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� Introduction 

Markov Decision Processes and the associated dynamic programming �DP� methodology 

�Ber�	a� Put�
� provide a general framework for posing and analyzing problems of se�
quential decision making under uncertainty� DP methods rely on a suitably de�ned value 

function that has to be computed for every state in the state space� However� many i n ter�
esting problems involve very large state spaces �
curse of dimensionality��� In addition� 

DP assumes the availability o f a n exact model� in the form of transition probabilities� In 

many p ractical situations� such a m o d e l is not available and one must resort to simulation 

or experimentation with an actual system� For all of these reasons� dynamic programming 

in its pure form� may b e inapplicable� 

The e�orts to overcome the aforementioned di�culties involve t wo m a i n ideas� 

�� The use of simulation to estimate quantities of interest� thus avoiding model�based 

computations� 

�� The use of parametric representations to overcome the curse of dimensionality� 

Parametric representations� and the associated algorithms� can b e broadly classi�ed 

into three main categories� 

�a�	 Parametrized value functions� Instead of associating a value V �i� with each state 

i� one uses a parametric form V� �i� r�� where r is a vector of tunable parameters 

�weights�� and V� is a so�called approximation architecture� For example� V� �i� r� 

could b e the output of a multilayer perceptron with weights r� when the input is 

i� Other representations are possible� e�g�� involving p o lynomials� linear combina�
tions of feature vectors� state aggregation� etc� When the main ideas from DP are 

combined with such parametric representations� one obtains methods that go un�
der the names of 
reinforcement learning� or 
neuro�dynamic programming�� see 

�BT��� SB��� for textbook expositions� as well as the references therein� A k ey char�
acteristic is that policy optimization is carried out in an indirect fashion� one tries to 

obtain a good approximation of the optimal value function of dynamic programming� 

and uses it to construct policies that are close to optimal� Such m ethods are reason�
ably well� though not fully� understood and there have b e en some notable practical 

successes �see �BT��� SB��� for an overview�� including the world�class backgammon 

player by T esauro �Tes���� 

�b�	 Parametrized policies� In an alternative approach� which is the one considered in 

this paper� the tuning of a parametrized value function is bypassed� Instead� one 

considers a class of policies described in terms of a parameter vector �� Simulation is 

employed to estimate the gradient o f t he performance metric with respect to �� and 

the policy is improved by u p dating � in a gradient d i r e c tion� In some cases� the re�
quired gradient c an be estimated using IPA � in�nitesimal perturbation analysis�� see� 

e�g�� �HC��� Gla��� CR�
� and the references therein� For general Markov processes� 

and in the absence of special structure� IPA i s inapplicable� but gradient e stimation 

is still possible using 
likelihood�ratio� methods �Gly��� Gly��� GG��� LEc��� GI���� 

�c�	 Actor�critic methods� A third approach� which is a combination of the �rst two� 

includes parametrizations of the p o licy �actor� and of the value function �critic� 
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�BSA���� While such methods seem particularly promising� theoretical understand�
ing has been limited to the impractical case of lookup representations �one parameter 

per state� �K B ���� 

This paper concentrates on methods based on policy parametrization and �approx�
imate� gradient improvement� in the spirit of item �b� above� While we are primarily 

interested in the case of Markov Decision Processes� almost everything applies to the 

more general case of Markov Reward Processes that depend on a parameter vector �� and 

we p roceed within this broader context� 

We start with a formula for the gradient of the p e rformance metric that has been 

presented in di�erent f o r ms and for various contexts in �Gly��� CC��� FH�
� JSJ�	� TH�	� 

CW���� We t hen suggest a method for estimating the terms that appear in that formula� 

This leads to a simulation�based method that updates the parameter vector � at every 

regeneration time� in an approximate gradient direction� Furthermore� we show how to 

construct an on�line method that updates the parameter vector at each time step� The 

resulting method has some conceptual similarities with those described in �CR�
� �that 

reference assumes� however� the availability o f a n I P A estimator� with certain guaranteed 

properties that are absent i n our context� and in �JSJ�	� �which� however� does not contain 

convergence results�� 

The method that we propose only keeps in memory and updates �K � � numbers� 

where K is the dimension of �� Other than � itself� this includes a vector similar to the 


eligibility t race� in Sutton�s temporal di�erence methods� and �as in �JSJ�	�� an estimate 

�� of the average reward under the current value of �� If that estimate was accurate� our 

method would be a standard stochastic gradient a lgorithm� However� as � keeps changing� 

�� is generally a biased estimate of the true average reward� and the mathematical structure 

of our method is more complex than that of stochastic gradient algorithms� For reasons 

that will b e c ome clearer later� standard approaches �e�g�� martingale arguments or the 

ODE approach� do not seem to su�ce for establishing convergence� and a more elaborate 

proof is necessary� 

Our gradient e stimator can also be derived or interpreted in terms of likelihood ratios 

�Gly��� GG���� It takes the same form as the one presented in p� ��� of �Gly���� but 

it is used di�erently� The development in �Gly��� leads to a consistent estimator of the 

gradient� assuming that a very large numb e r of regenerative cycles are estimated� while 

keeping the policy parameter � at a �xed value� Presumably� � would b e then updated 

after such a l o n g simulation� In contrast� our method updates � much more frequently and 

retains the desired convergence properties� despite the fact that any s i n g l e c ycle results in 

a b i a sed gradient e stimate� 

An alternative simulation�based stochastic gradient method� again based on a likeli�
hood ratio formula� has b e e n provided in �Gly���� and uses the simulation of two regen�
erative cycles to construct an unbiased estimate of the gradient� We note some of the 

di�erences with the latter work� First� the methods in �Gly��� involve a l a rger numb e r o f 

auxiliary quantities that are propagated in the course of a regenerative c y c le� Second� our 

method admits a modi�cation �see Sections 
�	� that can make it applicable even if the 

time until the next regeneration is excessive � i n which c ase� likelihood ratio�based methods 

�su�er from excessive variance�� Third� our estimate � of the average reward is obtained 

as a �weighted� average of all past rewards �not just over the last regenerative cycle�� In 
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contrast� an approach s u c h a s t h e one in �Gly��� would construct an independent e stimate 

�of � during each regenerative cycle� which should result in higher variance� Finally� our 

method brings forth and makes crucial use of the value �di�erential reward� function of dy�
namic programming� This is important b e c a u se it paves the way f o r a c t o r�critic methods 

in which the variance associated with the estimates of the di�erential rewards is p o t e n �
tially reduced by means of 
learning� �value function approximation�� Indeed� subsequent 

to the �rst writing of this paper� this latter approach has been pursued in �KT��� SMS���� 

In summary� the main contributions of this paper are as follows� 

�� We introduce a new algorithm for updating the parameters of a Markov Reward 

Process� on the basis of a single sample path� The parameter updates can take 

place either during visits to a certain recurrent s t a te� or at every time step� We also 

specialize the method to Markov D ecision Processes with parametrically represented 

p o licies� In this case� the method does not require the transition probabilities to be 

known� 

�� We e stablish that the gradient � w ith respect to the parameter vector� of the perfor�
mance metric converges to zero� with probability � � which i s the strongest possible 

result for gradient�related stochastic approximation algorithms� 

�� The method admits approximate variants with reduced variance� such as the one 

described in Section 	� or various types of actor�critic methods� 

The remainder of this paper is organized as follows� In Section �� we introduce our 

framework and assumptions� and state some background results� including a formula for 

the gradient of the performance metric� In Section �� we present an algorithm that per�
forms updates during visits to a certain recurrent state� present our main convergence 

result� and provide a heuristic argument� Sections 
 and 	 deal with variants of the algo�
rithm that perform updates at every time step� In Section �� we s p e cialize our methods to 

the case of Markov Decision Processes that are optimized within a possibly restricted set 

of parametrically represented randomized policies� We present s ome numerical results in 

Section �� and conclude in Section �� The lengthy proof of our main results is developed 

in the appendices� 

� Markov Reward Processes Depending on a Parameter 

In this section� we present our general framework� make a few assumptions� and state 

some basic results that will be needed later� 

We consider a discrete�time� �nite�state Markov chain fing with state space S � 

f�� � � � � N g� w hose transition probabilities depend on a parameter vector � � � 

K � and are 

denoted by 

pij 

��� � P �in 

� j j in�� 

� i� ��� 

Whenever the state is equal to i� we receive a one�stage reward� that also depends on �� 

and is denoted by gi���� 

For every � � �K � let P ��� b e the stochastic matrix with entries pij 

���� Let P � 

fP ��� j � � � 

K g b e the set of all such matrices� and let P b e i t s closure� Note that every 

element of P is also a stochastic matrix and� therefore� de�nes a Markov chain on the 

same state space� We make the following assumptions� 


 



Assumption � The Markov chain corresponding to every P � P is aperiodic� Further�
more� there exists a state i� which is recurrent for every such Markov chain� 

We w ill often refer to the times that the state i� is visited as regeneration times� 

Assumption � For every i� j � S� the functions pij 

��� and gi��� are bounded� twice 

di�erentiable� and have bounded �rst and second derivatives� 

The performance metric that we u s e to compare di�erent p o l icies is the average reward 

criterion ����� de�ned by � � 

t� 

X 

���� � lim E� 

gik 

��� � 

t�� t 

k�� 

Here� ik 

is the state at time k� and the notation E���� indicates that the expectation is 

taken with respect to the distribution of the Markov chain with transition probabilities 

pij 

���� Under Assumption �� the average reward ���� i s w ell de�ned for every �� and does 

not depend on the initial state� Furthermore� the balance equations 

N X 

�i���pij 

��� � �j 

���� j � � � � � � � N � �� ��� 

i�� 

N X 

�i��� � �� ��� 

i�� 

have a unique solution ���� � � �� 

���� � � � � � N 

����� with �i��� b eing the steady state prob�
ability o f sta te i under that particular value of �� and the average reward is equal to 

N X 

���� � �i���gi���� ��� 

i�� 

We o bserve t hat the balance equations ������� are of the form 

A������� � a� 

where a is a �xed vector and A��� is an N �N matrix� �Throughout the paper� all vectors 

are treated as column vectors�� Using the fact that A��� d epends smoothly on �� w e have 

the following result� 

Lemma � Let Assumptions � and � hold� Then� ���� and ���� are twice di�erentiable� 

and have bounded �rst and second derivatives� 

Proof� The balance equations are of the form A������� � a� where the entries of A��� 

have b o u n d e d second derivatives �Assumption ��� Since the balance equations have a 

unique solution� the matrix A��� i s a l w ays invertible� and Cramer�s rule yields 

