Section 4, we offered an example of how the constraint set N might be chosen in a specific
context to guarantee a graceful sample complexity bound. This represents a start, but further
work is required to better understand how the constraints set should be chosen in broader
contexts.

(iii) The error bounds we have developed revolve around the norm � · �1,c. This is motivated by
ideas from our companion paper [4], which argued that minimization of this norm is aligned
with minimization of average cost associated with a greedy policy that is based on the resulting
approximation. However, the analysis in that paper required that the approximation is a lower
bound to the optimal cost–to–go function. This is guaranteed for solutions of the ALP but
not the RLP. Further work is required to understand the impact of this issue.

Acknowledgements

This research was supported by NSF CAREER Grant ECS-9985229, by the ONR under Grant
MURI N00014-00-1-0637, and by an IBM Research Fellowship. We would like to thank the anony
mous reviewers, Mike Veatch and Carlos Guestrin for helpful comments.

17

References

[1] D. Anthony and N. Biggs. Computational Learning Theory. Cambridge University Press, 1992.

[2] D. Bertsekas and J.N. Tsitsiklis. Neuro-Dynamic Programming. Athena Scientific, 1996.

[3] G. Calafiore and M. Campi. Personal communication, 2003.

[4] D.P. de Farias and B. Van Roy.	 The linear programming approach to approximate dynamic
programming. To appear in Operations Research, 2001.

[5] R.M. Dudley.	 Central limit theorems for empirical measures. Annals of Probability, 6(6):899–
928, 1978.

[6] M. Grötschel and O. Holland. Solution of large-scale symmetric travelling salesman problems.
Mathematical Programming, 51:141–202, 1991.

[7] C. Guestrin, D. Koller, and R. Parr.	 Efficient solution algorithms for factored MDPs. To
appear in Journal of Artificial Intelligence Research, 2002.

[8] D. Haussler, M. Kearns, N. Littlestone, and M. K. Warmuth.	 Equivalence of models for
polynomial learnability. Information and Computation, 95(2):129–161, 1991.

[9] K. L.Clarkson. Las vegas algorithms for linear and integer programming when the dimension
is small. Journal of the ACM, 42(2):488–499, 1995.

[10] J.R. Morrison and P.R. Kumar.	 New linear program performance bounds for queueing net
works. Journal of Optimization Theory and Applications, 100(3):575–597, 1999.

[11] D. Schuurmans and R. Patrascu. Direct value-approximation for factored MDPs. In Advances
in Neural Information Processing Systems, volume 14, 2001.

[12] P. Schweitzer and A. Seidmann. Generalized polynomial approximations in Markovian decision
processes. Journal of Mathematical Analysis and Applications, 110:568–582, 1985.

[13] M. Trick and S. Zin. A linear programming approach to solving dynamic programs. Unpub
lished manuscript, 1993.

[14] M. Trick and S. Zin. Spline approximations to value functions: A linear programming approach.
Macroeconomic Dynamics, 1, 1997.

18

