Lecture Note 8

1 Lyapunov Function Analysis

In this lecture, we want to study the convergence of

$$
r_{t+1}=r_{t}+\gamma_{t} S\left(r_{t}, w_{t}\right)
$$

to some γ^{*} with $\mathrm{E}\left[S\left(r^{*}, w_{t}\right)\right]=0$. Recall the Lyapunov function analysis in deterministic case that we pick a function $V(r)$ such that

- $V(r) \geq 0, \forall r$,
- $\nabla V(r)^{T} S(r)<0$, if $r \neq r^{*}$,
- $\nabla V\left(r^{*}\right)=0$.

The argument for convergence is that we observe $V\left(r_{t}\right)$ decreasing over time and lower bounded; therefore, $V\left(r_{t}\right)$ converges to some limit. With technical conditions on V and S, we can show that $r_{t} \rightarrow r^{*}$.

We now proceed to the stochastic case. Let \mathcal{F}_{t} denote the history of the process up to stage t. Explicitly, we can have \mathcal{F}_{t} as

$$
\mathcal{F}_{t}=\left\{r_{l}, l \leq t, w_{l}, l<t, \gamma_{t}, l \leq t\right\}
$$

Note that the step size γ_{t} can depend on the history which is stochastic, but not on the disturbance w_{t}.

We define the Euclidean norm $\|V\|_{2}=\left(V^{T} V\right)^{\frac{1}{2}}$.

Theorem 1 Suppose that $\exists V$ such that
(a) $V(r) \geq 0, \forall r$,
(b) $\exists L$ such that $\|\nabla V(r)-\nabla V(\bar{r})\|_{2} \leq L\|r-\bar{r}\|_{2}$ (Lipschitz continuity),
(c) $\exists K_{1}, K_{2}$ such that $\mathrm{E}\left[\left\|S\left(r_{t}, w_{t}\right)\right\|_{2}^{2} \mid \mathcal{F}_{t}\right] \leq K_{1}+K_{2}\left\|\nabla V\left(r_{t}\right)\right\|_{2}^{2}$,
(d) $\exists c$ such that $\nabla V\left(r_{t}\right)^{T} \mathrm{E}\left[S\left(r_{t}, w_{t}\right) \mid \mathcal{F}_{t}\right] \leq-c\left\|\nabla V\left(r_{t}\right)\right\|_{2}^{2}$.

Then, if γ_{t} satisfies $\sum_{t=0}^{\infty} \gamma_{t}=\infty$ and $\sum_{t=0}^{\infty} \gamma_{t}^{2}<\infty$, we have

- $V\left(r_{t}\right)$ converges,
- $\lim _{t \rightarrow \infty} \nabla V\left(r_{t}\right)=0$.
- every limit point \bar{r} of r_{t} satisfies $\nabla V(\bar{r})=0$.

We will prove the convergence for a special case where $V(r)=\frac{1}{2}\left\|r-r^{*}\right\|_{2}^{2}$ for some r^{*}.

Theorem 2 Suppose $V(r)=\frac{1}{2}\left\|r-r^{*}\right\|_{2}^{2}$ satisfies
(a) $\exists K_{1}, K_{2}$ such that $\mathrm{E}\left[\left\|S\left(r_{t}, w_{t}\right)\right\|_{2}^{2} \mid \mathcal{F}_{t}\right] \leq K_{1}+K_{2} V\left(r_{t}\right)$,
(b) $\exists c$ such that $\nabla V\left(r_{t}\right)^{T} \mathrm{E}\left[S\left(r_{t}, w_{t}\right) \mid \mathcal{F}_{t}\right] \leq-c V\left(r_{t}\right)$.

Then, if $\gamma_{t}>0$ with $\sum_{t=0}^{\infty} \gamma_{t}=\infty$ and $\sum_{t=0}^{\infty} \gamma_{t}^{2}<\infty$,

$$
r_{t} \rightarrow r^{*}, \quad \text { w.p. } 1
$$

We use the following Supermartingale convergence theorem to prove Theorem 2.
Theorem 3 (Supermartingale Convergence Theorem) Suppose that X_{t}, Y_{t} and Z_{t} are nonnegative random variables and $\sum_{t=1}^{\infty} Y_{t}<\infty$ with probability 1. Suppose also that

$$
\mathrm{E}\left[X_{t+1} \mid \mathcal{F}_{t}\right] \leq X_{t}+Y_{t}-Z_{t}, \quad \text { w.p. } 1
$$

