Simulation-Based Optimization of Markov Reward
Processes!

Peter Marbach

Center for Communications Sustems Research
University of Cambridge
10 Downing Street
Cambridge, CB2 3DS, UK

John N. Tsitsiklis

Laboratory for Information and Decision Systems
Massachusetts Institute of Technology
Cambridge, MA 02139

Abstract: We propose a simulation-based algorithm for optimizing the average reward
in a Markov Reward Process that depends on a set of parameters. As a special case,
the method applies to Markov Decision Processes where optimization takes place within a
parametrized set of policies. The algorithm involves the simulation of a single sample path,
and can be implemented on-line. A convergence result (with probability 1) is provided.

!This research was supported by contracts with Siemens AG, Munich, Germany, and Alcatel Bell,
Belgium; and by contract DMI-9625489 with the National Science Foundation.

1 Introduction

Markov Decision Processes and the associated dynamic programming (DP) methodology
[Ber95a, Put94] provide a general framework for posing and analyzing problems of se-
quential decision making under uncertainty. DP methods rely on a suitably defined value
function that has to be computed for every state in the state space. However, many inter-
esting problems involve very large state spaces (“curse of dimensionality”). In addition,
DP assumes the availability of an exact model, in the form of transition probabilities. In
many practical situations, such a model is not available and one must resort to simulation
or experimentation with an actual system. For all of these reasons, dynamic programming
in its pure form, may be inapplicable.
The efforts to overcome the aforementioned difficulties involve two main ideas:

1. The use of simulation to estimate quantities of interest, thus avoiding model-based
computations.

2. The use of parametric representations to overcome the curse of dimensionality.

Parametric representations, and the associated algorithms, can be broadly classified
into three main categories.

(a) Parametrized value functions: Instead of associating a value V(i) with each state
7, one uses a parametric form f/(z’,r), where r is a vector of tunable parameters
(weights), and V is a so-called approximation architecture. For example, V (i, r)
could be the output of a multilayer perceptron with weights r, when the input is
i. Other representations are possible, e.g., involving polynomials, linear combina-
tions of feature vectors, state aggregation, etc. When the main ideas from DP are
combined with such parametric representations, one obtains methods that go un-
der the names of “reinforcement learning” or “neuro-dynamic programming”; see
[BT96, SBI8] for textbook expositions, as well as the references therein. A key char-
acteristic is that policy optimization is carried out in an indirect fashion: one tries to
obtain a good approximation of the optimal value function of dynamic programming,
and uses it to construct policies that are close to optimal. Such methods are reason-
ably well, though not fully, understood and there have been some notable practical
successes (see [BT96, SB98] for an overview), including the world-class backgammon
player by Tesauro [Tes92].

(b) Parametrized policies: In an alternative approach, which is the one considered in
this paper, the tuning of a parametrized value function is bypassed. Instead, one
considers a class of policies described in terms of a parameter vector . Simulation is
employed to estimate the gradient of the performance metric with respect to €, and
the policy is improved by updating € in a gradient direction. In some cases, the re-
quired gradient can be estimated using IPA (infinitesimal perturbation analysis); see,
e.g., [HC91, Gla91, CR94] and the references therein. For general Markov processes,
and in the absence of special structure, IPA is inapplicable, but gradient estimation
is still possible using “likelihood-ratio” methods [Gly86, Gly87, GG92, LEc90, GI89].

(c) Actor-critic methods: A third approach, which is a combination of the first two,
includes parametrizations of the policy (actor) and of the value function (critic)

[BSA83]. While such methods seem particularly promising, theoretical understand-
ing has been limited to the impractical case of lookup representations (one parameter
per state) [KB98|.

This paper concentrates on methods based on policy parametrization and (approx-
imate) gradient improvement, in the spirit of item (b) above. While we are primarily
interested in the case of Markov Decision Processes, almost everything applies to the
more general case of Markov Reward Processes that depend on a parameter vector 6, and
we proceed within this broader context.

