Lecture Note 2

1 Summary: Markov Decision Processes

Markov decision processes can be characterized by $(\mathcal{S}, \mathcal{A} ., g \cdot(\cdot), \mathbb{P} .(\cdot, \cdot))$, where
\mathcal{S} denotes a finite set of states
\mathcal{A}_{x} denotes a finite set of actions for state $x \in \mathcal{S}$
$g_{a}(x)$ denotes the finite time-stage cost for action $a \in \mathcal{A}_{x}$ and state $x \in \mathcal{S}$
$\mathbb{P}_{a}(x, y)$ denotes the transmission probability when the taken action is $a \in \mathcal{A}_{x}$, current state is x, and the next state is y

Let $u(x, t)$ denote the policy for state x at time t and, similarly, let $u(x)$ denote the stationary policy for state x. Taking the stationary policy $u(x)$ into consideration, we introduce the following notation

$$
\begin{aligned}
g_{u}(x) & \equiv g_{u(x)}(x) \\
\mathbb{P}_{u}(x, y) & \equiv \mathbb{P}_{u(x)}(x, y)
\end{aligned}
$$

to represent the cost function and transition probabilities under policy $u(x)$.

2 Cost-to-go Function and Bellman's Equation

In the previous lecture, we defined the discounted-cost, infinite horizon cost-to-go function as

$$
J^{*}(x)=\min _{u} \mathrm{E}\left[\sum_{t=0}^{\infty} \alpha^{t} g_{u}\left(x_{t}\right) \mid x_{0}=x\right]
$$

We also conjectured that J^{*} should satisfies the Bellman's equation

$$
J^{*}(x)=\min _{a}\left\{g_{a}(x)+\alpha \sum_{y \in \mathcal{S}} P_{a}(x, y) J^{*}(y)\right\}
$$

or, using the operator notation introduced in the previous lecture,

$$
J^{*}=T J^{*}
$$

Finally, we conjectured that an optimal policy u^{*} could be obtained by taking a greedy policy with respect to J^{*}.

In this and the following lecture, we will present and analyze algorithms for finding J^{*}, and prove optimality of policies that are greedy with respect to it.

3 Value Iteration

The value iteration algorithm goes as follows:

1. $J_{0}, k=0$
2. $J_{k+1}=T J_{k}, k=k+1$
3. Go back to 2

Theorem 1

$$
\lim _{k \rightarrow \infty} J_{k}=J^{*}
$$

Proof Since $J_{0}(\cdot)$ and $g .(\cdot)$ are finite, there exists a real number M satisfying
$\left|J_{0}(x)\right| \leq M$ and $\left|g_{a}(x)\right| \leq M$ for all $a \in \mathcal{A}_{x}$ and $x \in \mathcal{S}$. Then we have, for every integer $K \geq 1$ and real number $\alpha \in(0,1)$,

$$
\begin{aligned}
J_{K}(x) & =T^{K} J_{0}(x) \\
& =\min _{u} \mathbb{E}\left[\sum_{t=0}^{K-1} \alpha^{t} g_{u}\left(x_{t}\right)+\alpha^{K} J_{0}\left(x_{K}\right) \mid x_{0}=x\right] \\
& \leq \min _{u} \mathbb{E}\left[\sum_{t=0}^{K-1} \alpha^{t} g_{u}\left(x_{t}\right) \mid x_{0}=x\right]+\alpha^{K} M
\end{aligned}
$$

From

$$
J^{*}(x)=\min _{u}\left\{\sum_{t=0}^{K-1} \alpha^{t} g_{u}\left(x_{t}\right)+\sum_{t=K}^{\infty} \alpha^{t} g_{u}\left(x_{t}\right)\right\}
$$

we have

$$
\begin{aligned}
& \left(T^{K} J_{0}\right)(x)-J^{*}(x) \\
= & \min _{u} \mathbb{E}\left[\sum_{t=0}^{K-1} \alpha^{t} g_{u}\left(x_{t}\right)+\alpha^{K} J_{0}\left(x_{K}\right) \mid x_{0}=x\right]-\min _{u} \mathbb{E}\left[\sum_{t=0}^{K-1} \alpha^{t} g_{u}\left(x_{t}\right)+\sum_{t=K}^{\infty} \alpha^{t} g_{u}\left(x_{t}\right) \mid x_{0}=x\right] \\
\leq & \mathbb{E}\left[\sum_{t=0}^{K-1} \alpha^{t} g_{\bar{u}}\left(x_{t}\right)+\alpha^{K} J_{0}\left(x_{K}\right) \mid x_{0}=x\right]-\mathbb{E}\left[\sum_{t=0}^{K-1} \alpha^{t} g_{\bar{u}}\left(x_{t}\right)+\sum_{t=K}^{\infty} \alpha^{t} g_{\bar{u}}\left(x_{t}\right) \mid x_{0}=x\right] \\
\leq & \mathbb{E}\left[\alpha^{K}\left|J_{0}\left(x_{k}\right)\right|+\sum_{t=K}^{\infty} \alpha^{t} g_{\bar{u}}\left(x_{t}\right) \mid x_{0}=x\right] \\
\leq & \max _{u} \mathbb{E}\left[\alpha^{K}\left|J_{0}\left(x_{K}\right)\right|+\sum_{t=K}^{\infty} \alpha^{t}\left|g_{0}\left(x_{t}\right)\right| \mid x_{0}=x\right] \\
\leq & \alpha^{K} M\left(1+\frac{1}{1-\alpha}\right)
\end{aligned}
$$

where \bar{u} is the policy minimizing the second term in the first line. We can bound $J^{*}(x)-\left(T^{K} J_{0}\right)(x) \leq$ $\alpha^{K} M(1+1 /(1-\alpha))$ by using the same reasoning. It follows that $T^{K} J_{0}$ converges to J^{*} as K goes to infinity.

