Lecture Note 8

1 Lyapunov Function Analysis

In this lecture, we want to study the convergence of

$$r_{t+1} = r_t + \gamma_t S(r_t, w_t)$$

to some γ^* with $E[S(r^*, w_t)] = 0$. Recall the Lyapunov function analysis in deterministic case that we pick a function V(r) such that

- $V(r) \ge 0, \forall r,$
- $\nabla V(r)^T S(r) < 0$, if $r \neq r^*$,
- $\nabla V(r^*) = 0.$

The argument for convergence is that we observe $V(r_t)$ decreasing over time and lower bounded; therefore, $V(r_t)$ converges to some limit. With technical conditions on V and S, we can show that $r_t \to r^*$.

We now proceed to the stochastic case. Let \mathcal{F}_t denote the history of the process up to stage t. Explicitly, we can have \mathcal{F}_t as

$$\mathcal{F}_t = \{r_l, l \le t, w_l, l < t, \gamma_t, l \le t\}$$

Note that the step size γ_t can depend on the history which is stochastic, but not on the disturbance w_t .

We define the Euclidean norm $||V||_2 = (V^T V)^{\frac{1}{2}}$.

Theorem 1 Suppose that $\exists V$ such that

- (a) $V(r) \ge 0, \forall r,$
- (b) $\exists L \text{ such that } \|\nabla V(r) \nabla V(\bar{r})\|_2 \leq L \|r \bar{r}\|_2$ (Lipschitz continuity),
- (c) $\exists K_1, K_2 \text{ such that } E\left[\|S(r_t, w_t)\|_2^2 \, \Big| \, \mathcal{F}_t \right] \le K_1 + K_2 \|\nabla V(r_t)\|_2^2$,
- (d) $\exists c \text{ such that } \nabla V(r_t)^T \mathbf{E} \left[S(r_t, w_t) \, \Big| \, \mathcal{F}_t \right] \leq -c \| \nabla V(r_t) \|_2^2.$

Then, if γ_t satisfies $\sum_{t=0}^{\infty} \gamma_t = \infty$ and $\sum_{t=0}^{\infty} \gamma_t^2 < \infty$, we have

- $V(r_t)$ converges,
- $\lim_{t\to\infty} \nabla V(r_t) = 0.$
- every limit point \bar{r} of r_t satisfies $\nabla V(\bar{r}) = 0$.

We will prove the convergence for a special case where $V(r) = \frac{1}{2} ||r - r^*||_2^2$ for some r^* .

Theorem 2 Suppose $V(r) = \frac{1}{2} ||r - r^*||_2^2$ satisfies

(a)
$$\exists K_1, K_2 \text{ such that } \mathbb{E}\left[\|S(r_t, w_t)\|_2^2 \mid \mathcal{F}_t \right] \leq K_1 + K_2 V(r_t),$$

(b)
$$\exists c \text{ such that } \nabla V(r_t)^T \mathbf{E} \left[S(r_t, w_t) \, \middle| \, \mathcal{F}_t \right] \leq -cV(r_t)$$

(b) $\exists c \text{ such that } \nabla V(r_t)^T \mathbb{E} \left[S(r_t, w_t) \middle| \mathcal{F}_t \right] \leq -cV(r_t).$ Then, if $\gamma_t > 0$ with $\sum_{t=0}^{\infty} \gamma_t = \infty$ and $\sum_{t=0}^{\infty} \gamma_t^2 < \infty$,

$$r_t \to r^*, \quad w.p. \ 1.$$

We use the following Supermartingale convergence theorem to prove Theorem 2.

Theorem 3 (Supermartingale Convergence Theorem) Suppose that X_t, Y_t and Z_t are nonnegative random variables and $\sum_{t=1}^{\infty} Y_t < \infty$ with probability 1. Suppose also that

$$\mathbb{E}\left[X_{t+1}\middle|\mathcal{F}_t\right] \le X_t + Y_t - Z_t, \quad w.p. \ 1.$$

Then

- 1. X_t converges to a limit with probability 1,
- 2. $\sum_{t=1}^{\infty} Z_t < \infty$.