We start with a formula for the gradient of the performance metric that has been
presented in different forms and for various contexts in [Gly87, CC97, FH94, JSJ95, TH95,
CW98]. We then suggest a method for estimating the terms that appear in that formula.
This leads to a simulation-based method that updates the parameter vector 6 at every
regeneration time, in an approximate gradient direction. Furthermore, we show how to
construct an on-line method that updates the parameter vector at each time step. The
resulting method has some conceptual similarities with those described in [CR94] (that
reference assumes, however, the availability of an IPA estimator, with certain guaranteed
properties that are absent in our context) and in [JSJ95] (which, however, does not contain
convergence results).

The method that we propose only keeps in memory and updates 2K + 1 numbers,
where K is the dimension of 6. Other than @ itself, this includes a vector similar to the
“eligibility trace” in Sutton’s temporal difference methods, and (as in [JSJ95]) an estimate
A of the average reward under the current value of 6. If that estimate was accurate, our
method would be a standard stochastic gradient algorithm. However, as 6 keeps changing,
Ais generally a biased estimate of the true average reward, and the mathematical structure
of our method is more complex than that of stochastic gradient algorithms. For reasons
that will become clearer later, standard approaches (e.g., martingale arguments or the
ODE approach) do not seem to suffice for establishing convergence, and a more elaborate
proof is necessary.

Our gradient estimator can also be derived or interpreted in terms of likelihood ratios
[Gly87, GG92]. It takes the same form as the one presented in p. 371 of [Gly87], but
it is used differently. The development in [Gly87] leads to a consistent estimator of the
gradient, assuming that a very large number of regenerative cycles are estimated, while
keeping the policy parameter 6 at a fixed value. Presumably, 8 would be then updated
after such a long simulation. In contrast, our method updates # much more frequently and
retains the desired convergence properties, despite the fact that any single cycle results in
a biased gradient estimate.

An alternative simulation-based stochastic gradient method, again based on a likeli-
hood ratio formula, has been provided in [Gly86], and uses the simulation of two regen-
erative cycles to construct an unbiased estimate of the gradient. We note some of the
differences with the latter work. First, the methods in [Gly86] involve a larger number of
auxiliary quantities that are propagated in the course of a regenerative cycle. Second, our
method admits a modification (see Sections 4-5) that can make it applicable even if the
time until the next regeneration is excessive (in which case, likelihood ratio-based methods
suffer from excessive variance). Third, our estimate A of the average reward is obtained
as a (weighted) average of all past rewards (not just over the last regenerative cycle). In

contrast, an approach such as the one in [Gly86] would construct an independent estimate
of A during each regenerative cycle, which should result in higher variance. Finally, our
method brings forth and makes crucial use of the value (differential reward) function of dy-
namic programming. This is important because it paves the way for actor-critic methods
in which the variance associated with the estimates of the differential rewards is poten-
tially reduced by means of “learning” (value function approximation). Indeed, subsequent
to the first writing of this paper, this latter approach has been pursued in [KT99, SMS99].
In summary, the main contributions of this paper are as follows.

1. We introduce a new algorithm for updating the parameters of a Markov Reward
Process, on the basis of a single sample path. The parameter updates can take
place either during visits to a certain recurrent state, or at every time step. We also
specialize the method to Markov Decision Processes with parametrically represented
policies. In this case, the method does not require the transition probabilities to be
known.

2. We establish that the gradient (with respect to the parameter vector) of the perfor-
mance metric converges to zero, with probability 1, which is the strongest possible
result for gradient-related stochastic approximation algorithms.

3. The method admits approximate variants with reduced variance, such as the one
described in Section 5, or various types of actor-critic methods.

The remainder of this paper is organized as follows. In Section 2, we introduce our
framework and assumptions, and state some background results, including a formula for
the gradient of the performance metric. In Section 3, we present an algorithm that per-
forms updates during visits to a certain recurrent state, present our main convergence
result, and provide a heuristic argument. Sections 4 and 5 deal with variants of the algo-
rithm that perform updates at every time step. In Section 6, we specialize our methods to
the case of Markov Decision Processes that are optimized within a possibly restricted set
of parametrically represented randomized policies. We present some numerical results in
Section 7, and conclude in Section 8. The lengthy proof of our main results is developed
in the appendices.

2 Markov Reward Processes Depending on a Parameter

In this section, we present our general framework, make a few assumptions, and state
some basic results that will be needed later.

