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Solution for PS 1 

1. (a) Let wt be the wealth at time t and also the state of this problem, t = 0, 1, . . . , T . Let at denote the 

decision made at time t, i.e., the portion of the wealth in the risky asset. Let s = 1.03 and rt denote a 

stationary random variable with the mass function P (rt = ru) = P (rt = rd) = 0.5, which corresponds 
to the fluctuation of the stock price. Then the wealth evolves as follows. 

wt+1 = s(1 − at)wt + (1 + rt)atwt


= [s + (1 + rt − s)at]wt


Let U(·) be the utility function of the investor. Then we have


JT (wT ) = U(wT )


Jt(wt) = max E {Jt+1((s + (1 + rt − s)at)wt) x(0) = x0} , ∀t = 1, 2, . . . , T − 1.

at ∈[0,1]	

|

We first discuss the case of U(x) = x. Then 
� 
1	 1 

aT −1 = arg max 
2
(s + (1 + ru − s)a)wT −1 + 

2
(s + (1 − ru − s)a)wT −1 

a∈[0,1] 

ru − rd 
s + (1 − s + 

a∈[0,1] 2 � 
0, if 1 − s + ru −rd ≤ 0 ⇒ ru − rd ≤ 0.06 

=	 2 

1, otherwise. 

Notice that the greedy policy at the (T−1) stage is independent of the state and the following backward 

computations are in the same structure, we know that the optimal policy for maximizing E(wT ) is � 
0, if ru − rd ≤ 0.06, 

a∗ = 
1, otherwise. 

The optimal policy implies that the upward trend of the stock price must be strong enough, i.e.,

ru − rd > 0.06, for the investor to buy stocks.


Next, we consider the case of U(x) = log x. Similarly,we have


)a= arg max 

� 
1	 1 

aT −1 = arg max 
2 

log [(s + (1 + ru − s)a)wT −1] + 
2 

log [(s + (1 − rd − s)a)wT −1]
a∈[0,1] 

1
log wT −1 + 

2 
log [(s + (1 + ru − s)a)(s + (1 − rd − s)a)]= arg max 

a∈[0,1] 

Since log(·) is a strictly concave function and [0, 1] is a compact set, we know that there exists a unique 

solution for the above optimization problem. By differentiating the above function and setting to zero, 
we obtain the greedy policy at stage T − 1 

if r 03, then aT −1 = 0,≤ 0.u ⎧
⎪

⎩
⎨
⎪

0,	 if ru − rd < 0.06, 

1,	 if ru(0.94 − 2rd) > 0.94rd − 0.00018 

otherwise. 
if ru > 0.03, then aT −1 = 

1.03(ru −rd −0.06) 
2(ru −0.03)(rd +0.03) , 
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One can also observe that the greedy policy is independent of the state and the structure of the iteration 

functions are identical; therefore the optimal policy is the following stationary policy. 

if r 03, then a∗ = 0,u ≤ 0.

if ru > 0.03, then a∗ = 

⎧
⎪

⎩
⎨
⎪

0,	 if ru − rd < 0.06, 

1,	 if ru(0.94 − 2rd) > 0.94rd − 0.00018 

otherwise.1.03(ru −rd −0.06) 
2(ru −0.03)(rd +0.03) , 

Comparing the result for the cases U(x) = x and U(x) = log(x), one can conclude that the concavity 

of the utility function U(·) implies that the investor is more conservative. 

(b) Since the transaction cost is proportional to the amount of the buying and selling the stocks, 
we need to track the amount of the wealth in the saving account and in the stock for each time period. 
We use (xt, yt) to denote the wealth in the saving account and in the stock at time t, respectively. 
Moreover, let θ = 0.05 denote the proportional rate of transaction cost. Then, we have the transition 

equation 

xt+1 = s(xt − at − θ at )| |
yt+1 = (1 + r)(yt + at), ∀t = 0, 1, . . . , T − 1, 

where at is the decision made at time t and, to make this problem sensible, we have at ∈ At = [−yt, 
xt ]1+c 

so that the investor will not have negative wealth. Note that at > 0 can be interpreted as buying stocks, 
at < 0 can be interpreted as selling stocks, and at = 0 denotes no trading. Then one can write the 

Bellman’s equation as follows. 

JT (xT , yT ) = U(xT , yT ) (= (xT + yT ) or = log(xT + yT )) 

Jt(xt, yt) = max Er {Jt+1(s(xt − at − θ at ), (1 + r)(yt + at))} , ∀t = T − 1, T − 2, . . . , 0. 
at ∈At 

| |

(c) When ru = 1.2 and rd = 0.9, we have E[wT ] = 16.2845 and E [log wT ] = 0.827. Notice that, in the 

latter case, we have the ratio of the wealth in the stock to the wealth in the saving account converge 

to a constant, i.e., 0.1568, fast. For the case ru = 1.4 and rd = 0.7, we have E[wT ] = 402.242 and 

E[log wT ] = 2.5629. Again, when U(x) = log x, the ratio of the wealth in the stock to the wealth in 

the saving account converges to a constant, i.e., 0.7521, fast. This is a property of the optimal policy 

for the logarithm utility. 