Then

1. X_{t} converges to a limit with probability 1,
2. $\sum_{t=1}^{\infty} Z_{t}<\infty$.

The key idea for the proof of Theorem 2 is to show that $V\left(r_{t}\right)$ is a supermartingale, so that $V\left(r_{t}\right)$ converges and then show that it converges to zero w.p. 1.
Proof: [Theorem 2]

$$
\begin{aligned}
\mathrm{E}\left[V\left(r_{t+1}\right) \mid \mathcal{F}_{t}\right] & =\mathrm{E}\left[\left.\frac{1}{2}\left\|r_{t+1}-r^{*}\right\|_{2}^{2} \right\rvert\, \mathcal{F}_{t}\right] \\
& =\mathrm{E}\left[\left.\frac{1}{2}\left(r_{t}+\gamma_{t} S_{t}-r^{*}\right)^{T}\left(r_{t}+\gamma_{t} S_{t}-r^{*}\right) \right\rvert\, \mathcal{F}_{t}\right] \quad\left(S_{t} \triangleq S\left(r_{t}, w_{t}\right)\right) \\
& =\frac{1}{2}\left(r_{t}-r^{*}\right)^{T}\left(r_{t}-r^{*}\right)+\gamma_{t}\left(r_{t}-r^{*}\right)^{T} \mathrm{E}\left[S_{t} \mid \mathcal{F}_{t}\right]+\frac{\gamma_{t}^{2}}{2} \mathrm{E}\left[S_{t}^{T} S_{t} \mid \mathcal{F}_{t}\right]
\end{aligned}
$$

Since $V\left(r_{t}\right)=\frac{1}{2}\left\|r_{t}-r^{*}\right\|_{2}^{2}, \nabla V\left(r_{t}\right)=\left(r_{t}-r^{*}\right)$. Then

$$
\begin{aligned}
\mathrm{E}\left[V\left(r_{t+1}\right) \mid \mathcal{F}_{t}\right] & =V\left(r_{t}\right)+\gamma_{t}\left(r_{t}-r^{*}\right)^{T} \mathrm{E}\left[S_{t} \mid \mathcal{F}_{t}\right]+\frac{\gamma_{t}^{2}}{2} \mathrm{E}\left[\left\|S_{t}\right\|_{2}^{2} \mid \mathcal{F}_{t}\right] \\
& =V\left(r_{t}\right)+\gamma_{t} \nabla V\left(r_{t}\right)^{T} \mathrm{E}\left[S_{t} \mid \mathcal{F}_{t}\right]+\frac{\gamma_{t}^{2}}{2} \mathrm{E}\left[\left\|S_{t}\right\|_{2}^{2} \mid \mathcal{F}_{t}\right] \\
& \leq V\left(r_{t}\right)-\gamma_{t} c V\left(r_{t}\right)+\frac{\gamma_{t}^{2}}{2}\left(K_{1}+K_{2} V\left(r_{t}\right)\right) \\
& \leq \underbrace{V\left(r_{t}\right)}_{X_{t}}-\underbrace{\left(\gamma_{t} c-\frac{\gamma_{t}^{2} K_{2}}{2}\right) V\left(r_{t}\right)}_{Z_{t}}+\underbrace{\frac{\gamma_{t}^{2}}{2} K_{1}}_{Y_{t}}
\end{aligned}
$$

Since $\gamma_{t}>0$ and $\sum_{t=0}^{\infty} \gamma_{t}^{2}<\infty, \gamma_{t}$ must converge to zero, and $Z_{t} \geq 0$ for all large enough t. Moreover,

$$
\sum_{t=0}^{\infty} Y_{t}=\frac{K_{1}}{2} \sum_{t=0}^{\infty} \gamma_{t}^{2}<\infty
$$

Therefore, by Supermartingale convergence theorem,

$$
\begin{aligned}
& V\left(r_{t}\right) \text { converges w. p. 1, and } \\
& \sum_{t=0}^{\infty}\left(\gamma_{t} c-\frac{\gamma_{t}^{2} K_{2}}{2}\right) V\left(r_{t}\right)<\infty, \quad \text { w. p. } 1 .
\end{aligned}
$$

Suppose that $V\left(r_{t}\right) \rightarrow \epsilon>0$. Then, by hypothesis that $\sum_{t=0}^{\infty} \gamma_{t}=\infty$ and $\sum_{t=0}^{\infty} \gamma_{t}^{2}<\infty$, we must have

$$
\sum_{t=0}^{\infty}\left(\gamma_{t} c-\frac{\gamma_{t}^{2} K_{2}}{2}\right) V\left(r_{t}\right)=\infty
$$

which is a contradiction. Therefore

$$
\lim _{t \rightarrow \infty}\left\|r_{t}-r^{*}\right\|_{2}^{2}=0 \quad \text { w.p. } 1 \Rightarrow r_{t} \rightarrow r^{*} \text { w.p. } 1
$$