We consider a discrete-time, finite-state Markov chain {i,} with state space S =
{1,..., N}, whose transition probabilities depend on a parameter vector 6 € RE and are
denoted by

pi(8) = Plin = j | in 1 =1,).
Whenever the state is equal to 7, we receive a one-stage reward, that also depends on 0,
and is denoted by g;(0).

For every 0 € RE, let P(6) be the stochastic matrix with entries p;;(0). Let P =
{P(0) | 0 € RE} be the set of all such matrices, and let P be its closure. Note that every
element of P is also a stochastic matrix and, therefore, defines a Markov chain on the
same state space. We make the following assumptions.

Assumption 1 The Markov chain corresponding to every P € P is aperiodic. Further-
more, there exists a state ©* which is recurrent for every such Markov chain.

We will often refer to the times that the state ¢* is visited as regeneration times.

Assumption 2 For every i,j € S, the functions p;;(0) and ¢;(8) are bounded, twice
differentiable, and have bounded first and second derivatives.

The performance metric that we use to compare different policies is the average reward
criterion A(f), defined by

\O) = Jim B, [Z i, (0)] .
k=0

Here, i) is the state at time k, and the notation FEj[-] indicates that the expectation is
taken with respect to the distribution of the Markov chain with transition probabilities
pi;j(0). Under Assumption 1, the average reward A(6) is well defined for every 6, and does
not depend on the initial state. Furthermore, the balance equations

N
=1

N
Y om() = 1 (2)
i=1

have a unique solution 7(6) = (71(0),...,7n(0)), with 7;(f) being the steady state prob-
ability of state ¢ under that particular value of 6, and the average reward is equal to

N

AO) =D mi(0)g: (). (3)

i=1
We observe that the balance equations (1)-(2) are of the form
A(O)r(0) = a,

where ¢ is a fixed vector and A(#) is an N x N matrix. (Throughout the paper, all vectors
are treated as column vectors.) Using the fact that A(f) depends smoothly on 6, we have
the following result.

Lemma 1 Let Assumptions 1 and 2 hold. Then, ©(8) and X(0) are twice differentiable,
and have bounded first and second derivatives.

Proof: The balance equations are of the form A(0)w(0) = a, where the entries of A(6)
have bounded second derivatives (Assumption 2). Since the balance equations have a
unique solution, the matrix A(f) is always invertible, and Cramer’s rule yields

c(6)

where C(@) is a vector whose entries are polynomial functions of the entries of A(6).
Using Assumption 2, C'(#) and det(A(f)) are twice differentiable and have bounded first
and second derivatives.

More generally, suppose that P € P, i.e., P is the limit of the stochastic matrices
P(0;) along some sequence ;. The corresponding balance equations are again of the
form A(P)m = a, where A(P) is a matrix depending on P. Under Assumption 1, these
balance equations have again a unique solution, which implies that |det(A(P))| is strictly
positive. Note that |det(A(P))| is a continuous function of P, and P lies in the set P,
which is closed and bounded. It follows that |det(A(P))| is bounded below by a positive
constant c. Since every P(f) belongs to P, it follows that |det(A(#))| > ¢ > 0, for every 6.
This fact, together with Eq. (4) implies that 7 () is twice differentiable and has bounded
first and second derivatives. The same property holds true for A(6), as can be seen by
differentiating twice the formula (3). O

2.1 The Gradient of ()
For any # € RE and i € S, we define the differential reward v;(6) of state i by

T—-1

vi(0) = Eg | D (9i.(0) = X(0)) | io =i , (5)

k=0

where iy is the state at time k, and T' = min{k > 0 | iy = ¢*} is the first future time
that state ¢* is visited. With this definition, it is well known that v;-(#) = 0 and that the
vector v(0) = (v1(6),...,vn(0)) is a solution to the Poisson equation

g(0) =v+ A(@)e — P(O)v

where g(0) = (g1(0),...,9n(0) and e is equal to the all-one vector (1,...,1).

The following proposition gives an expression for the gradient of the average reward
A(0), with respect to 0. A related expression (in a somewhat different context) was given
in [JSJ95], and a proof can be found in [CC97]. (The latter reference does not consider
the case where g;(0) depends on 6, but the extension is immediate.) Given the importance
of this result, and because existing proofs are somewhat involved, we provide a concise
self-contained proof, for the benefit of the reader.

