Lecture Note 2

1 Summary: Markov Decision Processes

Markov decision processes can be characterized by $(\mathcal{S}, \mathcal{A}, g.(\cdot), \mathbb{P}.(\cdot, \cdot))$, where

 ${\mathcal S}$ denotes a finite set of states

 \mathcal{A}_x denotes a finite set of actions for state $x \in \mathcal{S}$

 $g_a(x)$ denotes the finite time-stage cost for action $a \in \mathcal{A}_x$ and state $x \in \mathcal{S}$

 $\mathbb{P}_a(x, y)$ denotes the transmission probability when the taken action is $a \in \mathcal{A}_x$, current state is x, and the next state is y

Let u(x,t) denote the *policy* for state x at time t and, similarly, let u(x) denote the *stationary policy* for state x. Taking the stationary policy u(x) into consideration, we introduce the following notation

$$g_u(x) \equiv g_{u(x)}(x)$$

 $\mathbb{P}_u(x,y) \equiv \mathbb{P}_{u(x)}(x,y)$

to represent the cost function and transition probabilities under policy u(x).

2 Cost-to-go Function and Bellman's Equation

In the previous lecture, we defined the discounted-cost, infinite horizon cost-to-go function as

$$J^*(x) = \min_{u} \mathbb{E}\left[\sum_{t=0}^{\infty} \alpha^t g_u(x_t) | x_0 = x\right].$$

We also conjectured that J^* should satisfies the Bellman's equation

$$J^*(x) = \min_a \left\{ g_a(x) + \alpha \sum_{y \in \mathcal{S}} P_a(x, y) J^*(y) \right\},\$$

or, using the operator notation introduced in the previous lecture,

$$J^* = TJ^*.$$

Finally, we conjectured that an optimal policy u^* could be obtained by taking a *greedy policy* with respect to J^* .

In this and the following lecture, we will present and analyze algorithms for finding J^* , and prove optimality of policies that are greedy with respect to it.

3 Value Iteration

The value iteration algorithm goes as follows:

- 1. $J_0, k = 0$
- 2. $J_{k+1} = TJ_k, k = k+1$
- 3. Go back to 2

Theorem 1

$$\lim_{k\to\infty}J_k=J^*$$

Proof Since $J_0(\cdot)$ and $g_{\cdot}(\cdot)$ are finite, there exists a real number M satisfying $|J_0(x)| \leq M$ and $|g_a(x)| \leq M$ for all $a \in \mathcal{A}_x$ and $x \in \mathcal{S}$. Then we have, for every integer $K \geq 1$ and real number $\alpha \in (0, 1)$,

$$J_{K}(x) = T^{K}J_{0}(x)$$

$$= \min_{u} \mathbb{E}\left[\sum_{t=0}^{K-1} \alpha^{t}g_{u}(x_{t}) + \alpha^{K}J_{0}(x_{K}) \middle| x_{0} = x\right]$$

$$\leq \min_{u} \mathbb{E}\left[\sum_{t=0}^{K-1} \alpha^{t}g_{u}(x_{t}) \middle| x_{0} = x\right] + \alpha^{K}M$$

From

$$J^*(x) = \min_u \left\{ \sum_{t=0}^{K-1} \alpha^t g_u(x_t) + \sum_{t=K}^{\infty} \alpha^t g_u(x_t) \right\},$$

we have

$$(T^{K}J_{0})(x) - J^{*}(x)$$

$$= \min_{u} \mathbb{E} \left[\sum_{t=0}^{K-1} \alpha^{t} g_{u}(x_{t}) + \alpha^{K} J_{0}(x_{K}) \middle| x_{0} = x \right] - \min_{u} \mathbb{E} \left[\sum_{t=0}^{K-1} \alpha^{t} g_{u}(x_{t}) + \sum_{t=K}^{\infty} \alpha^{t} g_{u}(x_{t}) \middle| x_{0} = x \right]$$

$$\leq \mathbb{E} \left[\sum_{t=0}^{K-1} \alpha^{t} g_{\bar{u}}(x_{t}) + \alpha^{K} J_{0}(x_{K}) \middle| x_{0} = x \right] - \mathbb{E} \left[\sum_{t=0}^{K-1} \alpha^{t} g_{\bar{u}}(x_{t}) + \sum_{t=K}^{\infty} \alpha^{t} g_{\bar{u}}(x_{t}) \middle| x_{0} = x \right]$$

$$\leq \mathbb{E} \left[\alpha^{K} |J_{0}(x_{k})| + \sum_{t=K}^{\infty} \alpha^{t} g_{\bar{u}}(x_{t}) \middle| x_{0} = x \right]$$

$$\leq \max_{u} \mathbb{E} \left[\alpha^{K} |J_{0}(x_{K})| + \sum_{t=K}^{\infty} \alpha^{t} |g_{0}(x_{t})| \middle| x_{0} = x \right]$$

$$\leq \alpha^{K} M \left(1 + \frac{1}{1 - \alpha} \right),$$

where \bar{u} is the policy minimizing the second term in the first line. We can bound $J^*(x) - (T^K J_0)(x) \le \alpha^K M(1+1/(1-\alpha))$ by using the same reasoning. It follows that $T^K J_0$ converges to J^* as K goes to infinity. \Box

Theorem 2 J^* is the unique solution of the Bellman's equation.