The key idea for the proof of Theorem 2 is to show that $V(r_t)$ is a supermartingale, so that $V(r_t)$ converges and then show that it converges to zero w.p. 1.

Proof: [Theorem 2]

$$E\left[V(r_{t+1})\Big|\mathcal{F}_{t}\right] = E\left[\frac{1}{2}||r_{t+1} - r^{*}||_{2}^{2}\Big|\mathcal{F}_{t}\right]$$

$$= E\left[\frac{1}{2}(r_{t} + \gamma_{t}S_{t} - r^{*})^{T}(r_{t} + \gamma_{t}S_{t} - r^{*})\Big|\mathcal{F}_{t}\right] \qquad (S_{t} \triangleq S(r_{t}, w_{t}))$$

$$= \frac{1}{2}(r_{t} - r^{*})^{T}(r_{t} - r^{*}) + \gamma_{t}(r_{t} - r^{*})^{T}E\left[S_{t}\Big|\mathcal{F}_{t}\right] + \frac{\gamma_{t}^{2}}{2}E\left[S_{t}^{T}S_{t}\Big|\mathcal{F}_{t}\right]$$

Since $V(r_t) = \frac{1}{2} ||r_t - r^*||_2^2$, $\nabla V(r_t) = (r_t - r^*)$. Then

$$\begin{split} \mathbf{E}\left[V(r_{t+1})\middle|\mathcal{F}_{t}\right] &= V(r_{t}) + \gamma_{t}(r_{t} - r^{*})^{T}\mathbf{E}\left[S_{t}\middle|\mathcal{F}_{t}\right] + \frac{\gamma_{t}^{2}}{2}\mathbf{E}\left[\|S_{t}\|_{2}^{2}\middle|\mathcal{F}_{t}\right] \\ &= V(r_{t}) + \gamma_{t}\nabla V(r_{t})^{T}\mathbf{E}\left[S_{t}\middle|\mathcal{F}_{t}\right] + \frac{\gamma_{t}^{2}}{2}\mathbf{E}\left[\|S_{t}\|_{2}^{2}\middle|\mathcal{F}_{t}\right] \\ &\leq V(r_{t}) - \gamma_{t}cV(r_{t}) + \frac{\gamma_{t}^{2}}{2}\left(K_{1} + K_{2}V(r_{t})\right) \\ &\leq \underbrace{V(r_{t})}_{X_{t}} - \underbrace{\left(\gamma_{t}c - \frac{\gamma_{t}^{2}K_{2}}{2}\right)V(r_{t})}_{Z_{t}} + \underbrace{\frac{\gamma_{t}^{2}}{2}K_{1}}_{Y_{t}} \end{split}$$

Since $\gamma_t > 0$ and $\sum_{t=0}^{\infty} \gamma_t^2 < \infty$, γ_t must converge to zero, and $Z_t \ge 0$ for all large enough t. Moreover,

$$\sum_{t=0}^{\infty} Y_t = \frac{K_1}{2} \sum_{t=0}^{\infty} \gamma_t^2 < \infty.$$

Therefore, by Supermartingale convergence theorem,

$$\begin{split} V(r_t) \text{ converges w. p. 1, and} \\ \sum_{t=0}^{\infty} \left(\gamma_t c - \frac{\gamma_t^2 K_2}{2} \right) V(r_t) < \infty, \quad \text{w. p. 1.} \end{split}$$