Proposition 1 Let Assumptions 1 and 2 hold. Then,

VA@O) =D mi(0) (Vgi(o) +> Vpij(o)”j(9)> -

i€S jes

Proof: We carry out the proof using vector notation, and using the superscript T to
denote vector transposition. All gradients are taken with respect to 6, but to unclutter
notation, the dependence on 8 is suppressed.
We start with the Poisson equation g = v + Ae — Pv and left-multiply both sides with
Val', to obtain
(Val)g = (Val)v + A\Vrle — (Val)(Pv). (6)

Note that 7”'e = 1, which yields Va’e = 0. Using the balance equation 7/ P = 7!, we

obtain
Vil =V(x'P) = (Val)P + «T(VP).
We right-multiply both sides by v, and use the resulting relation to rewrite the right-hand
side of Eq. (6), leading to
(Val)g =« (VP)w.

Thus,
VA=V(rlg) =71 (Vg) + (Vrl)g = n7(Vg) + " (VP)w,

which is the desired result. O

Equation (3) for A\(f) suggests that VA(#) could involve terms of the form V;(0), but
the expression given by Proposition 1 involves no such terms. This property is very helpful
in producing simulation-based estimates of VA(#).

2.2 An Idealized Gradient Algorithm

Given that our goal is to maximize the average reward A(f), it is natural to consider
gradient-type methods. If the gradient of A(f) could be computed exactly, we would
consider a gradient algorithm of the form

Ok+1 = Ok + 1 VA(O)-

Based on the fact that A(€) has bounded second derivatives, and under suitable conditions
on the stepsizes 7, it would follow that limg_ ., VA(6r) = 0 and that \(6y) converges
[Ber95b)].

Alternatively, if we could use simulation to produce an unbiased estimate hy of VA(6y),
we could then employ the stochastic gradient iteration

Or+1 = O + Yihi.

The convergence of such a method can be established if we use a diminishing stepsize se-
quence and make suitable assumptions on the estimation errors. While one can construct
unbiased estimates of the gradient [Gly86], it does not appear possible to use them in an
algorithm which updates the parameter vector 6 at every time step — which is a desirable
property, as discussed in Section 3.4. This difficulty is bypassed by the method developed
in the following.

3 The Simulation—Based Method

In this section, we develop a simulation-based algorithm in which the gradient V\(0) is
replaced with a biased estimate, obtained by simulating a single sample path. We will
eventually show that the bias asymptotically vanishes, which will then lead to a conver-
gence result. For technical reasons, we make the following assumption on the transition
probabilities p;;(6).

Assumption 3 For every i and j, there exists a bounded function L;;(0) such that

Vpij(0) = pi;j(0)Li;(0), V6.

Note that when p;;(#) > 0, we have

Lij(0) = Lp{?ié?) ,

which can be interpreted as a likelihood ratio derivative term [LEc90]. Assumption 3 holds
automatically if there exists a positive scalar €, such that for every 4,5 € S, we have

either p;;(6) =0, V6, or p;ij(0) >e€, V0.

3.1 Estimation of VA(6)

Throughout this subsection, we assume that the parameter vector @ is fixed to some value.
Let {i} be a sample path of the corresponding Markov chain, possibly obtained through
simulation. Let t,, be the time of the mth visit at the recurrent state :*. We refer to the
sequence iy, , i, +1,---%,4, as the mth regenerative cycle, and we define its length T},
by

T =tms1 — tm-
For a fixed 6, the random variables T;,, are independent identically distributed, and have

a (common) finite mean, denoted by Ey[T].
Our first step is to rewrite the formula for VA(@) in the form

VA@B) = mi(0) (ng'(Q) + ZPij(Q)Lij(Q)Uj(O)) :

i€S jes

Estimating the term m;(#)Vg;(#) through simulation is straightforward, assuming that we
are able to compute Vg;(0) for any given i and 0. The other term can be viewed as
the expectation of v;(0)L;;(6), with respect to the steady-state probability m;(0)p;;(6) of
transitions from 4 to j. Furthermore, the definition (5) of v;(6), suggests that if ¢, <n <
tm+1 — 1, and 4, = j, we can use

tm+1—1

B, (0,0 = Y (0.(0) = 2), (7)

k=n

to estimate v;(#), where X is some estimate of A(6). Note that v(f) = 0 and does not
need to be estimated. For this reason, we let

;, (0,\) =0, if n = tp,.

