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Lecture Note 2 

1 Summary: Markov Decision Processes 

Markov decision processes can be characterized by (S,A , g (·), P (·, ·)), where · · ·

S denotes a finite set of states


x denotes a finite set of actions for state x ∈ S
A


ga(x) denotes the finite timestage cost for action a ∈ Ax and state x ∈ S


Pa(x, y) denotes the transmission probability when the taken action is a ∈ Ax, current state is x, and 

the next state is y 

Let u(x, t) denote the policy for state x at time t and, similarly, let u(x) denote the stationary policy for 
state x. Taking the stationary policy u(x) into consideration, we introduce the following notation 

gu(x) ≡ gu(x)(x) 

Pu(x, y) ≡ Pu(x)(x, y) 

to represent the cost function and transition probabilities under policy u(x). 

2 Costtogo Function and Bellman’s Equation 

In the previous lecture, we defined the discountedcost, infinite horizon costtogo function as 

∞

J∗(x) = minE αt gu(xt)|x0 = x . 
u 

t=0 

We also conjectured that J∗ should satisfies the Bellman’s equation ⎧⎨ 
⎫⎬ 

J∗(x) = min ⎩ga(x) + α Pa(x, y)J∗(y) 
a 

,⎭ 
y∈S 

or, using the operator notation introduced in the previous lecture, 

J∗ = TJ∗. 

Finally, we conjectured that an optimal policy u∗ could be obtained by taking a greedy policy with respect 
to J∗. 

In this and the following lecture, we will present and analyze algorithms for finding J∗, and prove 

optimality of policies that are greedy with respect to it. 
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3 Value Iteration 

The value iteration algorithm goes as follows: 

1. J0, k = 0 

2. Jk+1 = TJk, k = k + 1 

3. Go back to 2 

Theorem 1 

lim Jk = J∗ 

k→∞ 

Proof Since J0(·) and g ) are finite, there exists a real number M satisfying (··
≤ M and ≤ M for all a ∈ Ax and x ∈ S. Then we have, for every integer K ≥ 1 and real |J0(x)| |ga(x)|

number α ∈ (0, 1), 

TK J0(x) 
K−1

= min E αt gu(xt) + αK J0(xK ) 

JK (x) = 

x0 = x 
u 

t=0 

K 1−� 
min E αt gu(xt) 

u 
t=0 

+ αK Mx0 = x≤ 

From 

J∗(x) = min 
K−1� 

αt gu(xt) + 
∞� 

αt gu(xt) , 
u 

t=0 t=K 

we have 

(TK J0)(x) − J∗(x) 
K−1

min E αt gu(xt) + αK J0(xK ) 
K−1 ∞

−min E αt gu(xt) + αt gu(xt) 
u 

= x0 = x x0 = x 
u 

t=0 t=0 t=K 

K−1

t=0 

K−1 ∞

t=0 t=K 

αt gū(xt) + αK J0(xK ) αt gū(xt) + αt gū(xt)E = x − E x0 = x≤ x0 

∞

E αK J0(xk ) + αt gū(xt) = x≤ | | x0 

t=K 

∞

max E αK J0(xK ) + αt g0(xt) = x≤ | | | | x0 
u 

t=K 

1 ≤ αK M 1 + 
1 − α

, 

where u is the policy minimizing the second term in the first line. We can bound J∗(x) − (TK J0)(x) ≤¯
αK M(1 + 1/(1 −α)) by using the same reasoning. It follows that TK J0 converges to J∗ as K goes to infinity. 
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Theorem 2 J∗ is the unique solution of the Bellman’s equation. 

Proof We first show that J∗ = TJ∗. By contraction principle, 

= ||T k+1J0 − T kJ0||∞||T (T kJ0) − T k J0||∞ 

≤ α||T k J0 − T k−1J0||∞ 

0≤ αk ||TJ0 − J0||∞ → as K → ∞ 

Since for all k we have �J∗ − TJ∗ − T k+1J0�∞ + �J∗ − T k J0�∞ + �T k+1J0 − T k T0�∞, we conclude�∞ ≤ �TJ∗ 

that J∗ = TJ∗. We next show that J∗ is the unique solution to J = TJ . Suppose that J∗ =� J2 
∗. Then1 

1 − J2 
∗||∞ = ||TJ1 

∗ − TJ∗ 
1 − J∗0 < ||J∗ 

2 ||∞ ≤ α||J∗ 
2 ||∞ 

which is a contradiction. � 

Alternative Proof We prove the statement by showing that TK J is a Cauchy sequence in Rn . 1 Observe 

m−1

= (T k+n+1J − T k+nJ)||∞||T k+mJ − T kJ ||∞ || 
n=0 

m−1

≤ ||T k+n+1J − T k+nJ ||∞ 

n=0 

m−1

0 as k,m → ∞≤ αk+n||TJ − J ||∞ → 
n=0 

From above, we know that ||T kJ − J∗ Therefore, the value iteration algorithm||∞ ≤ αk ||J − J∗||∞. 
converges to J∗. Furthermore, we notice that J∗ is the fixed point w.r.t. the operator T , i.e., J∗ = TJ∗. 
We next introduce another value iteration algorithm. 

3.1 GaussSeidel Value Iteration 

The GaussSeidel value iteration goes as follows: 

JK+1(x) = (T J̃K )(x) where 

J̃K (y) 
JK (x), if x ≤ y, (not being updated yet)

= 
JK+1(y), if x > y. 

We hence define the operator F as follows ⎧ ⎫ ⎪⎪⎪⎪⎪ ⎪⎪⎪⎪⎪⎨ � � ⎬ 
(FJ)(x) = min ga(x) + α Pa(x, y)(FJ)(y)+ α Pa(x, y)J(y) (1) 

a ⎪⎪⎪⎪⎪ ⎪⎪⎪⎪⎪y<x ⎩ � �� � � 
y≥x �� �⎭ 

updated already not being updated yet 

Does the operator F satisfy the maximum contraction? We answer this question by the following lemma. 
1A sequence xn in a metric space X is said to be a Cauchy sequence if for every � > 0 there exists an integer N such that 

n − x Furthermore, in Rn , every Cauchy sequence converges.||x m|| ≤ � if m, n ≥ N . 
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Lemma 1 

¯ ¯ ||FJ − FJ ||∞ ≤ α||J − J ||∞ 

Proof By the definition of F , we consider the case x = 1, 

¯ ¯ |(FJ)(1) − (FJ)(1) = (TJ)(1) − (T J̄)(1)| | | ≤ α||J − J ||∞ 

For the case x = 2, by the definition of F , we have 

¯ |(FJ)(2) − (F J̄)(2)| ≤ α max |(FJ)(1) − (F J̄)(1) , J(2) − J(2) , . . . , )| | | |J(|S|) − J̄(|S| |
¯ ≤ α||J − J ||∞ 

Repeating the same reasoning for x = 3, . . . , we can show by induction that |(FJ)(x) − (F J̄)(x)| ≤
¯ Hence, we conclude ||FJ − F ¯ α||J − J ||∞, ∀x ∈ S. J ||∞ ≤ α||J − J̄  ||∞. � 

Theorem 3 F has the unique fixed point J∗. 

Proof By the definition of operator F and the Bellman’s equation J∗ = TJ∗, we have J∗ = FJ∗. 
The convergence result follows from the previous lemma. Therefore, FJ∗ = J∗. By maximum contraction 

property, the uniqueness of J∗ holds. � 

4 