C���
���� � � �
�

det�A���� 

	 



where C��� is a vector whose entries are polynomial functions of the entries of A���� 

Using Assumption �� C��� and det�A���� are twice di�erentiable and have bounded �rst 

and second derivatives� 

More generally� suppose that P � P � i�e�� P is the limit of the stochastic matrices 

P ��k� along some sequence �k� The corresponding balance equations are again of the 

form A�P �� � a� where A�P � is a matrix depending on P � Under Assumption �� these 

balance equations have a gain a unique solution� which i m plies that jdet�A�P ��j is strictly 

p o s i tive� Note that jdet�A�P ��j is a continuous function of P � and P lies in the set P � 

which i s closed and bounded� It follows that jdet�A�P ��j is bounded below b y a p o sitive 

constant c� Since every P ��� b e longs to P� it fo llo ws that jdet�A����j � c � �� for every �� 

This fact� together with Eq� �
� implies that ���� i s t wice di�erentiable and has bounded 

�rst and second derivatives� The same property holds true for ����� as can b e seen by 

di�erentiating twice the formula ���� 2 

��� The Gradient of ���� 

For any � � � 

K and i � S� w e d e�ne the di�erential reward vi��� o f state i by 

� � 

T �� X 

vi��� � E� 

�gik 

��� � ����� j i� 

� i � �	� 

k�� 

where ik 

is the state at time k� and T � minfk � � j ik 

� i�g is the �rst future time 

that state i� is visited� With this de�nition� it is well known that vi� ��� � � and that the 

vector v��� � � v����� � � � � v N 

���� is a solution to the Poisson equation 

g��� � v � ����e � P ���v 

where g��� � � g� 

���� � � � � g N 

��� and e is equal to the all�one vector ��� � � � � ��� 

The following proposition gives an expression for the gradient of the average reward 

����� with respect to �� A r elated expression �in a somewhat di�erent c o n text� was given 

in �JSJ�	�� and a proof can b e found in �CC���� �The latter reference does not consider 

the case where gi��� depends on �� b ut the extension is immediate�� Given the importance 

of this result� and b e c a use existing proofs are somewhat involved� we provide a concise 

self�contained proof� for the bene�t of the reader� 

Proposition � Let Assumptions � and � hold� Then� � � X X 

r���� � �i��� 

�rgi��� � rpij 

���vj 

���A � 

i�S j�S 

Proof� We carry out the proof using vector notation� and using the superscript T to 

denote vector transposition� All gradients are taken with respect to �� but to unclutter 

notation� the dependence on � is suppressed� 

We sta rt w ith the Poisson equation g � v � �e �Pv and left�multiply both sides with 

r�T � to obtain 

�r�T �g � � r�T �v � �r�T e � �r�T ��Pv �� ��� 

� 



Note that �T e � � � which yields r�T e � � � Using the balance equation �T P � �T � we 

obtain 

r�T � r��T P � � � r�T �P � �T �rP �� 

We r ight�multiply both sides by v� a n d u s e t he resulting relation to rewrite the right�hand 

side of Eq� ���� leading to 

�r�T �g � �T �rP �v� 

Thus� 

r� � r��T g� � �T �rg� � � r�T �g � �T �rg� � �T �rP �v� 

which i s the desired result� 2 

Equation ��� for ���� s uggests that r���� c ould involve t e r ms of the form r�i���� but 

the expression given by Proposition � involves no such terms� This property i s v ery helpful 

in producing simulation�based estimates of r����� 

��� An Idealized Gradient Algorithm 

Given that our goal is to maximize the average reward ����� it is natural to consider 

gradient�type methods� If the gradient of ���� could b e computed exactly� we would 

consider a gradient a lgorithm of the form 

�k�� 

� �k 

� �kr���k�� 

Based on the fact that ���� h a s b o u n d e d second derivatives� and under suitable conditions 

on the stepsizes �k� it would follow that limk�� 

r���k� � � and that ���k� converges 

�Ber�	b�� 

Alternatively� i f w e could use simulation to produce an unbiased estimate hk 

of r���k�� 

we c ould then employ the stochastic gradient i t e ration 

�k�� 

� �k 

� �khk� 

The convergence of such a m e t hod can be established if we use a diminishing stepsize se�
quence and make s uitable assumptions on the estimation errors� While one can construct 

unbiased estimates of the gradient � G l y���� it does not appear possible to use them in an 

algorithm which u p d a tes the parameter vector � at every time step � which i s a desirable 

property� a s discussed in Section ��
� This di�culty i s b ypassed by the method developed 

in the following� 

� The Simulation�Based Method 

In this section� we develop a simulation�based algorithm in which the gradient r���� is 

replaced with a biased estimate� obtained by simulating a single sample path� We will 

eventually show that the bias asymptotically vanishes� which will then lead to a conver�
gence result� For technical reasons� we make the following assumption on the transition 

probabilities pij 

���� 

Assumption � For every i and j� there exists a bounded function Lij 

��� such that 

rpij 

��� � pij 

���Lij 

���� � �� 

� 



Note that when pij 

��� � �� we h ave 

rpij 

���
Lij 

��� � � 

pij 

��� 

which c a n b e i n terpreted as a likelihood ratio derivative t erm �LEc���� Assumption � holds 

automatically if there exists a positive s c a lar �� such that for every i� j � S� w e have 

either pij 

��� � � � � �� or pij 

��� � �� � �� 

��� Estimation of r���� 

Throughout this subsection� we assume that the parameter vector � is �xed to some value� 

Let fing be a sample path of the corresponding Markov c hain� possibly obtained through 

simulation� Let tm 

be the tim e of the mth visit at the recurrent s t ate i� � We refer to the 

sequence itm 

� i tm 

��� � � � � i tm+1 

as the mth regenerative cycle� and we de�ne its length Tm 

by 

Tm 

� tm�� 

� tm� 

For a �xed �� the random variables Tm 

are independent identically distributed� and have 

a �common� �nite mean� denoted by E��T �� 

Our �rst step is to rewrite the formula for r���� in th e form � � X X 

r���� � �i��� 

�rgi��� � pij 

���Lij 

���vj 

���A � 

i�S j�S 

Estimating the term �i���rgi��� t hrough simulation is straightforward� assuming that we 

are able to compute rgi��� for any given i and �� The other term can b e viewed as 

the expectation of vj 

���Lij 

���� with respect to the steady�state probability �i���pij 

��� of 

transitions from i to j� Furthermore� the de�nition �	� of vj 

���� suggests that if tm 

	 n � 

tm�� 

� �� and in 

� j� w e c a n use 

tm+1 

�� � � X 

�vin 

�� � 

��� � gik 

��� � 

�� � ��� 

k�n 

�to estimate vj 

���� where � is some estimate of ����� Note that vi� ��� � � and does not 

need to be estimated� For this reason� we l e t 

�v�in 

��� �� � � � if n � tm� 

By accumulating the above d e scribed estimates over a regenerative c y c l e � w e a re �nally 

led to an estimate of the direction of r���� g iv en by 

tm+1 

�� � � X 

� �Fm��� �� � v�in 

��� ��Lin;1 

in 

��� � rgin 

��� � ��� 

n�tm 

�The random variables Fm��� �� are independent and identically distributed for di�erent 

values of m� b ecause the transitions during distinct regenerative cycles are independent� 

�




� �We d e�ne f ��� �� to be the expected value of Fm��� ��� namely� 

� �f ��� �� � E��Fm��� ���� ��� 

�The following proposition con�rms that the expectation of Fm��� �� is a ligned with r����� 

�to the extent th a t � is close to ����� 

Proposition � We have 

� �f ��� �� � E��T �r���� � G�������� � ��� 

where � 
 

tm+1 

�� X 

G��� � E� 

	 �tm�� 

� n�Lin;1 

in 

���� � ���� 

n�tm 

�� 

Proof� Note that for n � tm 

� � � � � � � t m�� 

� �� we h ave 

tm+1 

�� X 

� �v�in 

��� �� � �gik 

��� � ����� � �tm�� 

� n������ � ��� 

k�n 

Therefore� 

tm+1 

�� tm+1 

�� tm+1 

�� X X X 

Fm�� � 

��� � anLin;1 

in 

��� � �tm�� 

� n������ � 

���Lin;1 

in 

��� � rgin 

���� 

n�tm 

�� n�tm 

�� 

n�tm 

where 

tm+1 

�� X 

an 

� �gik 

��� � ����� � ���� 

k�n 

We consider separately the expectations of the three sums above� Using the de�nition of 

�G���� the expectation of the second sum is equal to G�������� � ��� We then consider 

the third sum� As is well known� the expected sum of rewards over a regenerative c y cle is 

equal to the steady�state expected reward times the expected length of the regenerative 

cycle� Therefore� the expectation of the third sum is � 
 

tm+1 

�� X X 

E� 

	 rgin 

���� � E��T � �i���rgi���� ���� 

n�tm 

i�S 

We now focus on the expectation of the �rst sum� For n � tm 

� � � � � � � t m�� 

� �� let 

�n 

� � an 

� vin 

����Lin;1 

in 

���� 

Let Fn 

� fi� 

� � � � � i ng stand for the history of the process up to time n� By comparing the 

de�nition ���� of an 

with the de�nition �	� of vin 

���� we o b tain 

E� 

�an 

j F n� � vin 

���� ���� 

It follows that E���n 

j F n� � �� 

� 



Let 
n 

� � if n 	 t m�� 

� and 
n 

� � � otherwise� For any n � t m� w e have 

E��
n�n 

j F tm 

� � E��E��
n�n 

j F n� j F tm 

� � E��
nE���n 

j F n� j F tm 

� � � � 

We then have � 
 � 
 

tm+1 

�� � X X 

E� 

	 �n 

j F tm 

� � E� 

	 
n�n 

j F tm 

� 

n�tm 

�� n�tm 

�� 

� X 

� E��
n�n 

j F tm 

� 

n�tm�� 

� �� 

�The interchange of the summation and the expectation can be j u s ti�ed by a p p ealing to 

the dominated convergence theorem�� 

We t herefore have � 
 � 
 

tm+1 

�� tm+1 

�� X X 

E� 

	 anLin;1 

in 

���� � E� 

	 vin 

���Lin;1 

in 

���� � 

n�tm 

�� n�tm 

�� 

The right�hand side can be viewed as the total reward over a regenerative c ycle of a Markov 

reward process� where the reward associated with a transition from i to j is vj 

���Lij 

���� 

Recalling that any particular transition has steady�state probability �i���pij 

��� of being 

from i to j� w e obtain � 
 

tm+1 

�� X XX 

E� 

	 anLin;1 

in 

���� � E��T � �i���pij 

���Lij 

���vj 

���� ��
� 

n�tm 

�� i�S j�S 

By combining Eqs� ���� and ��
�� and comparing with the formula for r����� we see that 

the desired result has been proved� 2 

��� An Algorithm that Updates at Visits to the Recurrent State 

We now use the approximate gradient direction provided by Proposition �� and propose 

a simulation�based algorithm that p e r forms updates at visits to the recurrent state i� � 