By accumulating the above described estimates over a regenerative cycle, we are finally
led to an estimate of the direction of VA(6) given by

tm+1—1

Frn(0,0) = > (9,0, M)Ls, 1, (0) + V3:,(6)) . (8)

n=tm

The random variables F,,(6,)) are independent and identically distributed for different
values of m, because the transitions during distinct regenerative cycles are independent.

We define f(6, 5\) to be the expected value of F,, (6, 5\), namely,

F(0,)) = EgFn (6, 3)]. (9)

The following proposition confirms that the expectation of £, (0, 5\) is aligned with VA(6),
to the extent that A is close to A(9).

Proposition 2 We have

F(8,%) = Eg[TIVA() + G(8)(A(8) — N,

where
tm+1—1
GO)=Ey| > (tmy1—n)Li,_:,(0)] - (10)
n=tm+1
Proof: Note that for n =%, +1,...,t,+1 — 1, we have
~ tm+1_1 ~
i, (0,0) = Y (90, (0) = A(0)) + (tmi1r — n)(A(0) = V).
k=n
Therefore,
~ tm+1 1 tm+1 1 B tm+1 1
Fp(0,2) = Z anLi,_yi,(0) + Z (tmt1 —n)(A(O) — A) Li,_yi, (6) + Z Vgi, (0
n=tm+1 n=tm+1 n=tm
where
tma1—1
an =Y (9i,(0) = A(0)). (11)
k=n

We consider separately the expectations of the three sums above. Using the definition of
G(0), the expectation of the second sum is equal to G(8)(A(0) — A). We then consider
the third sum. As is well known, the expected sum of rewards over a regenerative cycle is
equal to the steady-state expected reward times the expected length of the regenerative
cycle. Therefore, the expectation of the third sum is

b1 —1
> Vi, (0)| = Eg[T]) _ mi(0)Vg;(0 (12)
n=tm €S
We now focus on the expectation of the first sum. For n = ¢, +1,...,tpe1 — 1, let

Ay = (an —vi,(0))Li, i, (0).

Let F,, = {io,...,i,} stand for the history of the process up to time n. By comparing the
definition (11) of a,, with the definition (5) of v;, (#), we obtain

Eg [an | fn] = Q)Z'n (6') (13)

It follows that Ey[A, | F,] = 0.

Let xp, =1 ifn < i1, and x, = 0, otherwise. For any n > t,,, we have
EolxnAn | Fin]l = EolEg[xnAn | Fnl | Fi] = EolxnEolAn | Ful | Fi,] = 0.

We then have

Ey

tmy1—1
Z An | th] = E9

n=tm+1

o
Z XnAy | th]

n=tm+1

o0
= Z Ey[xnAn | F,,]
n=tm+1
= 0.

(The interchange of the summation and the expectation can be justified by appealing to
the dominated convergence theorem.)
We therefore have

tm+1_1 tm+1_1
Ey | > anli, i) =Bg | Y 0, (0)Li, 1i,(0)
n=tm+1 n=tm,m+1

The right-hand side can be viewed as the total reward over a regenerative cycle of a Markov
reward process, where the reward associated with a transition from ¢ to j is v;(6)L;;(0).
Recalling that any particular transition has steady-state probability m;(6)p;;(0) of being
from ¢ to j, we obtain

tmg1—1
Ey { > anLi,_yi, (9)] = Ey[T1> Y mi(0)pi(0) Lij(0)v;(6). (14)
Ln:tmﬂ J icS jes

By combining Eqgs. (12) and (14), and comparing with the formula for VA(#), we see that
the desired result has been proved. O

3.2 An Algorithm that Updates at Visits to the Recurrent State

We now use the approximate gradient direction provided by Proposition 2, and propose
a simulation-based algorithm that performs updates at visits to the recurrent state *.
We use the variable m to index the times when the recurrent state i* is visited, and the
corresponding updates. The form of the algorithm is the following. At the time %,, that
state ¢* is visited for the mth time, we have available a current vector 8, and an average
reward estimate \,,,. We then simulate the process according to the transition probabilities
Pij(0) until the next time ¢, that i* is visited, and update according to

gm—l—l = Op +’)’mFm(9m75\m)a (15)

~ ~ tm+171 ~

Am+1 = A+ 0Tm Z (9in (Om) — Am), (16)
n=tm

where 7y, is a positive stepsize sequence (cf. Assumption 4) and n > 0 allows to scale the
stepsize for updating A by a positive constant. To see the rationale behind Eq. (16), note

10

that the expected update direction for s

tmy1—1

> (9, (0) = V)

n=tm

Ey = Ey[T](A(8) —N), (17)

which moves X closer to A(6).