As we discuss before, the larger the value (ru − rd) is, the more the investor should invest in the stock 

market, since the mean rate of return of the risky asset becomes higher. This property is shown in 

our numerical results. Moreover, our conjecture in (a) that the concavity of the utility function makes 
the investor more conservative is proved in our numerical result as well. In both scenario, the investor 
invests less wealth in the stock than in the saving account, and the profit adopting the concave utility 

function is less than that from the linear utility function. 

2. (a) Let	 [p, q] denote the state that the multiplication of matrix Ap+1 · · · Aq is taken place for 1 ≤ 

p ≤ q ≤ n. Let J([p, q]) denote the minimum cost of computing the matrix multiplication. We first 
consider the backward induction at state [0, n]. Considering the matrix multiplication (A1 · · · An) is a 
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consequence of multiplication of two matrices (A1 · · · Ak) and (Ak+1 · · · An) for some integer 1 ≤ k < n, 
we have 

J([0, n]) = min1≤k<n {J([0, k]) + J([k, n]) + r0rk rn} . 

Then, the original problem of finding J([0, n]) is divided into two subproblems of finding J([0, k]) 
and J([k, n]), which have the same structure as J([0, n]). Hence, we can put it into the framework 

of MDP. Let gk ([m,n]) = rmrkrn denote the cost of computing the multiplication of two matrices 
(Am+1Am+2 · · · Ak) and (Ak+1 · · · An). Then we have 

J∗ = J([0, n]), and for all0 ≤ p ≤ q ≤ n, ⎧
⎪⎪⎪⎨ 

⎪⎪⎪⎩ 

0, if p + 1 ≥ q, 

, otherwise. 

⎧
⎪⎨
⎪

⎫
⎪⎬
⎪

J([p, q]) = 
minp<k≤q gk([p, q])+J([m, k]) + J([k, n]) 

q 

Since the number of possible combinations of p, q, k is Θ(n3) and each combination is examined once, 
we have that this computation requires O(n3) computations. 

(b) The recursive computation of the value J([0, 4]) can be presented as follows. 

=rp rk r
⎩ ⎭ 

� 3000 

[0,1][1,4] 
� 14000 4200 � 21000 ↓ 

[0,4] 
↓ 70000 � 2000 

[0,2][2,4] [0,3][3,4] 
� 14000 ↓ 600 � 1400 

[1,2][2,4] [1,3][3,4] [0,2] [2,4] [0,1][1,3] [0,2][2,3] 
4200 21000 ↓ ↓

[1,3] [0,2] 

The computation shows that the optimal order is (A2A3) → (A1A2A3) → (A1A2A3), which needs 6800 

computations. 

(c) The optimal order becomes (A1A2) → (A3A4) → (A1A2)(A3A4), which requires 105000 computa
tions. The ratio of the maximum to minimum number of multiplications is 15.44. 

3. Let Jk denote the value of the cost-to-go function at iteration k. Denote by xk the state whose value 

is updated at iteration k. We first show that 

Jk+1(xk) − J∗(xk ) (1)| | ≤ �Jk − J∗�∞ 

�Jk+1 − J∗ (2)�∞ ≤ �Jk − J∗�∞. 

The inequality (1) follows immediately from Jk+1(xk ) = (TJk )(xk) and the contraction property of 
operator T . We also have, for all other x, Jk+1(x) = Jk (x), and (2) follows. 

Now let 1 = k1 < k2 < . . . be iteration numbers such that each state has its value updated at least 
once during iterations ki, . . . , ki+1 − 1. Note that there are infinitely many such ki since each state is 
updated infinitely many times. We will show that 

�Jki+1 − J∗�∞ ≤ α�Jki − J∗�∞, ∀i = 1, 2, . . . , (3) 
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so that limi→∞ Jki = J∗. This combined with (2) implies that limk→∞ Jk = J∗. 

Take an arbitrary i, and for each state x let kx denote the last iteration in the set {ki, . . . , ki+1 − 1}
when the value at state x is updated. Then we have 

Jki+1 (x) − J∗(x) = Jkx +1(x) − J∗(x)| | | | 
α�Jkx − J∗≤ �∞ 

α�Jki −1 − J∗�∞.≤ 

Since this is true for all x, (3) follows. 