We use the variable m to index the times when the recurrent state i� is visited� and the 

corresponding updates� The form of the algorithm is the following� At the time tm 

that 

state i� is visited for the mth time� we h a ve a vailable a current v ector �m 

and an average 

reward estimate 

��m� We t hen simulate the process according to the transition probabilities 

pij 

��m� u n til the next time tm�� 

that i� is visited� and update according to 

�m�� 

� �m 

� �mFm��m� 

��m�� ��	� 

tm+1 

�� X 

� � ��m�� 

� �m 

� �� m 

�gin 

��m� � �m�� ���� 

n�tm 

where �m 

is a positive stepsize sequence �cf� Assumption 
� and � � � allows to scale the 

�stepsize for updating � by a p o sitive c o n stant� To s ee the rationale behind Eq� ����� note 

��




�that the expected update direction for � is � 
 

tm+1 

�� X 

� �E� 

	 �gin 

��� � ��� � E��T ������ � ��� ���� 

n�tm 

�which m o ves � closer to ����� 

Assumption � The stepsizes �m 

are nonnegative and satisfy 

� � X X 

�m 

� 	� �� 	 	�m 

m�� m�� 

Assumption 
 is satis�ed� for example� if we l e t �m 

� � �m� It can be shown that if � 

� �is held �xed� but � keeps being updated according to Eq� ����� then � converges to ����� 

However� if � is also updated according to Eq� ��	�� then the estimate 

��m 

can 
lag behind� 

���m�� As a consequence� the expected update direction for � will not be aligned with the 

gradient r����� 

An alternative a p p roach t h a t w e d o not pursue is to use di�erent s tepsizes for updating 

�� and �� If the stepsize used to update � is� in the limit� much s m a ller than the stepsize 

�used to update �� t he algorithm exhibits a two�time scale behavior of the form studied in 

��Bor���� In the limit� �m 

is an increasingly accurate estimate of ���m�� and the algorithm 

is e�ectively a stochastic gradient a lgorithm� However� such a m e t h o d w ould make s l o wer 

progress� as far as � is concerned� Our convergence results indicate that this alternative 

approach i s n ot necessary� 

We c a n now s tate our main result� which i s proved in Appendix A� 

Proposition � Let Assumptions ��	 hold� and let f�mg be the sequence of parameter 

vectors generated by the above described algorithm� Then� ���m� converges and 

lim r���m� � � � 

m�� 

with probability �� 

��� A Heuristic Argument 

In this subsection� we approximate the algorithm by a s u i t a ble ODE �as in �Lju����� and 

establish the convergence properties of the ODE� While this argument d o e s not constitute 

a p roof� it illustrates the rationale behind our convergence result� 

We replace the update directions by their expectations under the current value of �� 

The resulting deterministic update equations take t h e form 

�d�d � �d � �mf ��d � 

�
m��m�� m m

� �
m� � �d��d � �d � �� mE�d 

�T �����d m��m�� m m 

� �where f ��� �� is given by Proposition �� and where �d and �d are the deterministic m m 

�counterparts of �m 

and �m� r espectively� With an asymptotically vanishing stepsize� and 

��




� �

after rescaling time� this deterministic iteration behaves similar to the following system of 

di�erential equations� 

G��t� � ��t 

� r���t� � ����t� � �t�� ����
E�t 

�T � � � 

� � ��t 

� � ���t� � �t 

� ���� 

�Note that �t 

and ���t� are b o u nded functions since the one�stage reward gi��� is �nite�
�valued and� therefore� bounded� We w ill now a r g u e that �t 

converges� 

�We �rst consider the case where the initial conditions satisfy �� 

� ���� 

�� We then 

claim that 

��t 

� ���t�� � t � �� ���� 

�Indeed� suppose that at some time t� 

we have �t0 

� ���t0 

�� If r���t0 

� � �� then we 

�are at an equilibrium point of the di�erential equations� and we have �t 

� ���t� for all 

subsequent times� Otherwise� if r���t0 

� 
� � � then �t0 

� r���t0 

�� and ���t0 

� � �� At the 

� � �same time� we h a ve �t0 

� � � and this implies that �t 

	 � ��t� for t slightly larger than t�� 

� �The validity o f t h e c laim ���� follows� As long as �t 

� ���t�� �t 

is nondecreasing and since 

it is bounded� it must converge� 

�Suppose now that the initial conditions satisfy �� 

� � ����� As long as this condition 

remains true� 

��t 

is nonincreasing� There are two p ossibilities� If this condition remains true 

� �for all times� then �t 

converges� If not� then there exists a time t� 

such that �t0 

� ���t0 

�� 

which t a k es us back t o t he previously considered case� 

�Having concluded that �t 

converges� we c a n use Eq� ���� to argue that ���t� m ust also 

�converge to the same limit� Then� in the limit� �t 

evolves according to �t 

� r���t�� from 

which it follows that r���t� m ust go to zero� 

We n o w c o m m e n t o n t he nature of a rigorous proof� There are two c ommon approaches 

for proving the convergence of stochastic approximation methods� One method relies 

on the existence of a suitable Lyapunov function and a martingale argument� In our 

�context� ���� could play such a role� However� as long as �m 


� ���m�� our method cannot 

b e expressed as a stochastic gradient algorithm and this approach does not go through� 

�Furthermore� it is unclear whether another Lyapunov function would do�� The second 

proof method� the so�called ODE approach� shows that the trajectories followed by the 

algorithm converge to the trajectories of a corresponding deterministic ODE� e�g�� the ODE 

given by Eqs� ���������� This line of analysis generally requires the iterates to be bounded 

functions of time� In our case� such a b o u ndedness property is not guaranteed to hold� 

For example� if � stands for the weights of a neural network� it is certainly possible that 

certain 
neurons� asymptotically saturate� and the corresponding weights drift to in�nity� 

We therefore need a line of argument specially tailored to our particular algorithm� In 

rough terms� it proceeds along the same lines as the above p r o vided deterministic analysis� 

except that we m ust also ensure that the stochastic terms are not signi�cant� 

��� Implementation Issues 

For systems involving a large state space� as is the case in many a pplications� the interval 

b e t ween visits to the state i� can be large� Consequently� 

�� 



� 

�a� the parameter vector � gets updated only infrequently� 

�b� the estimate Fm��� can have a large variance� 

In the following� we w i l l a ddress these two issues and propose two m o di�ed versions� one 

which u p dates � at every time step� and one which r e duces the variance of the updates� 

An Algorithm that Updates at Every Time Step 

In this section� we develop an algorithm which updates the parameter vector � at every 

time step� We start by indicating an economical way of computing the update direction 

�Fm��� ��� This will allow us to break Fm��� i n to a sum of incremental updates carried out 

at each t ime step� 

�Taking into account t h a t v�itm 

��� �� � �� Eq� ��� becomes 

tm+1 

�� tm+1 

�� X X 

� �Fm��� �� � v�in 

��� ��Lin;1 

in 

��� � rgin 

���


n�tm 

�� 
n�tm
� � 

tm+1 

�� tm+1 

�� X X 

�� 

�rgin 

��� � Lin;1 

in 

��� �gik 

��� � ��A � rgi� ��� 

n�tm 

�� k�n � � 

tm+1 

�� k X X 

�� 

�rgik 

��� � � gik 

��� � �� Lin;1 

in 

���A � rgi� ��� 

k�tm�� 

n�tm 

�� 

tm+1 

�� � � X 

�� rgi� ��� � rgik 

��� � � gik 

��� � ��zk 

� 

k�tm 

�� 

where 

k k X X rpin;1 

in 

��� 

zk 

� Lin;1 

in 

��� � � k � tm 

� � � � � � � t m�� 

� �� 

pin;1 

in 

���
n�tm 

�� n�tm 

�� 

is a vector �of the same dimension as �� that b e c o mes available at time k� It can be 

updated recursively� w i t h 

ztm 

� � � ���� 

and 

k � tm� � � � � t m�� 

� �� ����zk�� 

� zk 

� Lik 

ik+1 

���� 

We note that zk 

is the likelihood ratio derivative t hat commonly arises in likelihood ratio 

gradient e stimation �Gly��� GG���� 

The preceding formulas suggest the following algorithm which u p d ates � at every time 

�step� At a typical time k� the state is ik� and the values of �k� zk� and �k 

are available 

�from the previous iteration� We u p d ate � and � according to � � 

��k�� 

� �k 

� �k 

rgik 

��k� � � gik 

��k� � �k�zk 

� 

� � ��k�� 

� �k 

� �� k�gik 

��k� � �k�� 

�� 



We t h e n s i m ulate a transition to the next state ik�� 

according to the transition probabil�
ities pij 

��k���� and �nally update z by letting � 

�� if ik�� 

� i�� 

zk�� 

� 

otherwise�zk 

� Lik 

ik+1 

��k�� 

In order to implement the algorithm� on the basis of the above e quations� we o nly need to 

�maintain in memory �K � � scalars� namely �� and the vectors �� z� 

To p r o ve c o n vergence of this version of the algorithm� we h a ve t o s trengthen Assump�
tion � of Section �� Assumption � states that for every �xed parameter �� w e w ill e v entually 

reach the state i� � Here� we need to make sure that this will remain so� even if � keeps 

changing� see �Mar��� for further discussion of this assumption� 

Assumption � There exist a state i� � S and a p ositive integer N�� such that� for every 

state i � S and every collection fP� 

� � � � � P N0 

g of N� 

matrices in the set P� we have 

N0 X 

� l
n 

��Pl�ii� � �� 

n�� 

We a lso impose an additional condition on the stepsizes� 

Assumption � The stepsizes �k 

are nonincreasing� Furthermore� there exists a positive 

integer p and a positive scalar A such that 

n�t X 

��n 

� �k� � Atp�� � � n� t � ��n
k�n 

Assumption � is satis�ed� for example� if we l e t �k 

� � �k� With this choice� and if we 

� �initialize � to zero� it is easily veri�ed that �k 

is equal to the average reward obtained in 

the �rst k transitions� 

We h a ve t h e following convergence result� which i s proved in Appendix B� 

Proposition � Let Assumptions ��
 hold� and let f�kg be the sequence of parameter vec�

tors generated by the above described algorithm� Then� ���k� converges and 

lim r���k� � � � 

k�� 

with probability �� 

The algorithm of this section is similar to the algorithm of the preceding one� except 

that � is continually updated in the course of a regenerative cycle� Because of the dimin�
ishing stepsize� these incremental updates are asymptotically negligible and the di�erence 

b e t ween the two algorithms is inconsequential� Given that the algorithm of the preceding 

section converges� Proposition 
 is hardly surprising� The technique in our convergence 

proof use is similar to the one in �CR�
�� However� mapped into the context of parame�
terized Markov reward processes� �CR�
� assumes that the transition probabilities pij 