Assumption 4 The stepsizes 7y, are nonnegative and satisfy
o o0
Z Ym = OO, Z ’yfn < 0.
m=1 m=1

Assumption 4 is satisfied, for example, if we let 7, = 1/m. It can be shown that if 6
is held fixed, but A keeps being updated according to Eq. (16), then A converges to A(6).
However, if € is also updated according to Eq. (15), then the estimate Am can “lag behind”
A(0,,). As a consequence, the expected update direction for # will not be aligned with the
gradient VA(0).

An alternative approach that we do not pursue is to use different stepsizes for updating
X and . If the stepsize used to update 6 is, in the limit, much smaller than the stepsize
used to update 5\, the algorithm exhibits a two-time scale behavior of the form studied in
[Bor97]. In the limit, Am is an increasingly accurate estimate of A(6,,), and the algorithm
is effectively a stochastic gradient algorithm. However, such a method would make slower
progress, as far as 0 is concerned. Our convergence results indicate that this alternative
approach is not necessary.

We can now state our main result, which is proved in Appendix A.

Proposition 3 Let Assumptions 1-4 hold, and let {0,,} be the sequence of parameter
vectors generated by the above described algorithm. Then, A(0,,) converges and

lim VA(6,) =0,

m— o0

with probability 1.

3.3 A Heuristic Argument

In this subsection, we approximate the algorithm by a suitable ODE (as in [Lju77]), and
establish the convergence properties of the ODE. While this argument does not constitute
a proof, it illustrates the rationale behind our convergence result.

We replace the update directions by their expectations under the current value of 6.
The resulting deterministic update equations take the form

04 = 0% + v f(00,2%),

Moir = N4 mymEpa [TI(M08,) — A5),

where f (9,5\) is given by Proposition 2, and where 94 and S\fn are the deterministic
counterparts of 0,, and A, respectively. With an asymptotically vanishing stepsize, and

11

after rescaling time, this deterministic iteration behaves similar to the following system of
differential equations:

b = VG + g (A6~) (18)
5\t = W(A(et)—j\t)- (19)

Note that A; and A(6;) are bounded functions since the one-stage reward g;(6) is finite-
valued and, therefore, bounded. We will now argue that A converges.
We first consider the case where the initial conditions satisfy g < A(6p). We then
claim that
A <AB), Vt>0. (20)

Indeed, suppose that at some time ¢y we have \;, = A(6y,). If VA(fy,) = 0, then we
are at an equilibrium point of the differential equations, and we have A\; = A(6;) for all
subsequent times. Otherwise, if VA(6,) # 0, then 0;; = VA(6y,), and A(6;,) > 0. At the

same time, we have S\to = 0, and this implies that A, < A(6;) for t slightly larger than .
The validity of the claim (20) follows. As long as A; < A(6;), A is nondecreasing and since
it is bounded, it must converge.

Suppose now that the initial conditions satisfy Ag > A(6p). As long as this condition
remains true, N is nonincreasing. There are two possibilities. If this condition remains true
for all times, then X\, converges. If not, then there exists a time ¢y such that 5\t0 = \6y,),
which takes us back to the previously considered case.

Having concluded that A, converges, we can use Eq. (19) to argue that A(6;) must also
converge to the same limit. Then, in the limit, 6; evolves according to 6; = VA(0,), from
which it follows that VA(6;) must go to zero.