4. (a) By observing 
∞ ∞ ∞

(I − αPu) 
� 

αtP t = 
� 

αtP t 
� 

αtP t = Iu u − u 
t=0 t=0 t=1 

we conclude that (I − αPu)−1 = 
�∞

αtP t .t=0 u

(b) We first show that µu = (1 − α)cT (I − αPu)−1 is a probabilistic measure. We observe that µu ≥ 0, 
and 

T 
∞

T 
∞

(1 − α)c T (I − αPu)−1 e = (1 − α)c 
� 

αtP t e = (1 − α)c ce 
� 

αt = ce = 1 u

t=0 t=0 

where e is a vector of unit elements with the appropriate dimension. 

Suppose µu(x) = 0 for some x ∈ S. Then, by µu = (1 − α)cT �∞
t=0(I − αPu)−1, since c > 0, one 

column of matrix (I − αPu)−1 must be a null vector, which contradicts to our conclusion in (a). Hence, 
µu(x) > 0, ∀x ∈ S. 

(c) For every ν ∈ (0, ∞)|S|, define 

||J ||1,ν = 
� 

ν(x)|J(x) .|
x∈S


We will show that || · ||1,c is a norm.


First, we observe that ||J ||1,c ≥ 0 by definition, and, for any real number α, we have 

||αJ ||1,c = 
� 

c(x) αJ(x) = α
� 

c(x) J(x) =| | | | | | |α|||J ||1,c. 
x∈S x∈S 

It is trivial to see that ||J ||1,c = 0 if and only if J = 0. Last, for any two vectors J and K, 

||J + K||1,c = 
� 

c(x)|J(x) + K(x)|
x∈S 

≤ 
� 

c(x)(|J(x) + K(x) )| | |
x∈S 

= ||J ||1,c + ||K||1,c 

Therefore, || · ||1,c is a norm. 

(e) Since uJ is a greedy policy with respect to J , we have 

JuJ − J = (I − αPuJ )
−1 guJ − J 

= (I − αPuJ )
−1(guJ + αPuJ J − J) 

= (I − αPuJ )
−1(T J − J) 
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Then, since J ≤ J∗, we have 

= c T (JuJ − J∗)||JuJ − J∗||1,c 

≤ c T (JuJ − J) 

= c T (I − αPuJ )
−1(TJ − J) 

1 T=
1 − α

µuJ 
(TJ − J). 

1 T

uJ
Therefore, ||J − J∗||1,c ≤ 1−α µuJ 

(TJ − J). Next, we have 

1 T 1 T 

1 − α
µuJ 

(TJ − J)
1 − α

µuJ 
TJ − J≤ | | 

1 
= 

1 − α
||TJ − J ||1,µuJ 

(f) Given J0 ≤ J∗, by monotonicity, we have J1 = TJ0 ≤ TJ∗ = J∗ and thus Jk ≤ J∗ for all integer 
k ≥ 1. Since Jk ≤ J∗ for all integer k ≥ 1, we can apply (e) and have 

1 − J∗||1,c 1 − α
µuJk 

(TJk − Jk)uJk
||J ≤ 

1 ≤ 
1 − α

||TJk − Jk ||1,uJk 

1 ≤ 
1 − α

||TJk − Jk ||∞ 

1 
= 

1 − α
||TJk − TJk−1||∞ 

α ≤ 
1 − α

||Jk − Jk−1||∞ 

α 
= 

1 − α
||TJk−1 − Jk−2||∞ 

. . . 
αk 

≤ 
1 − α

||TJ0 − J0||∞. 

Hence, we have ||J αk 

uJk 
− J∗||1,c ≤ 1−α ||TJ0 − J0||∞. 

(g) We have 

�J − J∗�1,c = 
� 

c(x) JuJk 
(x) − J∗(x)uJk 

| |
x � 

c(x)�J − J∗uJk
≤ �∞ 

x 

= �JuJk 
− J∗�∞. 

Hence �J − J∗�1,c ≤ � is a weaker stopping criterion than �J − J∗�∞ < �, leading the algorithm uJk uJk 

to stop first. Note that, if the latter criterion is satisfied, we know that policy uJk has a cost-to-go 

that is close to the optimal cost-to-go function J∗ for all initial states in the system. In the case of the 

weighted 1-norm criterion, uJk has a cost-to-go function that is close to J∗ in expected value, for states 
distributed according to distribution c; the cost-to-go could still be very large at states x corresponding 
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to very small c(x). Hence �J − J∗�∞ < � offers stronger guarantees. However, a situation when uJk 

one may consider using the weaker criterion �J − J∗�1,c ≤ � is when certain states are known not uJk 

to be very important, for instance if they are visited extremely rarely. Especially if state spaces are 

large, requiring �J − J∗�∞ < � may be overly restrictive and even infeasible, and it becomes more uJk 

important to distinguish between states that are more or less relevant. 
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