��� 

are independent of � �the one�stage rewards gi��� can still depend on ��� The situation 

here is more general and a separate proof is needed� 

�
 



� An Algorithm that may Reduce the Variance 

When the length of a regeneration cycle is large� the vector zk 

will also b largeecom e 

b e f o r e it is reset to zero� resulting in high variance for the updates� �This is a generic 

a sso cdi�culty iated with likelihood ratio methods�� For this reason� it may b e preferable 

to introduce a forgetting factor 
 � ��� �� and update zk 

according to � 

�� if ik�� 

� i�� 

zk�� 

� 


zk 

� Lik 

ik+1 

��k�� otherwise� 

This modi�cation� which resembles the algorithm introduced in �JSJ�	�� can reduce the 

variance of a typical update� but introduces a new bias in the update direction� Given 

that gradient�type methods are fairly robust with respect to small biases� this modi�cation 

may r e s ult in improved practical performance� see the numerical results in Section �� 

Similar to �JSJ�	�� this modi�ed algorithm can b e justi�ed if we approximate the 

di�erential reward with � 

T 

� X 

vi��� � E� 


k�gik 

��� � ����� j i� 

� i � 

k�� 

where T � minfk � � j ik 

� i�g �which i s i ncreasingly accurate as 
 � ��� use the estimate 

T X 

� � 

�vin 

�� � 

��� � 
k gik 

��� � 

�� � 

k�n 

instead of Eq� ���� and then argue similar to Section �� The analysis of this algorithm is 

carried out in �Mar��� and� with less detail� in �MT���� 

� Markov Decision Processes 

our mIn this section� we i ndicate how t o a p p l y e t hodology to Markov decision processes� 

An important feature� which is evident from the formulas provided at the end of this 

section� is that the algorithm is 
model�free�� as long as the process can be simulated or 

is available for observation� explicit knowledge of the transition probabilities pij 

��� is not 

needed� 

We c onsider a Markov Decision Processes �Ber�	a� Put�
� with �nite state space S � 

f�� � � � � N g and �nite action space U � f�� � � � �M g� At any state i� the choice of a control 

action u � U determines the probability pij 

�u� that the next state is j� The immediate 

reward at each tim e step is of the form gi�u�� where i and u is the current s t a t e and action� 

respectively� 

A � randomized� policy is de�ned as a mapping 

� � S 
� ��� ��M � 

with components �u�i� such that X 

�u�i� � � � � i � S� 

u�U 

�	 



Under a policy �� a nd whenever the state is equal to i� action u is chosen with probability 

�u�i�� independent o f e v erything else� If for every state i there exists a single u for which 

�u�i� is positive �and� therefore� unity�� we say that w e have a pure policy� 

For problems involving very large state spaces� it is impossible to even describe an 

arbitrary pure policy �� since this requires a listing of the actions corresponding to each 

state� This leads us to consider p o licies described in terms of a parameter vector � � 

��� 

� � � � � � K 

�� whose dimension K is tractably small� We are interested in a method that 

performs small incremental updates of the parameter �� A m ethod of this type can work 

only if the policy has a smooth dependence on �� and this is the main reason why we 

choose to work with randomized policies� 

We allow � to b e an arbitrary element of �K � With every � � �K � we associate 

a randomized p o l icy ����� which at any given state i chooses action u with probability P 

�u�i� ��� Naturally� w e r equire that every �u�i� �� be nonnegative and that u�U 

�u�i� �� � 

�� Note that the resulting transition probabilities are given by X 

pij 

��� � �u�i� ��pij 

�u�� ���� 

u�U 

and the expected reward per stage is given by X 

gi��� � �u�i� ��gi�u�� 

u�U 

The objective is to maximize the average reward under policy ����� which i s denoted by 

����� This is a special case of the framework of Section �� We now discuss the various 

assumptions introduced in earlier sections� 

In order to satisfy Assumption �� it su�ces to assume that there exists a state i� which 

is recurrent under every pure policy� a property which is satis�ed in many interesting 

problems� In order to satisfy Assumption �� it su�ces to assume that the p o licy has a 

smooth dependence on �� i n p articular� that �u�i� �� is twice di�erentiable �in �� and has 

b o u n ded �rst and second derivatives� Finally� Assumption � is implied by the following 

condition� 

Assumption � For every i and u� there exists a bounded function Lu�i� �� such that 

r�u�i� �� � �u�i� ��Lu�i� ��� � �� 

This assumption can be satis�ed in a numb e r o f w ays� 

�a� Consider a smoothly parametrized function ru�i� �� t hat maps state�action pairs �i� u� 

to real numb e rs� and suppose that 

exp�ru�i� ���
�u�i� �� � 

X � 

exp�rv 

�i� ��� 

v 

Assumption � is satis�ed once we a s sume that ru�i� �� h as bounded �rst and second 

derivatives� This particular form is common in the neural network literature� the 

ru�i� �� are the outputs of a neural network with input �i� u� a n d i n ternal weights �� 

and an action u is selected by a randomized 
soft maximum�� 

�� 



�b� We m a y arti�cially restrict to policies for which t here exists some � � � such that 

�u�i� �� � �� � i� u� �� 

Such p o licies introduce a minimal amount of 
exploration�� and ensure that every 

action will be tried in�nitely often� This can be bene�cial because the available ex�
p e r i ence with simulation�based methods for Markov d ecision processes indicates that 

p e rformance can substantially degrade in the absence of exploration� a method may 

stall within a poor set of policies for the simple reason that the actions corresponding 

to better policies have n o t b e e n su�ciently explored� P P 

Since u�U 

�u�i� �� � � for every �� w e have u�U 

r�u�i� �� � �� and X 

rgi��� � r�u�i� ���gi�u� � ������ 

u�U 

Furthermore� X XX 

rpij 

���vj 

��� � r�u�i� ��pij 

�u�vj 

���� 

j�S j�S u�U 

Using these relations in the formula for r���� p r o vided by P roposition �� and after some 

rearranging� we o b t ain 

XX r�u�i� �� 

r���� � �i����u�i� ��qi�u��� � 

�u�i� ��
i�S u�U 

where X 

qi�u��� � �gi�u� � ����� � pij 

�u�vj 

��� 

j�S � 

T �� 

� X 

� E� 

�gik 

�uk� � ����� j i� 

� i� u� 

� u � 

k�� 

and where ik 

and uk 

is the state and control at time k� Thus� qi�u��� is the di�erential 

reward if c o n trol action u is �rst applied in state i� and policy ���� i s f ollowed thereafter� 

It is the same as Watkins� Q�factor �Wat���� suitably modi�ed for the average reward case� 

From here on� we can proceed as in Section � and obtain an algorithm that updates � 

at the times tm 

that state i� is visited� The form of the algorithm is 

�m�� 

� �m 

� �mFm��m� 

��m�� 

tm+1 

�� X 

� � ��m�� 

� �m 

� �� m 

�gin 

�un� � �m�� 

n�tm 

where 

tm+1 

�� X r�un 

�in� � m�
�m� � q�in�un 

�Fm��m� 

�
�un 

�in� � m�n�tm 

and 

tm+1 

�� X 

�q�in�un 

� �gik 

�uk� � �m�� 

k�n 

Similar to Section 
� an on�line version of the algorithm is also possible� The convergence 

results of Sections � and 
 remain valid� with only notation changes in the proof� 

�� 



	 Experimental Results for an Admission Control Problem 

In this section� we describe some numerical experiments with a call admission control 

problem� This problem arises when a service provider with limited resources �bandwidth� 

has to accept or reject incoming calls of several types� while taking into account current 

congestion� The objective i s t o maximize long�term average revenue� More details on the 

experiments reported here can be found in �Mar���� 

��� Problem Formulation 

Consider a communication link with a total bandwidth of B units� which supports a �nite 

set f�� �� � � � �M g of di�erent s ervice types� Each i ce type is c haracterized by its band�serv 

width requirement b�m�� its call arrival rate 
�m�� and its average holding time ����m�� 

accowhere we assume that the calls �customers� arrive r ding to independent P oisson pro�
cesses� and that the holding times are exponentially �and independently� distributed� 

When a new customer requests a connection� we c an decide to reject� or� if enough band�
width is available� to accept the customer� Once accepted� a customer of class m seizes 

b�m� units of bandwidth for the duration of the call� Whenever a call of service type m 

gets accepted� we receive an immediate reward of c�m� units� The reward c�m� can b e 

interpreted as the price customers of service type m are paying for using b�m� units of 

bandwidth of the link for the duration of the call� The goal of the link provider is to 

exercise call admission control in a way t hat maximizes the long term revenue� 

Using uniformization� the problem is easily transformed into a discrete�time Markov 

decision process� The state can be taken to be of the form i � � s���� � � � � s �M �� � �� where 

s�m� d enotes the numb e r o f a ctive calls of type m� and � indicates the type of event that 

triggers the next transition �a departure or arrival of a call� together with the type of the 

call�� If � indicates an arrival of a call of class m and if there is enough free bandwidth 

to accommodate it� there are two available decisions� namely� ua 

�accept� or ur 

�reject�� 

We consider randomized p o licies of the following form� If there is an arrival of a call 

of class m� w e accept it with probability 

� 

�ua 

�i� �� � � 

� � exp�s � b � ��m�� P 

Here� s � b � m 

s�m�b�m� i s t h e currently occupied bandwidth and ��m�� the mth com�
ponent of �� i s a p o licy parameter� Note that 

�ua 

�i� �� � ��	 if and only if s � b � ��m�� 

Thus� ��m� can be interpreted as a 
fuzzy� threshold on system occupancy� which deter�
mines whether type m calls are to be admitted or rejected� 