Theorem $2 J^{*}$ is the unique solution of the Bellman's equation.
Proof We first show that $J^{*}=T J^{*}$. By contraction principle,

$$
\begin{aligned}
\left\|T\left(T^{k} J_{0}\right)-T^{k} J_{0}\right\|_{\infty} & =\left\|T^{k+1} J_{0}-T^{k} J_{0}\right\|_{\infty} \\
& \leq \alpha\left\|T^{k} J_{0}-T^{k-1} J_{0}\right\|_{\infty} \\
& \leq \alpha^{k}\left\|T J_{0}-J_{0}\right\|_{\infty} \rightarrow 0 \quad \text { as } K \rightarrow \infty
\end{aligned}
$$

Since for all k we have $\left\|J^{*}-T J^{*}\right\|_{\infty} \leq\left\|T J^{*}-T^{k+1} J_{0}\right\|_{\infty}+\left\|J^{*}-T^{k} J_{0}\right\|_{\infty}+\left\|T^{k+1} J_{0}-T^{k} T_{0}\right\|_{\infty}$, we conclude that $J^{*}=T J^{*}$. We next show that J^{*} is the unique solution to $J=T J$. Suppose that $J_{1}^{*} \neq J_{2}^{*}$. Then

$$
0<\left\|J_{1}^{*}-J_{2}^{*}\right\|_{\infty}=\left\|T J_{1}^{*}-T J_{2}^{*}\right\|_{\infty} \leq \alpha\left\|J_{1}^{*}-J_{2}^{*}\right\|_{\infty}
$$

which is a contradiction.
Alternative Proof We prove the statement by showing that $T^{K} J$ is a Cauchy sequence in $\mathbb{R}^{n} .{ }^{1}$ Observe

$$
\begin{aligned}
\left\|T^{k+m} J-T^{k} J\right\|_{\infty} & =\left\|\sum_{n=0}^{m-1}\left(T^{k+n+1} J-T^{k+n} J\right)\right\|_{\infty} \\
& \leq \sum_{n=0}^{m-1}\left\|T^{k+n+1} J-T^{k+n} J\right\|_{\infty} \\
& \leq \sum_{n=0}^{m-1} \alpha^{k+n}\|T J-J\|_{\infty} \rightarrow 0 \quad \text { as } k, m \rightarrow \infty
\end{aligned}
$$

From above, we know that $\left\|T^{k} J-J^{*}\right\|_{\infty} \leq \alpha^{k}\left\|J-J^{*}\right\|_{\infty}$. Therefore, the value iteration algorithm converges to J^{*}. Furthermore, we notice that J^{*} is the fixed point w.r.t. the operator T, i.e., $J^{*}=T J^{*}$. We next introduce another value iteration algorithm.

3.1 Gauss-Seidel Value Iteration

The Gauss-Seidel value iteration goes as follows:

$$
\begin{aligned}
J_{K+1}(x) & =\left(T \tilde{J}_{K}\right)(x) \quad \text { where } \\
\tilde{J}_{K}(y) & = \begin{cases}J_{K}(x), & \text { if } x \leq y, \\
J_{K+1}(y), & \text { if } x>y\end{cases}
\end{aligned}
$$

We hence define the operator F as follows

$$
\begin{equation*}
(F J)(x)=\min _{a}\{g_{a}(x)+\underbrace{\alpha \sum_{y<x} \mathbb{P}_{a}(x, y)(F J)(y)}_{\text {updated already }}+\underbrace{\alpha \sum_{y \geq x} \mathbb{P}_{a}(x, y) J(y)}_{\text {not being updated yet }}\} \tag{1}
\end{equation*}
$$

Does the operator F satisfy the maximum contraction? We answer this question by the following lemma.

[^0]
Lemma 1

$$
\|F J-F \bar{J}\|_{\infty} \leq \alpha\|J-\bar{J}\|_{\infty}
$$

Proof By the definition of F, we consider the case $x=1$,

$$
|(F J)(1)-(F \bar{J})(1)|=|(T J)(1)-(T \bar{J})(1)| \leq \alpha\|J-\bar{J}\|_{\infty}
$$

For the case $x=2$, by the definition of F, we have

$$
\begin{aligned}
|(F J)(2)-(F \bar{J})(2)| & \leq \alpha \max \{|(F J)(1)-(F \bar{J})(1)|,|J(2)-\bar{J}(2)|, \ldots,|J(|\mathcal{S}|)-\bar{J}(|\mathcal{S}|)|\} \\
& \leq \alpha\|J-\bar{J}\|_{\infty}
\end{aligned}
$$

Repeating the same reasoning for $x=3, \ldots$, we can show by induction that $|(F J)(x)-(F \bar{J})(x)| \leq$ $\alpha\|J-\bar{J}\|_{\infty}, \forall x \in \mathcal{S}$. Hence, we conclude $\|F J-F \bar{J}\|_{\infty} \leq \alpha\|J-\bar{J}\|_{\infty}$.

Theorem $3 F$ has the unique fixed point J^{*}.
Proof By the definition of operator F and the Bellman's equation $J^{*}=T J^{*}$, we have $J^{*}=F J^{*}$. The convergence result follows from the previous lemma. Therefore, $F J^{*}=J^{*}$. By maximum contraction property, the uniqueness of J^{*} holds.

[^0]: ${ }^{1}$ A sequence x_{n} in a metric space X is said to be a Cauchy sequence if for every $\epsilon>0$ there exists an integer N such that $\left\|x_{n}-x_{m}\right\| \leq \epsilon$ if $m, n \geq N$. Furthermore, in \mathbb{R}^{n}, every Cauchy sequence converges.