Example 1 (Stochastic Gauss-Seidel) Consider ${ }^{1}$

$$
\begin{aligned}
r_{t+1}\left(i_{t}\right) & =r_{t}\left(i_{t}\right)+\gamma_{t}\left(\left(F r_{t}\right)\left(i_{t}\right)-r_{t}\left(i_{t}\right)\right) \\
r_{t+1}(i) & =r_{t}\left(i_{t}\right), \forall i \neq i_{t}
\end{aligned}
$$

Suppose that F is a $\|\cdot\|_{2}$ contraction. Suppose also that $i_{t}, t=1,2, \ldots$, are chosen i.i.d. with $P\left(i_{t}=i\right)=$ $\pi_{i}>0$. Then

$$
r_{t+1}(i)=r_{t}(i)+\gamma_{t} \pi_{i}\left(\left(F r_{t}\right)(i)-r_{t}(i)\right)+\gamma_{t} \underbrace{\left[\mathbf{1}\left(i_{t}=i\right)-\pi_{i}\right]\left[\left(F r_{t}\right)(i)-r_{t}(i)\right]}_{w_{t}(i)}
$$

Define

$$
\Pi=\left[\begin{array}{lllll}
\pi_{1} & 0 & 0 & \ldots & 0 \\
0 & \pi_{2} & 0 & \ldots & 0 \\
0 & 0 & \ddots & \ldots & 0 \\
0 & 0 & 0 & \ldots & \pi_{n}
\end{array}\right]
$$

then

$$
r_{t+1}=r_{t}+\gamma_{t} \underbrace{\Pi\left(F r_{t}-r_{t}\right)}_{\mathrm{E}\left[S_{t} \mid \mathcal{F}_{t}\right]}+\gamma_{t} w_{t} .
$$

Let $V(r)=\frac{1}{2}\left(r-r^{*}\right)^{T} \Pi^{-1}\left(r-r^{*}\right) \geq 0$. Then we have

$$
\nabla V(r)=\Pi^{-1}\left(r-r^{*}\right) \quad(\text { Lipschitz continuity holds }) .
$$

We also have

$$
\begin{aligned}
\nabla V\left(r_{t}\right)^{T} \mathrm{E}\left[S_{t} \mid \mathcal{F}_{t}\right] & =\left(r_{t}-r^{*}\right)^{T} \Pi^{-1} \Pi\left(F r_{t}-r_{t}\right)=\left(r_{t}-r^{*}\right)^{T}\left(F r_{t}-r^{*}+r^{*}-r_{t}\right) \\
& =-\left(r_{t}-r^{*}\right)^{T}\left(r_{t}-r^{*}\right)+\left(r_{t}-r^{*}\right)^{T}\left(F r_{t}-r^{*}\right) \\
& \leq-\left\|r_{t}-t^{*}\right\|_{2}^{2}+\left\|r_{t}-r^{*}\right\|_{2}\left\|F r_{t}-r^{*}\right\|_{2} \\
& \leq-\left\|r_{t}-t^{*}\right\|_{2}^{2}+\alpha\left\|r_{t}-t^{*}\right\|_{2}^{2} \\
& \leq-(1-\alpha) \min _{i} \pi_{i}^{2}\left\|\nabla V\left(r_{t}\right)\right\|_{2}^{2}
\end{aligned}
$$

[^0]We finally have

$$
\begin{aligned}
\mathrm{E}\left[\left\|S_{t}\right\|_{2}^{2} \mid \mathcal{F}_{t}\right] & \left.=\mathrm{E}\left[\left(F r_{t}\right)\left(i_{t}\right)-r_{t}\left(i_{t}\right)\right)^{2} \mid \mathcal{F}_{t}\right] \\
& \leq \mathrm{E}\left[\left\|F r_{t}-r_{t}\right\|_{2}^{2} \mid \mathcal{F}_{t}\right] \\
& =\left\|F r_{t}-r_{t}\right\|_{2}^{2} \\
& \leq\left\|F r_{t}-r^{*}\right\|_{2}^{2}+\left\|r_{t}-r^{*}\right\|_{2}^{2} \\
& \leq(1+\alpha)\left\|r_{t}-r^{*}\right\|_{2}^{2} \\
& \leq(1+\alpha) \max _{i} \pi_{i}^{2}\left\|\nabla V\left(r_{t}\right)\right\|_{2}^{2}
\end{aligned}
$$

We conclude by Theorem 1 that stochastic Gauss-Seidel converges.