In our experiments� we consider a link with a total bandwidth of �� units� and three 

di�erent call types� The detailed parameters are given in Table �� The numb e r of link 

con�guarions �i�e�� possible choices of s that do not violate the link capacity constraint� 

turns out to be ���� 

Any sta te �s� �� in w hich s � �� � � � � � �� and � corresponds to an arrival of a new call� 

is recurrent under any policy� a n d can therefore play t h e role of i� � Even for moderately 

loaded systems� the time between consecutive v i s its to such a state can be extremely large� 

in which case w e expect our methods to be very slow� 

�� 
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Figure �� Parameter vectors and average rewards �computed exactly� of the corresponding 

admission control policies� obtained by t he idealized gradient algorithm� The solid� dashed� 

and dash�dot line correspond to the threshold values ��� ��� and ��� associated with service 

types �� �� and �� respectively� 

��� Results 

Optimal Policy 

Since the state space is relatively small� an optimal policy can be obtained using standard 

dynamic programming methods �Ber�	a�� The optimal average reward is equal to ������� 

�Of course� the optimal average reward within the restricted class of randomized policies 

that we h a ve i n troduced earlier will have to b e l e s s t h an that�� Under an optimal policy� 

customers of type � and � are accepted whenever there is available bandwidth� Customers 

of type � are accepted only if the currently used bandwidth does not exceed �� 

Idealized Gradient Algorithm 

For such a small example� we can numerically calculate r����� for any given �� which 

allows us to implement t he idealized algorithm 

�k�� 

� �k 

� �kr���k� 

of Section ���� The evolution of this algorithm� starting with �� 

� ��� �� ��� is shown 

in Figure �� After ��� iterations� we have ���� 

� ���	
	�� ����	��� ���������  and the 

corresponding average reward is equal to ������� which is very close to optimal� The 

probabilities of accepting a new call are given in Figure �� 

Simulation	Based Algorithm that Updates at Every Time Step 

We i m p l e mented a streamlined version of the algorithm given Section 
� where we r e s et the 

vector zk 

not only at visits to the recurrent s t a te i� � b u t at visits to all states i � � s� �� for 

which s � �� � ���� ��� A j usti�cation of this modi�cation� which d o e s n ot change the mean 

��
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Figure �� Probabilities of accepting a new call� as a function of the already o c �
cupied bandwidth� under the control p o licy associated with the parameter vector 

���	
	�� ����	��� �������� obtained by t he idealized gradient algorithm� 

direction of the update� is given in �Mar���� We started with the same initial parameter 

�� � �� � �� ��� and the initial estimate of the average reward �� 

was set to ����� The scaling 

factor in the update equation was chosen to b e � � � ��� The corresponding trajectories 

of the parameter vectors and average reward are given in Figure �� We h a ve t h e following 

observations� 

�� The algorithm makes rapid progress in the beginning� improving the average reward 

from ���� to ���� within the �rst � � ��� iteration steps� 

�� After � � ��� iterations� the algorithm makes only slow progress obtaining after � � ��� 

iterations the parameter vector 

� �� ��	
�� �����	�� ��  ���  ��������6 

which c orresponds to an admission control policy with an average reward of ������� 

This average reward still slightly b e l o w the average reward of ������ obtained by 

the idealized gradient algorithm� 

�� The !uctuations in the estimate of the average reward remain small and the perfor�
mance of the control policies never deteriorates� 

This behavior is not unlike the idealized algorithm �see Figure ��� where the average reward 

improves rapidly in the beginning� but only slowly in the later iterations� 

The probabilities of accepting a new call under the control p o licy obtained with the 

simulation�based algorithm are given in Figure 
� 

Modi
ed Simulation	Based Algorithm 

We �nally consider the modi�ed algorithm of Section 	� using a forgetting factor of 
 � 

����� As expected� it makes much faster progress� see Figure 	� 

�� 
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Figure �� Parameter vectors� and estimates of the average reward� obtained by the 

simulation�based algorithm� The scaling factor for the iteration steps is ��� � 
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Figure 
� Probabilities of accepting a new call� given as a function of the used band�
width on the link� under the control p o l i c y associated with the parameter vector 

����	
�� �����	�� �������� obtained by t h e simulation�based algorithm� 
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Figure 	� Parameter vectors� and estimates of the average reward� obtained by modi�ed 

simulation�based algorithm using a discount factor 
 � ����� The scaling factor for the 

iteration steps is ��	 � 

After ��� iterations� we o b ta in a p a ra meter vector of � � �� ��		�� ������
� �������� and 

an average reward of �����	� which i s e ssentially the same as for the unmodi�ed algorithm 

after � � ��� iterations� Thus� the use of a forgetting factor speeds up convergence by an 

order of magnitude� while introducing a negligible bias� 

Conclusions 

We have presented a simulation�based method for optimizing a Markov Reward Process 

whose transition probabilities depend on a parameter vector �� or a Markov Decision 

Process in which we restrict to a parametric set of randomized p o l icies� The method 

involves simulation of a single sample path� Updates can b e c a rried out either when the 

recurrent state i� is visited� or at every time step� We have also proposed a modi�ed� 

p o ssibly more practical method� and have provided some encouraging numerical results� 

Regarding further research� there is a need for more computational experiments in 

order to delineate the class of practical problems for which t his methodology is useful� In 

particular� further analysis and experimentation is needed for the modi�ed on�line algo�
rithm of Section 	� In addition� the possibility o f c o m bining such m ethods with 
learning� 

�function approximation� of the di�erential reward function needs to be explored� On the 

technical side� it may b e p o s s ible to extend the results to the case of an in�nite state 

space� and to relate the speed of convergence to the mixing time of the underlying Markov 

chains� 
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A Proof of Proposition � 

In this appendix� we p r o ve convergence of the algorithm 

�m�� 

� �m 

� �mFm��m� 

��m�� 

tm+1 

�� X 

� �	 ��m�� 

� �m 

� �� m 

�gin 

��m� � �m�� 

n�tm 

where 

tm+1 

�� �	 � X 

Fm��m� 

�	 � 

��m� � v�in 

��m �m�Lin;1 

in 

��m� � rgin 

��m� � 

n�tm 

tm+1 

�� � � X 

�	 �v�in 

��� �� � gik 

��� � � � n � tm 

� � � � � � � t m�� 

� �� 

k�n 

and 

�v�itm 

��� �� � � � 

For notational convenience� we de�ne the augmented parameter vector rm 

� ��m� 

��m�� 

and write the update equations in the form 

rm�� 

� rm 

� �mHm�rm�� 

where �	 
 

�m�Fm��m� 

�
	 � 
 XHm�rm�	 � 

tm+1 

�� 

� �� � ��
� 	 � �gin 

��m� � �m� 

n�tm 

Let 

Fm 

� f�� 

� 

��� 

� i � 

� i � 

� � � � � i tm 

g 

stand for the history of the algorithm up to and including time tm� Using Proposition � 

and Eq� ����� we h a ve 

E�Hm�rm� j F m� � h�rm�� 

where �	 � 

�E��T �r���� � G�������� � ��
h�r� �	

�
� 

�E � 

�T ������ � �� 

We t hen rewrite the algorithm in the form 

rm�� 

� rm 

� �mh�rm� � � m� ��	� 

where 

� m 

� �m�Hm�rm� � h�rm�� 

and note that 

E�� m 

j F m� � � � 

The proof rests on the fact that � m 

is 
small�� in a sense to b e made precise� which will 

then allow u s t o mimic the heuristic argument o f S ection ���� 

�	 



A�� Preliminaries 

In this subsection� we e stablish a few useful bounds and characterize the behavior of � m 

� 

Lemma � 

�a� There exist constants C and � 	 � such that 

P� 

�T � k� � C�k � � k� �� 

where the subscript � indicates that we are c onsidering the distribution of the length 

of the regeneration cycle Tm 

� tm�� 

�tm 

under a particular choice o f �� In particular� 

E� 

�T � and E� 

�T �� are bounded functions of �� 

�b� The function G��� is well de�ned and bounded�


�
�c� The sequence �m 

is bounded� with probability �� 

�d� The sequence h�rm 

� is bounded� with probability �� 

Proof� 

�a� For any transition probability matrix	 P � P � and b e cause of Assumption �� the 

probability of reaching i� in N steps is bounded b e l o w by some positive ��P �� for 

every initial state� Furthermore� ��P � can be taken to be a continuous function of P � 

Using the compactness of P� w e have �� � min ��P � � �� and the result follows P �P 

����N with � � � � � 

�b� Note that �	 
 

tm+1 

�� �	 � X �	 � 

� 

�T �E� 

	 ��tm�� 

� n�Lin;1 

in 

����� � CE �� 

n�tm 

�� 

where C is a bound on kLij 

���k �cf� Assumption ��� The right�hand side is bounded 

by t he result of part �a�� It follows that the expectation de�ning G��� e xists and is 

a bounded function of �� 

�c� Using Assumption 
 and part �a� of this lemma� we obtain � 

�	

� X 

�E �m 

�tm�� 

� tm 

�� 		� 

m�� 

which im p lies that �m 

�tm�� 

� tm 

� c o n verges to zero� with probability � � Note that 

��m�� 

� �� � �m 

�tm�� 

� tm 

����m 

� �m 

�tm�� 

� tm 

�C�  

where C is an upper bound on gi 

���� For large enough m� w e have �m 

�tm�� 

�tm 

� � �� 

� � �and �m�� 

� maxf�m 

� Cg� from which it follows that the sequence �m 

is b ounded 

�above� By a similar argument� the sequence �m 

is also bounded below� 

�d� Consider the formula that de�nes	 h�r�� Parts �a� and �b� show that E�m 

�T � and 

G��m 

� are b o u n ded� Also� ���m 

� is bounded since the gi 

��� are bounded �Assump�
tion ��� Furthermore� r���m 

� is bounded� by Lemma �� Using also part �c� of this 

lemma� the result follows� 

�� 

2 



Lemma � There exists a constant C �which is random but �nite with probability �� such 

that 

�E�k� mk
� j F m� � C� � � m�mP 

and the series � m 

converges with probability �� m 

�Proof� Recall that gim 

��m� and �m 

are bounded with probability � �Assumption � and 

�Lemma ��c��� Thus� for n � tm� � � � � t m�� 

��� we h ave jv�in 

��� ��j � C�tm�� 

�tm�� for some 

constant C� Using this bound in the de�nition of Fm��m� 

��m�� we s e e that for almost all 

sample paths� we h a ve 

kFm��m� 

��m�k � C�tm�� 

� tm�
� � 

for some new constant C� Using Lemma ��a�� the conditional variance of Fm��m� 

��m�� 

given Fm� is b o u nded� Similar arguments also apply to the last component of Hm�rm�� 