Suppose that $V(r_t) \to \epsilon > 0$. Then, by hypothesis that $\sum_{t=0}^{\infty} \gamma_t = \infty$ and $\sum_{t=0}^{\infty} \gamma_t^2 < \infty$, we must have

$$\sum_{t=0}^{\infty} \left(\gamma_t c - \frac{\gamma_t^2 K_2}{2} \right) V(r_t) = \infty$$

which is a contradiction. Therefore

$$\lim_{t \to \infty} \|r_t - r^*\|_2^2 = 0 \quad \text{w.p. } 1 \Rightarrow r_t \to r^* \text{ w.p. } 1.$$

Example 1 (Stochastic Gauss-Seidel) Consider¹

$$\begin{aligned} r_{t+1}(i_t) &= r_t(i_t) + \gamma_t \left((Fr_t)(i_t) - r_t(i_t) \right), \\ r_{t+1}(i) &= r_t(i_t), \, \forall \, i \neq i_t. \end{aligned}$$

Suppose that F is a $\|\cdot\|_2$ contraction. Suppose also that $i_t, t = 1, 2, ..., are chosen i.i.d.$ with $P(i_t = i) = \pi_i > 0$. Then

$$r_{t+1}(i) = r_t(i) + \gamma_t \pi_i \left((Fr_t)(i) - r_t(i) \right) + \gamma_t \underbrace{\left[\mathbf{1}(i_t = i) - \pi_i \right] \left[(Fr_t)(i) - r_t(i) \right]}_{w_t(i)}$$

Define

2

then

$$r_{t+1} = r_t + \gamma_t \underbrace{\Pi(Fr_t - r_t)}_{\mathbf{E}[S_t|\mathcal{F}_t]} + \gamma_t w_t$$

Let $V(r) = \frac{1}{2}(r-r^*)^T \Pi^{-1}(r-r^*) \ge 0$. Then we have

$$\nabla V(r) = \Pi^{-1}(r - r^*)$$
 (Lipschitz continuity holds).

We also have

$$\nabla V(r_t)^T \mathbf{E} \left[S_t \middle| \mathcal{F}_t \right] = (r_t - r^*)^T \Pi^{-1} \Pi (Fr_t - r_t) = (r_t - r^*)^T (Fr_t - r^* + r^* - r_t)$$

$$= -(r_t - r^*)^T (r_t - r^*) + (r_t - r^*)^T (Fr_t - r^*)$$

$$\leq - \|r_t - t^*\|_2^2 + \|r_t - r^*\|_2 \|Fr_t - r^*\|_2$$

$$\leq - \|r_t - t^*\|_2^2 + \alpha \|r_t - t^*\|_2^2$$

$$\leq -(1 - \alpha) \min_i \pi_i^2 \|\nabla V(r_t)\|_2^2.$$

¹Recall the AVI: $r_{t+1}(i_t) = (Fr_t)(i_t)$

We finally have

$$\begin{split} \mathbf{E} \left[\|S_t\|_2^2 |\mathcal{F}_t] &= \mathbf{E} \left[(Fr_t)(i_t) - r_t(i_t))^2 |\mathcal{F}_t \right] \\ &\leq \mathbf{E} \left[\|Fr_t - r_t\|_2^2 |\mathcal{F}_t] \\ &= \|Fr_t - r_t\|_2^2 \\ &\leq \|Fr_t - r^*\|_2^2 + \|r_t - r^*\|_2^2 \\ &\leq (1+\alpha)\|r_t - r^*\|_2^2 \\ &\leq (1+\alpha)\max_i \pi_i^2 \|\nabla V(r_t)\|_2^2. \end{split}$$

We conclude by Theorem 1 that stochastic Gauss-Seidel converges.