Proof We first show that $J^* = TJ^*$. By contraction principle,

$$||T(T^{k}J_{0}) - T^{k}J_{0}||_{\infty} = ||T^{k+1}J_{0} - T^{k}J_{0}||_{\infty}$$

$$\leq \alpha ||T^{k}J_{0} - T^{k-1}J_{0}||_{\infty}$$

$$\leq \alpha^{k} ||TJ_{0} - J_{0}||_{\infty} \to 0 \quad \text{as } K \to \infty$$

Since for all k we have $||J^* - TJ^*||_{\infty} \leq ||TJ^* - T^{k+1}J_0||_{\infty} + ||J^* - T^kJ_0||_{\infty} + ||T^{k+1}J_0 - T^kT_0||_{\infty}$, we conclude that $J^* = TJ^*$. We next show that J^* is the unique solution to J = TJ. Suppose that $J_1^* \neq J_2^*$. Then

$$0 < ||J_1^* - J_2^*||_{\infty} = ||TJ_1^* - TJ_2^*||_{\infty} \le \alpha ||J_1^* - J_2^*||_{\infty}$$

which is a contradiction.

Alternative Proof We prove the statement by showing that $T^K J$ is a Cauchy sequence in \mathbb{R}^n .¹ Observe

$$||T^{k+m}J - T^{k}J||_{\infty} = ||\sum_{n=0}^{m-1} (T^{k+n+1}J - T^{k+n}J)||_{\infty}$$

$$\leq \sum_{n=0}^{m-1} ||T^{k+n+1}J - T^{k+n}J||_{\infty}$$

$$\leq \sum_{n=0}^{m-1} \alpha^{k+n} ||TJ - J||_{\infty} \to 0 \quad \text{as } k, m \to \infty$$

From above, we know that $||T^kJ - J^*||_{\infty} \leq \alpha^k ||J - J^*||_{\infty}$. Therefore, the value iteration algorithm converges to J^* . Furthermore, we notice that J^* is the fixed point w.r.t. the operator T, i.e., $J^* = TJ^*$. We next introduce another value iteration algorithm.

3.1 Gauss-Seidel Value Iteration

The Gauss-Seidel value iteration goes as follows:

$$J_{K+1}(x) = (T\tilde{J}_K)(x) \text{ where}$$

$$\tilde{J}_K(y) = \begin{cases} J_K(x), & \text{if } x \leq y, \text{ (not being updated yet)} \\ J_{K+1}(y), & \text{if } x > y. \end{cases}$$

We hence define the operator F as follows

$$(FJ)(x) = \min_{a} \left\{ g_{a}(x) + \alpha \sum_{\substack{y < x \\ \text{updated already}}} \mathbb{P}_{a}(x,y)(FJ)(y) + \alpha \sum_{\substack{y \ge x \\ \text{not being updated yet}}} \mathbb{P}_{a}(x,y)J(y) \right\}$$
(1)

Does the operator F satisfy the maximum contraction? We answer this question by the following lemma.

¹A sequence x_n in a metric space X is said to be a Cauchy sequence if for every $\epsilon > 0$ there exists an integer N such that $||x_n - x_m|| \le \epsilon$ if $m, n \ge N$. Furthermore, in \mathbb{R}^n , every Cauchy sequence converges.

Lemma 1

$$||FJ - F\bar{J}||_{\infty} \le \alpha ||J - \bar{J}||_{\infty}$$

Proof By the definition of F, we consider the case x = 1,

$$|(FJ)(1) - (F\bar{J})(1)| = |(TJ)(1) - (T\bar{J})(1)| \le \alpha ||J - \bar{J}||_{\infty}$$

For the case x = 2, by the definition of F, we have

$$\begin{aligned} |(FJ)(2) - (F\bar{J})(2)| &\leq \alpha \max\left\{ |(FJ)(1) - (F\bar{J})(1)|, |J(2) - \bar{J}(2)|, \dots, |J(|\mathcal{S}|) - \bar{J}(|\mathcal{S}|)| \right\} \\ &\leq \alpha ||J - \bar{J}||_{\infty} \end{aligned}$$

Repeating the same reasoning for x = 3, ..., we can show by induction that $|(FJ)(x) - (F\bar{J})(x)| \le \alpha ||J - \bar{J}||_{\infty}, \forall x \in S$. Hence, we conclude $||FJ - F\bar{J}||_{\infty} \le \alpha ||J - \bar{J}||_{\infty}$.

Theorem 3 F has the unique fixed point J^* .

Proof By the definition of operator F and the Bellman's equation $J^* = TJ^*$, we have $J^* = FJ^*$. The convergence result follows from the previous lemma. Therefore, $FJ^* = J^*$. By maximum contraction property, the uniqueness of J^* holds.