Since � m 

� �m�Hm�rm� �E�Hm�rm� j F m��� the �rst statement follows� 

Fix a positive i n teger c and consider the sequence 

minfM 
c��ng X 

w 

c � � m�n 

m�� 

cwhere M �c� is the �rst time m such that E�k� mk
� j Fm� � c�� � The sequence w ism n 

a martingale with b o unded second moment� and therefore converges with probability �� 

This is true for every positive i n teger c� For �almost� every sample path� there exists some 

c such that M �c� � 	� After discarding a countable union of sets of measure zero �for 

ceach c� t he set of sample paths for which wn 

does not converge�� it follows that for �almost� P 

every sample path� � m 

converges� 2m 

We observe t h e f o llowing consequences of Lemma �� First� � m 

converges to zero with 

probability �� Since �m 

also converges to zero and the sequence h�rm� is b o unded� we 

conclude that 

�lim ��m����m� � � � lim ����m�� 

�����m�� � �� lim ���m�� 

��m� � � � 

m�� m�� m��

with probability � � 


A�� Convergence of �m 

and ���m� 

�In this subsection� we prove t h a t �m 

and ���m� c o n verge to a common limit� The !ow o f 

the proof is similar to the heuristic argument o f S ection ���� 

We will b e using a few di�erent Lyapunov functions to analyze the b e h a vior of the 

algorithm in di�erent 
regions�� The lemma below i n volves a generic Lyapunov function 

� and characterizes the changes in ��r� caused by the updates 

rm�� 

� rm 

� �mh�rm� � � m� 

� �Let Dc 

� f��� �� � � 

K�� j j�j � cg� We are interested in Lyapunov functions � that are 

twice di�erentiable and for which �� r�� and r� � are bounded on Dc 

for every c� Let " 

b e the set of all such L y apunov f unctions� For any � � "� we de�ne 

� m��� � ��rm�� 

� � ��rm� � �mr��rm� � h�rm�� 

where for any t wo v ectors a� b� we use a � b to denote their inner product� 

�� 



P 

Lemma � If � � "� then the series � m��� converges with probability �� m 

Proof� Consider a sample path of the random sequence frmg� Using part �c� of Lemma �� 

and after discarding a set of zero probability� there exists some c such that rm 

� D c 

for 

all m� We u s e the Taylor expansion of ��r� at rm� and obtain 

� m��� � ��rm�� 

� � ��rm� � �mr��rm� � h�rm� 

� r��rm� � �rm�� 

� rm� � M krm�� 

� rmk
� � �mr��rm� � h�rm� 

� r��rm� � � m 

� M krm�� 

� rmk
� � 

where M is a constant related to the b o u n d o n the second derivatives of ���� on the set 

Dc� A s ymmetric argument a lso yields 

r��rm� � � m 

� M krm�� 

� rmk
� � � m���� 

Using the boundedness of r� on the set Dc� t h e same martingale argument a s i n t h e P 

proof of Lemma � shows that the series m 

r��rm� � � m 

converges with probability �� 

Note that krm�� 

� rmk � k�mh�rm� � � mk� w hich yields 

krm�� 

� rmk
� � ��� kh�rm�k

� � � k� mk
� �m

The sequence h�rm� is b o unded �Lemma �� and �� is summable �Assumption 
�� Fur�m 

thermore� it is an easy consequence of Lemma � that � m 

is also square summable� We 

conclude that krm�� 

� rmk is square summable� and the result follows� 2 

#From now on� we will concentrate on a single sample path for which the sequences 

� m 

and � m��� � for the Lyapunov functions to be considered� are summable� Accordingly� 

we w ill be omitting the 
with probability � � q u ali�cation� 

�The next lemma shows that if the error �m 

� ���m� i n estimating the average reward 

�is p o s i tive but small� then it tends to decrease� The proof uses � � ���� as a Lyapunov 

function� 

Lemma � Let L be s uch that kG���k � L for all �� and let 

� ���r� � ���� �� � � � ����� 

�We have � � "� Furthermore� if � � � � ���� � ��L 

� � then 

r��r� � h�r� � �� 

Proof� The fact that � � " i s a consequence of Lemma �� We now h a ve 

�r��r� � h�r� � ����� � �����E� 

�T � � kr ����k� E��T � � � � � �����r���� � G���� 

Using the inequality ja � bj � k ak� � kbk� � to b o u n d the last term� and the fact E��T � � �� 

we obtain 

r��r� � h�r� � � ��� � � �������� � ����� � L���

�which is n o n p ositive a s long as � � � � ���� � ��L 

� � 2 

In the next two lemmas� we establish that if j��m 

� ���m�j remains small during a 

�certain time interval� then �m 

cannot decrease by much� We �rst introduce a Lyapunov 

�function that captures the behavior of the algorithm when � � ����� 

�� 



Lemma � As in Lemma 
� let L be such that kG���k � L� Let also 

� ���r� � ���� �� � ���� � �L��������� � ��� � 

�We have � � "� Furthermore� if j���� � �j � �� 
L� � then 

r��r� � h�r� � �� 

Proof� The fact that � � " i s a consequence of Lemma �� We have � � 

� �r����� �� � � � ��L� �������� � �� r����� 

and 

� �r����� �� � �� L� �������� � ����

�Therefore� assuming that j���� � �j � �� 
L� � a nd using the Schwartz inequality� w e obtain � � � � 

� �r��r� � h�r� � � � ��L� �������� � �� kr����k� E� 

�T � � � ���� � ��G��� � r ���� 

���L������ � ���E� 

�T �


�
 � �� kr����k� � 

� 

j���� � �jLkr����k � � L� ����� � ��� 

� �


� ��


2 

Lemma � Consider the same function � as in Lemma 
� and the same constant L� Let 


 be some positive scalar smaller than �� 
L� � Suppose that for some integers n and n� � 

with n� � n � w e have 

� �
0j���n� � �nj � 
� j���n0 � � �n j � 
� 

and 

�j���m� � �mj � 

�
� m � n � � � � � � � n 

� � �� 


L� 

Then� � � 

n 

0 �� X 

� �
0�n � �n 

� �
 �L� 
��� � � � � m���� 

m�n 

Proof� Using Lemma �� we h a ve 

r��rm� � h�rm� � �� m � n� � � � � n 

� � �� 

Therefore� for m � n� � � � � n� � �� we h ave 

��rm�� 

� � ��rm� � �mr��rm� � h�rm� � � m��� 

� ��rm� � � m���� 

and 

n0 �� X 

��rn0 � � ��rn� � � m���� ���� 

m�n 

� �
0Note that j��rn� � �nj � �L�
� ��� � 
� and j��rn0 � � �n j � �L� 
� ��� � 
� Using these 

inequalitites in Eq� ����� we o btain the desired result� 2 

��




�Lemma � We have lim infm�� 

j���m� � �mj � � � 

Proof� Suppose that the result is not true� and we will derive a contradiction� Since 

� ����m�� 

� � ���m� and �m�� 

� �m 

converge to zero� there exists a scalar � � � and an 

� �integer n� such that either ���m� � �m 

� � � or ���m� � �m 

	 ��� for all m � n � Without 

loss of generality� let us consider the �rst possibility� 

�Recall that the update equation for � is of the form 

� ��m 

� �� mE�m 

�T �����m� � �m� � �m��m�� 

� �

where �m 

is the last component o f the vector � m� w h i c h i s summable by Lemma �� Given 

� �that ���m� � �m 

stays above �� the sequence �� m����m� � �m� sums to in�nity� As �m 

is 

�summable� we c onclude that �m 

converges to in�nity� w h i c h c o n tradicts the fact that it is 

b ou n ded� 2 

�The next lemma shows that the condition ���m� � �m 

is satis�ed� in the limit� 

�Lemma � We have lim infm������m� � �m� � �� 

Proof� Suppose the contrary� Then� there exists some � � � such t hat the inequality 

��m 

� ���m� � � 

holds in�nitely often� Let � � min f�� ��L� g� w here L is the constant of Lemma 	� Using 

�Lemma � � w e c onclude that �m 

� ���m� crosses in�nitely often from a value smaller than 

�� � t o a v alue larger than ��� �� In particular� there exist in�nitely many p a irs n� n�� with 

�n � n � su ch that 

� � 

� 	 

� ��n 

� ���n� 	 �� �n0 � ���n0 � � �� 

� � 

and 

� � �� � �m 

� ���m� � �� m � n � � � � � � � n 

� � �� 

� � 

We u s e the Lyapunov f unction 

� ���r� � ���� �� � � � ����� 

and note that 

� 

��rn0 � � ��rn� � � ����
�


For m � n� � � � � n 

� � �� we have � 	 

�
� � ���� 	 � � ��L 

� � Lemma 	 applies and shows 

that r��rm� � h�rm� � �� Therefore� 

n0 �� � � 

n0 �� X X 

��rn0 � � ��rn� � �mr��rm� � h�rm� � � m��� � ��rn� � � m���� 

m�n m�n P 

By Lemma 
� � m��� converges� which implies that 

P n0 �� � m��� b e comes arbitrarily m m�n 

small� This contradicts Eq� ���� and completes the proof� 2 

We now continue with the central step in the proof� which consists of showing that 

�limm������m� � �m� � �� Using Lemma �� it su�ces to show that we cannot have 

��




�lim supm������m� � �m� � �� The main idea is the following� Whenever ���m� b ecomes 

signi�cantly larger than 

� �m 

is bound to increase signi�cantly� On the other hand� �m� then 

�
� �by L emma �� whenever ���m� is approximately equal to �m� then �m 

cannot decrease by 

�much� Since �m 

is b o unded� this will imply that ���m� can become signi�cantly larger 

�than �m 

only a �nite number of tim es� 

�Lemma �
 We have limm������m� � �m� � � � 

Proof� We will assume	 the contrary and derive a contradiction� By Lemma �� we 

�have lim infm������m� � �m� � �� So if the desired result is not true� we must have 

�lim supm������m� � �m� � �� which w e will assume to be the case� In particular� there is 

�some A � � su ch that ���m� � �m 

� A � i n�nitely often� Without loss of generality� w e as�
sume that A � �� 
L� � w here L is the constant of Lem m as 	 and �� Let 
 � � b e some small 

�constant �with 
 	 A� ��� to be speci�ed later� Using Lemma �� we h a ve ���m� � �m 

� �
 

�for all large enough m� In addition� by Lemma �� the condition j���m� � �mj � 
 holds 

in�nitely often� Thus� the algorithm can be broken down into a sequence of cycles� where 

�in the beginning and at the end of each cycle we h a ve j���m���mj � 
� w hile the condition 

����m� � �m 

� A holds at some intermediate time in the cycle� 

We describe the stages of such a cycle more precisely� A typical cycle starts at some 