2 Q-learning

Recall that the Q-learning algorithm updates the Q factor according to

$$
Q_{t+1}\left(x_{t}, a_{t}\right)=Q_{t}\left(x_{t}, a_{t}\right)+\gamma_{t}\left(g_{a_{t}}\left(x_{t}\right)+\alpha \min _{a^{\prime}} Q_{t}\left(x_{t+1}, a^{\prime}\right)-Q_{t}\left(x_{t}, a_{t}\right)\right)
$$

This update can be rewritten as

$$
\left.\begin{array}{rl}
Q_{t+1}(x, a)=Q_{t}(x, a) & +\gamma_{t}(x, a)
\end{array}\right] \underbrace{g_{a}(x)+\alpha \sum_{y} P_{a}(x, y) \min _{a^{\prime}} Q_{t}\left(y, a^{\prime}\right)-Q_{t}(x, a)}_{(H Q)(x, a)}]
$$

where

$$
\begin{aligned}
& \gamma_{t}(x, a)=0, \quad \text { if }(x, a) \neq\left(x_{t}, a_{t}\right) \\
& \gamma_{t}\left(x_{t}, a_{t}\right)=\gamma_{t} \\
& \mathrm{E}\left[\gamma_{t} w_{t} \mid \mathcal{F}_{t}\right]=0 \\
& \left|w_{t}\right| \leq\left\|Q_{t}\right\|_{\infty}
\end{aligned}
$$

Then, we have

$$
Q_{t+1}=Q_{t}+\gamma_{t}\left(H Q_{t}-Q_{t}\right)+\alpha \gamma_{t} w_{t}
$$

We can use the following theorem to show that Q-learning converges, as long as every state and action pair are visited infinitely many times.

Theorem 4 Let $r_{t+1}(i)=r_{t}(i)+\gamma_{t}(i)\left(\left(H r_{t}\right)(i)-r_{t}(i)+w_{t}(i)\right)$. Then, if

- $\mathrm{E}\left[w_{t} \mid \mathcal{F}_{t}\right]=0$
- $\mathrm{E}\left[w_{t}^{2}(i) \mid \mathcal{F}_{t}\right] \leq A+B\left\|r_{t}\right\|^{2}$ for some norm $\|\cdot\|$
- $\sum_{t=0}^{\infty} \gamma_{t}(i)=\infty, \sum_{t=0}^{\infty} \gamma_{t}(i)^{2}<\infty, \forall i$
- H is a maximum-norm contraction,
then $r_{t} \rightarrow r^{*}$ w.p. $1\left(H r^{*}=r^{*}\right)$.
Comparing Theorems 2 and 4, note that, if H is a maximum-norm contraction, convergence occurs under weaker conditions than if it is an Euclidean norm contraction.

Corollary 1 If $\sum_{t=0}^{\infty} \gamma_{t}(x, a)=\infty$ with probability 1 for all (x, a), we have

$$
Q_{t} \rightarrow Q^{*} \quad \text { w.p. } 1 .
$$

3 ODE Approach

Often times, the behavior of $r_{t+1}=r_{t}+\gamma_{t} S\left(r_{t}, w_{t}\right)$ may be understood by analyzing the following ODE instead:

$$
\dot{r_{t}}=\mathrm{E}\left[S\left(r_{t}, w_{t}\right)\right]
$$

The main idea for the ODE approach is as follows. Look at intervals $\left[t_{m}, t_{m+1}\right)$ such that

$$
\sum_{t=t_{m}}^{t_{m+1}-1} \gamma_{t}=\gamma, \quad \text { where } \gamma \text { is small. }
$$

Set $r_{m} \equiv r_{t_{m}}$. Then

$$
\begin{equation*}
r_{t} \approx r_{t_{m}}+O(\gamma), \quad \forall t \in\left[t_{m}, t_{m+1}\right) \tag{1}
\end{equation*}
$$

Then

$$
\begin{align*}
r_{m+1} & =r_{t_{m+1}}=r_{m}+\sum_{t=t_{m}}^{t_{m+1}-1} \gamma_{t} S\left(r_{t}, w_{t}\right) \\
& \approx r_{t_{m}}+\sum_{t=t_{m}}^{t_{m+1}-1} \gamma_{t}\left(S\left(r_{t}, w_{t}\right)+O(\gamma)\right) \tag{2}\\
& =r_{t_{m}}+\gamma \sum_{t=t_{m}}^{t_{m+1}-1} \frac{\gamma_{t}}{\gamma} S\left(r_{t}, w_{t}\right)+O\left(\gamma^{2}\right) \\
& \cong r_{m}+\gamma \mathrm{E}\left[S\left(r_{m}, w\right)\right]+O\left(\gamma^{2}\right) \tag{3}
\end{align*}
$$

Therefore we can think of the stochastic scheme as a discrete version of the ODE

$$
r_{m+1}=r_{m}+\gamma \mathrm{E}\left[S\left(r_{m}, w\right)\right] \Rightarrow \dot{r}=\mathrm{E}[S(r, w)]
$$

To make the argument rigorous, steps (1), (2) and (3) have to be justified.

[^0]: ${ }^{1}$ Recall the AVI: $r_{t+1}\left(i_{t}\right)=\left(F r_{t}\right)\left(i_{t}\right)$