2 Q-learning

Recall that the Q-learning algorithm updates the Q factor according to

$$Q_{t+1}(x_t, a_t) = Q_t(x_t, a_t) + \gamma_t(g_{a_t}(x_t) + \alpha \min_{a'} Q_t(x_{t+1}, a') - Q_t(x_t, a_t)).$$

This update can be rewritten as

$$Q_{t+1}(x,a) = Q_t(x,a) + \gamma_t(x,a) \left[\underbrace{g_a(x) + \alpha \sum_y P_a(x,y) \min_{a'} Q_t(y,a')}_{(HQ)(x,a)} - Q_t(x,a) \right] \\ + \alpha \gamma_t(x,a) \left[\underbrace{\min_{a'} Q_t(x_{t+1},a') - \sum_y P_a(x,y) \min_{a'} Q_t(y,a')}_{w_t} \right]$$

where

$$\begin{aligned} \gamma_t(x,a) &= 0, \quad \text{if } (x,a) \neq (x_t,a_t) \\ \gamma_t(x_t,a_t) &= \gamma_t \\ & \mathbb{E} \left[\gamma_t w_t \Big| \mathcal{F}_t \right] = 0 \\ & |w_t| \leq ||Q_t||_{\infty}. \end{aligned}$$

Then, we have

$$Q_{t+1} = Q_t + \gamma_t (HQ_t - Q_t) + \alpha \gamma_t w_t.$$

We can use the following theorem to show that Q-learning converges, as long as every state and action pair are visited infinitely many times.

Theorem 4 Let $r_{t+1}(i) = r_t(i) + \gamma_t(i) \Big((Hr_t)(i) - r_t(i) + w_t(i) \Big)$. Then, if • $\mathbb{E} \Big[w_t \Big| \mathcal{F}_t \Big] = 0$

- $\mathbf{E}\left[w_t^2(i)\Big|\mathcal{F}_t\right] \leq A + B\|r_t\|^2$ for some norm $\|\cdot\|$
- $\sum_{t=0}^{\infty} \gamma_t(i) = \infty$, $\sum_{t=0}^{\infty} \gamma_t(i)^2 < \infty$, $\forall i$
- *H* is a maximum-norm contraction,

then $r_t \rightarrow r^*$ w.p. 1 ($Hr^* = r^*$).

Comparing Theorems 2 and 4, note that, if H is a maximum-norm contraction, convergence occurs under weaker conditions than if it is an Euclidean norm contraction.

Corollary 1 If $\sum_{t=0}^{\infty} \gamma_t(x, a) = \infty$ with probability 1 for all (x, a), we have

$$Q_t \to Q^*$$
 w.p. 1.

3 ODE Approach

Often times, the behavior of $r_{t+1} = r_t + \gamma_t S(r_t, w_t)$ may be understood by analyzing the following ODE instead:

$$\dot{r_t} = \mathbb{E}\left[S(r_t, w_t)\right]$$

The main idea for the ODE approach is as follows. Look at intervals $[t_m, t_{m+1})$ such that

$$\sum_{t=t_m}^{t_{m+1}-1} \gamma_t = \gamma, \qquad \text{where } \gamma \text{ is small.}$$

Set $r_m \equiv r_{t_m}$. Then

$$r_t \approx r_{t_m} + O(\gamma), \quad \forall t \in [t_m, t_{m+1}).$$
(1)

Then

$$r_{m+1} = r_{t_{m+1}} = r_m + \sum_{t=t_m}^{t_{m+1}-1} \gamma_t S(r_t, w_t)$$

$$\approx r_{t_m} + \sum_{t=t_m}^{t_{m+1}-1} \gamma_t \left(S(r_t, w_t) + O(\gamma) \right)$$

$$= r_{t_m} + \gamma \sum_{t=t_m}^{t_{m+1}-1} \frac{\gamma_t}{\gamma} S(r_t, w_t) + O(\gamma^2)$$

$$\cong r_m + \gamma \mathbb{E} \left[S(r_m, w) \right] + O(\gamma^2)$$
(3)

Therefore we can think of the stochastic scheme as a discrete version of the ODE

$$r_{m+1} = r_m + \gamma \mathbf{E} \left[S(r_m, w) \right] \Rightarrow \boxed{\dot{r} = \mathbf{E} \left[S(r, w) \right].}$$

To make the argument rigorous, steps (1), (2) and (3) have to be justified.