� �
00time N with j���N 

���N 

j � 
� Let n�� b e t h e � rst time after time N that ���n00 ���n � A � 

�
0Let n� b e th e la st time before n�� such t hat ���n0 � � �n 	 A� �� Let also n b e the last time 

�b efore n� such that ���n� � �n 

	 
 � Finally� let n��� b e the �rst time after n�� such that 

�j���n000 � � �n000 j 	 
 � The time n��� is the end of the cycle and marks the beginning of a 

new cycle� 

�Recall that the changes in �m 

and �m 

converge to zero� For this reason� by t aking N 

�to be large enough� we c a n a s sume that ���n� � �n 

� �� To summarize our construction� 

we have N 	 n 	 n 

� 	 n 

�� 	 n 

���� and 

�j���N 

� � �N 

j 	 
�


�
� � ���n� � �n 

	 
�


�
j���m� � �mj � A� m � N � � � � � n 

�� � �� 

A �
0���n0 � � �n 	 � 

� 

�
00���n00 � � �n � A 

�
 � ���m� � �m 

� A� m � n � � � � � � � n 

�� � �� 

A �	

��� ���m� � �m 

� A� m � n 

� � � � � � � � n � �� 

� 

� ���
 � ���m� � �m� m � n 

��� � � � � n � �� 

Our argument w ill use the Lyapunov f u n c t ions 

� �� 

�	 ���r� � ���� �� � ���� � �L� ��� ���� � � � 

where L is as in Lemma 	 and �� and 

� ���r� � ���� �� � � � ����� 

�� 



We have 

� m��� � ��rm�� 

� � ��rm� � �mr��rm� � h�rm�� P 

and we de�ne � m��� by a similar formula� By Lemma 
� the series � m��� and m P 

� m��� c o n verge� Also� let m 

� � � ��m 

�m�� 

� �m 

� �� mE�m 

�T �����m� � �m�� 

P 

We observe that �m 

is the last component o f � m 

and therefore� the series �m 

converges m 

and limm�� 

�m 

� � � Finally� le t C be a constant such that jr��rm� � h�rm�j � C� fo r all 

�m� w h i c h exists because � � " and because the sequences h�rm� and �m 

are bounded� 

Using the above o bservations� we s e e t h a t if the beginning time N of a cycle is chosen 

large enough� then for any k� k� such that N � k � k� � w e have 

A 

�kC � � 

�� � � � k0 � �X � A� � �� � m��� � � �� 

��C � m�k � � � k0 � �X � A � �� � m��� � � �� 

�� � m�k � � � k0 � �X � A� � � � � � � 

�m �� �C � m�k 

Finally� w e assume that 
 has been chosen small enough so that 

A� 

��
 � � L�
� ���� � � � 

��C 

�Using the fact that ���n0 ��� � �n0 �� 

� A��� we h ave 

A A � �
0���n0 � � �n � ���n0 �� 

� � �n0 �� 

� �n0 r��rn0 � � h�rn0 � � � n0 ��� � � � 

� ��


Furthermore� we h a ve


� �A � �� ����n00 � � �n00 � � ����n0 � � �n0 � 

n

� 

� ���rn00 � � ��rn0 � 

00 �� n00 �� X X 

� � �mr��rm� � h�rm� � � m��� 

n 

m�n0 m�n0 

00 �� X A 

� �mC � � 

�� 

m�n0 

which i mplies that 

n00 �� X A A 

�m 

� � � 

�C ��C 

m�n0 

�� 



Then� 

n000 �� n000 �� X X 

� � �
000 

n

�n � �n 

� �� mE�m 

�T �����m� � �m� � �m 

m�n m�n 

000 ��n00 �� X X 

� �� �n 

� �� m����m� � �m� � �m 

m�n0 m�n � �� � 

A A A A A� 

�� �n 

� � � � � � 

A

�C ��C � �� �C 

� 

�� �n 

� � � 

�
C 

�We h a ve shown so far that �m 

has a substantial increase between time n and n��� � We 

�now show that �m 

can only have a small decrease in the time between N and n� Indeed� 

by Lemma �� we h ave 

n�� X 

� ��n 

� �N 

� ��
 � L�
� � � � m���� 

m�N 

By combining these two p r o p erties� we o b t ain 

A� A� 

� �
000�n � �N 

� ��
 � L� 
� � � � � � 

A
��C �
C 

� 

�� �N 

� � � 


�C 

� �We have shown that �m 

increases by a positive amount during each cycle� Since �m 

is b o u n ded above� this proves that there can only b e a �nite numb e r of cycles� and a 

contradiction has been obtained� 

�Lemma �� The sequences �m 

and ���m� converge� 

�Proof� Consider the function ��r� � ���� � �L� �������� � ��� � a nd the same constant L 

as in Lemma �� Let 
 b e a scalar such that � 	 
 � �� �
L� �� By the preceding lemma 

and by Lemma 
� there exists some N such that if N � n � n� � w e have 

�j���n� � �nj � 
� 

and � � �n 

0 �� 

� X � � � � m���� � 
� � � �m�n 

� 

Using Lemma �� 

n0 �� X 

���n0 � � ���n� � � m��� � ���n� � 
� N � n � n 

�� 

m�n 

�� 

2 



or 

� � � ����n0 � � �L� �������n0 � � �n0 � � ���n� � �L� �������n� � �n� � 
� 

which i mplies 

���n0 � � ���n� � �L� 
� ��� � 
� N � n � n 

�� 

Therefore� 

lim inf ���n0 � � ���n� � �L� 
� ��� � 
� N � n� 

n0 �� 

and this implies that 

lim inf ���m� � lim sup ���m� � �L� 
���� � 
� 

m�� m�� 

Since 
 can be chosen arbitrarily small� we h a ve lim infm�� 

���m� � lim supm�� 

���m�� 

and since the sequence ���m� i s b ounded� we c onclude that it converges� Using also Lemma 

���� it follows that �m 

converges as well� 2 

A�� Convergence of r���m� 

�In the preceding subsection� we have shown that ���m� and �m 

converge to a common 

limit� It now remains to show t hat r���m� c o n verges to zero� 

�Since ���tm 

� � �tm 

converges to zero� the algorithm is of the form 

�m�� 

� �m 

� �mE�m 

�T ��r���m� � em� � �m� 

where em 

converges to zero and �m 

is a summable sequence� This is a gradient method 

with errors� similar to the methods considered in �Del��� and �BT���� However� �Del��� 

assumes the b o undedness of the sequence of iterates� and the results of �BT��� do not 

include the term em� Thus� while the situation is very similar to that considered in these 

references� a separate proof is needed� 

We will �rst show t h a t lim infm�� 

kr���m�k � � � Suppose the contrary� Then� there 

exists some � � � and some N such that kr���m�k � � for all m � N � In addition� by 

taking N large enough� we can also assume that kemk � ���� Then� it is easily checked 

that 

�� 

r���m� � �r���m� � em� � � 

� 

Let ��r� � ����� Note that � � "� We have 

���m�� 

� � ���m� � �mE�m 

�T �r���m� � �r���m� � em� � � m��� 

�� 

� ���m� � �m 

� � m���� ����
� P 

Since � m��� i s summable �Lemma 
�� but �m 

� 	� w e c onclude that ���m� converges m 

to in�nity� which i s a c o n tradiction� 

Next we show that lim supm�� 

kr���m�k � �� Suppose the contrary� Then� there 

exists some � � � such t hat kr���n�k � � for in�nitely many indices n� For any such n� 

�





let n� b e the �rst subsequent time that kr���n0 �k 	 �� �� Then� 

� 

� kr���n�k � kr ���n0 �k 

� 

� kr���n� �r ���n0 �k 

� Ckrn 

� rn0 k � � �n0 �� n0 �� 

� X X � � �� C 

� �mh�rm� � � m � � �m�n m�n 

� � � 

n 

0 �� 

�n 

0 �� 

� X X � � 

� C �mkh�rm�k � C 

� � 

� � � 

m � 

m�n 

�m�n 

� 

for some constant C� as r����� i s b o u nded �Lemma ��� Recall that kh�rm�k is bounded by 

some constant B� Furthermore� when n is large enough� the summability o f t he sequence P n0 ��� m 

yields Ck 

P n0 �� � mk � ��
� This implies that m�n 

�m 

� ��
CB � By an argument m�n 

very similar to the one that led to Eq� ����� it is easily shown that there exists some � � � 

such t hat 

���n0 � � ���n� � �� 

which contradicts the convergence of the sequence ���m�� 2 

B Proof of Proposition � 

In this section� we prove the convergence of the on�line method introduced in Section 
� 

which i s described by � � 

��k�� 

� �k 

� �k 

rgik 

��k� � � gik 

��k� � �k�zk 

� 

� � ��k�� 

� �k 

� �� k�gik 

��k� � �k�� � � �� if ik�� 

� i� � 

zk�� 

� 

rpik 

ik+1 

��k� � zk 

� � otherwise� � pik 

ik+1 

��k� 

The proof has many c ommon elements with the proof of Proposition �� For this reason� we 

will only discuss the di�erences in the two p r o ofs� In addition� whenever routine arguments 

are used� we w i l l o nly provide an outline� 

As in Appendix A� we let rk 

� � �k� 

��k�� Note� however� the di�erent meaning of the 

index k which i s n o w a d v anced at each t i m e s tep� whereas in Appendix A it was advanced 

whenever the state i� was visited� We a l s o d e�ne an augmented state xk 

� � ik 

� z k�� 

We r ewrite the update equations as 

rk�� 

� rk 

� �kR�xk� r k�� 

where � � 

�rgik 

��k� � � gik 

��k� � �k�zk � �R�xk� r k� � � � ����
� gik 

��k� � �k 

�	 



Consider the sequence of states �i� 

� i � 

� � � � � v isited during the execution of the algorithm� 

As in Section �� we let tm 

be the mth time that the recurrent s t a te i� is visited� Also� as 

in Appendix A� we l e t 

Fm 

� f�� 

� 

���� i � 

� � � � � i tm 

g 

stand for the history of the algorithm up to and including time tm� 

The parameter �k 

keeps changing between visits to state i� � w hich is a situation some�
what di�erent than that considered in Lemma ��a�� Nevertheless� using Assumption 	� a 

similar argument applies and shows that for any p o s itive i n teger s� t here exists a constant 

Ds 

such that 

E ��  tm�� 

� tm�
s j F m� � Ds� ���� 

We have 

tm+1 

�� X 

� rtm 

� �kR�xk� r k�rtm+1 

k�tm 

$� rtm 

� ��mh�rtm 

� � � m� ���� 

where ��m 

and � m 

are given by


tm+1 

��
X 

��m 

� �k� ���� 

k�tm 

tm+1 

�� � � X 

$� m 

� �k 

R�xk� r k� � h�rtm 

� � 

k�tm 

$and h is a scaled version of the function h in Appendix A� namely� � 
 

G
�� �
h�r� 
 

r���� � E� 


T � 

����� � �� �$h�r� � � 	 � � � 

� ���� 

�E��T � � ���� � � 

We n o t e t h e following property o f t he various stepsize parameters� 

Lemma �� 

�a� For any positive integer s� w e have � 

� 

� X 

E �t
� 

m 

�tm�� 

� tm�
s 	 	� 

m�� 

�b� We have 

� � X X 

��m 

� 	� ��� 	 	�m 

m�� m�� 

with probability �� 

Proof� �a� #From Eq� ����� and because �tm 

is Fm�measurable� we h a ve h i 

E��� �tm�� 

� tm�
s� � E �� E��tm�� 

� tm�
s j F m� � E��� �Ds�tm 

tm 

tm 

�� 



Hence� 

� � X X 

��E��t
� 

m 

�tm�� 

� tm�
s� � Ds k 

	 	� 

m�� k�� 

and the result follows� 

�b� By Assumption 
� we h a ve 

� � X X 

��m 

� �k 

� 	� 

m�� k�� 

Furthermore� since the sequence �k 

is nonincreasing �Assumption 	�� we h a ve 

��� � �� �tm�� 

� tm�
��m tm 

Using part �a� of the lemma� we o b ta in th a t 

P� ��� has �nite expectation and is there�m�� 
m 

fore �nite with probability � � 2 

Without loss of generality� we assume that �� k 

� � for all k� Then� the update 

� �kj � maxfj�equation for �k 

implies that j� �� 

j� C g� where C is a bound on jgi���j� Thus� 

j� $�kj is bounded by a d eterministic constant� which i mplies that the magnitude of h�rk� is 

also bounded by a deterministic constant� 

We now observe that Eq� ���� is of the same form as Eq� ��	� that was studied in 

the preceding appendix� except that we now have rtm 

in place of rm� ��m 

in place of 

$�m� and h�rtm 

� in place of h�rm�� By Lemma ���b�� the new stepsizes satisfy the same 

conditions as those imposed by A s s umption 
 on the stepsizes �m 

of Appendix A� Also� in P 

the next subsection� we show t h a t the series m 

� m 

converges� Once these properties are 

established� the arguments in Appendix A remain valid and show that ���tm 

� converges� 

and that r���tm 

� converges to zero� Furthermore� we w ill see in the next subsection that 

the total change of �k 

b e t ween consecutive v isits to i� converges to zero� This implies that 

���k� c o n verges and that r���k� c o n verges to zero� and Proposition 
 is established� 

B�� Summability of " k 

and Convergence of the Changes in �k P 

This subsection is devoted to the proof that the series � m 

converges� and that the m 

changes of �k 

b e t ween visits to i� converge to zero� 

We i n troduce some more notation� The evolution of the augmented state xk 

� � ik 

� z k� 

is a�ected by the fact that �k 

changes at each time step� Given a time tm 

at which i� is 

Fvisited� we de�ne a 
frozen� augmented state xF � � iF � z k 

� which e v olves the same way k k 

as xk 

except that �k 

is held �xed at �tm 

until the next visit at i� � More precisely� w e let 

xF � xtm 

� Then� for k � tm 

� � � we let iF evolve as a time�homogeneous Markov chain tm 

k 

with transition probabilities pij 

��tm 

�� We also let tF � min fk � t m 

j iF � i�g b e them�� k 

�rst time after tm 

that iF is equal to i� � andk


F
zk�� 

� zk
F � LiF iF 

��tm 

�� 

k k+1 

We start by breaking down � m 

as follows� 

tm+1 

�� � � X 

$� m 

� �k 

R�xk� r k� � h�rtm 

� 

k�tm 

� �
�� � �
�� � �
�� � �
�� � �
	� �m m m m m 

�� 



where 

tm+1 

�� X 

$�
�� � ��tm 

� �k� h�rtm 

��m


k�tm


tF 

m+1 

�� h i X 

$�
�� � �tm 

R�x 

F � r tm 

� � h�rtm 

� �m k 

k�tm 

tm+1 

�� h i X 

$�
�� � �tm 

R�xk� r tm 

� � h�rtm 

�m


k�tm


tF 

m+1 

�� h i X 

$��tm 

R�x 

F � r tm 

� � h�rtm 

� �k 

k�tm 

tm+1 

�� X 

�
�� � �tm 

�R�xk� r k� � R�xk� r tm 

�� �m


k�tm


tm+1 

�� X 

�
	� � ��k 

� �tm 

� R�xk� r k��m


k�tm


We w ill show that each one of the series 

P 

m 

�

n� 

� n � � � � � � � 	� converges with proba�
bility � � 

We make the following observations� The ratio Lik 

ik+1 

��k� is bounded because of 

Assumption �� This implies that b e t ween the times tm 

and tm�� 

that i� is visited� the 

magnitude of zk 

is bounded by C�tm�� 

�tm� fo r so me constant C� Similarly� t he magnitude 

� $

m 

of zk 

is bounded by C�tFF
m�� 

� tm�� Using the boundedness of �k 

and h�rk�� together with 

the update equations for �k 

and 

��k� w e c onclude that there exists a �deterministic� constant 

C� su ch that for every m� w e have 

kR�xk� r k�k � C�tm�� 

� tm�� k � f tm� � � � � t m�� 

� �g� ��
� 

kR�x 

F � r k�k � C�tF m�� 

� �g�m�� 

� tm�� k � f tm� � � � � t 

F ��	�k 

krk 

� rtm 

k � C� tm 

�tm�� 

� tm�
�� k � f tm� � � � � t m�� 

� �g� ���� 

kR�xk� r tm 

� � R�xk� r k�k � C� tm 

�tm�� 

� tm�
�� k � f tm� � � � � t m�� 

� �g� ���� 

P 

Lemma �� The series �

�� 

converges with probability �� m m 

$Proof� Let B be a bound on kh�rk�k� Then� using Assumption 	� we h a ve 

tm+1 

�� X 

k�
�� k � B ��tm 

� �k� � BA� t
� 

m 

�tm�� 

� tm�
p�m


k�tm


P 

Then� Lemma ���a�� implies that k�

�� 

m 

k has �nite expectation� and is therefore �nite m 

with probability � � 2 

P 

Lemma �� The series �

�� 

converges with probability �� m m 

�� 



�Proof� When the parameters � and � are frozen to their values at time tm� the total 

tF 

update k�tm 

P
m+1 

�� 

R�xF � r tm 

� coincides with the update Hm�rm� o f t he algorithm studied in k 

Appendix A� Using the discussion in the beginning of that appendix� we h a ve E�Hm�rm� j 

Fm� � h�rtm 

�� Furthermore� observe that � 
 

tF 
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�� X 
 �$ $E 	 

h�rtm 

� j F m� 

� h�rtm 

�E�tm 

�T � � h�rtm 
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k�tm 

Thus� E��
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j F m� � � � Furthermore� using Eq� ��
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E�k�
�� k� j F m� � C� 

� �tm�� 

� tm�
� �m tm 

Using Lemma ���a�� we obtain � � 

� X 

E k�
�� k� 	 	�m 

m�� 

P 

�

��

Thus� m m 

is martingale with bounded variance and� therefore� converges� 

P 

Lemma �� The series �

�� 

converges with probability �� m m 

Proof� The proof is based on a coupling argument� For k � tm� � � � � t m�� 

� �� the two 

Fprocesses xk 

and xk 

can b e de�ned on the same probability space as follows� Suppose 

that ik 

and iF are b o t h equal to some particular state i� We partition the unit interval k 

into N subintervals� each of length pij 

��k�� j � � � � � � � N � The next state ik�� 

is obtained 

by g enerating a uniform random variable U and selecting the state j associated with the 

particular subinterval into which U b e l ongs� The same random variable U is used to 

select iF 

k��� except that we now have a partition into subintervals of length pij 

��k
F �� The 

probability t h a t U causes ik�� 

and iF to be di�erent is b o u nded by N maxi�j 

jpij 

��k� �k�� 

pij 

��k
F �j� Using the assumption that the transition probabilities depend smoothly on �� as 

well as Eq� ����� we o b ta in 

P �iF 
k�� 

� ik�� 

j iF � ik� � Bk�k 

� �F k � Bkrk 

� rtm 

k � BC� tm 

�tm�� 

� tm�
� � ����k k 

for some constants B and C� 

We d e�ne Em 

to be the event 

FEm 
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� xk 
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g� 
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Note that if the event Em 
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�� 
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E�k�
�� 

m�� 

�E�k�
��k j tm� t m�� 

� � P �Em 

j tm� t k j tm� t m�� 
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�� 
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$Since h�rk� i s b ounded� and using also the bounds ��
����	�� we h a ve 

k�
�� Fk � �tm 

C��tm�� 

� tm�
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� tm�
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for some new constant C� We conclude that � � 
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� tm�
� � E��tm�� 
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Now� it is easily veri�ed that 
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for some new constant C� By combining these inequalities� we o b t a i n 
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E�k�
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	 �m P 

for some di�erent c o n stant C� Using Lemma ���a�� k�

�� 

m 

k has �nite expectation� and m 

is therefore �nite with probability � � 2 

P 

Lemma �� The series �

�� 

converges with probability �� m m 

Proof� Using Eq� ����� we h a ve 

tm+1 

�� X 

k�
�� �k � �tm 

C� tm 

�tm�� 

� tm�
� � C� �tm�� 

� tm�
� �m tm 

k�tm 
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Using Lemma ���a�� k�

�� 
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k has �nite expectation� and is therefore �nite with proba�m 

bility � � 2 

P 

Lemma �� The series �

	� 

converges with probability �� m m 

Proof� Using Assumption 	 and the bound ��
� on kR�xk� r k 

�k� w e have 

tm+1 
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k�
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� tm�
p���m tm 

k�tm 

P 

Using Lemma ���a�� k�

	� 
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k has �nite expectation� and is therefore �nite with proba�m 

bility � � 2 

We close by e stablishing the statement mentioned at the end of the preceding subsec�
tion� namely� that the changes in rk 

�and� therefore� the changes in �k 

as well� b etween 

visits to the recurrent state i� tend to zero as time goes to in�nity� Indeed� Eq� ��
� es�
tablishes a bound on krk 

� rtm 

k for k � tm� � � � � t m�� 

� �� which c o n verges to zero because 

of Lemma ���a�� 
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