We now comment on the nature of a rigorous proof. There are two common approaches
for proving the convergence of stochastic approximation methods. One method relies
on the existence of a suitable Lyapunov function and a martingale argument. In our
context, A(f) could play such a role. However, as long as Am 7 A(0y,), our method cannot
be expressed as a stochastic gradient algorithm and this approach does not go through.
(Furthermore, it is unclear whether another Lyapunov function would do.) The second
proof method, the so-called ODE approach, shows that the trajectories followed by the
algorithm converge to the trajectories of a corresponding deterministic ODE, e.g., the ODE
given by Eqgs. (18)-(19). This line of analysis generally requires the iterates to be bounded
functions of time. In our case, such a boundedness property is not guaranteed to hold.
For example, if 6 stands for the weights of a neural network, it is certainly possible that
certain “neurons” asymptotically saturate, and the corresponding weights drift to infinity.
We therefore need a line of argument specially tailored to our particular algorithm. In
rough terms, it proceeds along the same lines as the above provided deterministic analysis,
except that we must also ensure that the stochastic terms are not significant.

3.4 Implementation Issues

For systems involving a large state space, as is the case in many applications, the interval
between visits to the state :* can be large. Consequently,

12

(a) the parameter vector 6 gets updated only infrequently;
(b) the estimate F),(f) can have a large variance.

In the following, we will address these two issues and propose two modified versions: one
which updates 8 at every time step, and one which reduces the variance of the updates.

4 An Algorithm that Updates at Every Time Step

In this section, we develop an algorithm which updates the parameter vector 0 at every
time step. We start by indicating an economical way of computing the update direction
F,, (6, A). This will allow us to break F,(#) into a sum of incremental updates carried out
at each time step.

Taking into account that o;, (0, A) =0, Eq. (8) becomes

N tm41—1 tm41—1
Fm (07 >\) = Z Iﬁln (0 >\) Ip— lzn + Z Vgln
n=tm+1 n=tm
tm4+1—1 tm4+1—1 N
= > | Vi (0) + Li, i, (0) D (9i(0) = N) | + Vi ()
n=tm+1 k=n
tmy1—1
= Z Vglk- (0) + glk Z Lln 1Zn + ng* (0)
k=t,m+1 n=tm,m+1
tmy1—1 N
= Vo) + > (Vo 0) + (9, (0) — V=),
k=tm+1
where

szn 1in (0)

= 1,...
(9)? k tm+ 9

k
Z atm-l-l - 17
=tm+1 pln 1in

k
Z Linflln

n=tm+1

is a vector (of the same dimension as 6) that becomes available at time k. It can be
updated recursively, with

and

Zk+1 = 2k + Likik+1 (9), k=tm,... ytmt1 — 2. (22)

We note that z; is the likelihood ratio derivative that commonly arises in likelihood ratio
gradient estimation [Gly87, GG92].

The preceding formulas suggest the following algorithm which updates 6 at every time
step. At a typical time k, the state is ix, and the values of 0, z;, and M\ are available
from the previous iteration. We update 6 and A according to

Or+1 Ok + Vi (Vgikwk) + (93, (0k) — S\k)zk)a

Ae+1 X + 77k (g (Ok) — Np).-

13

We then simulate a transition to the next state ;41 according to the transition probabil-
ities p;;(fx+1), and finally update z by letting

- 0, if 419 = 1%,
+ 2k + Likik+1 (0), otherwise.

In order to implement the algorithm, on the basis of the above equations, we only need to
maintain in memory 2K + 1 scalars, namely 5\, and the vectors 6, z.

To prove convergence of this version of the algorithm, we have to strengthen Assump-
tion 1 of Section 2. Assumption 1 states that for every fixed parameter 6, we will eventually
reach the state ¢*. Here, we need to make sure that this will remain so, even if 6 keeps
changing; see [Mar98] for further discussion of this assumption.

Assumption 5 There exist a state i* € S and a positive integer Ny, such that, for every

state i € S and every collection {Py, ..., Py,} of Ny matrices in the set P, we have
No
Z[H?ﬂpl]ii* > 0.
n=1

We also impose an additional condition on the stepsizes.

Assumption 6 The stepsizes v are nonincreasing. Furthermore, there exists a positive
integer p and a positive scalar A such that

n+t

> (v —) < AtP, V n,t> 0.
k=n

Assumption 6 is satisfied, for example, if we let v, =1 /k. With this choice, and if we
initialize A to zero, it is easily verified that A is equal to the average reward obtained in
the first k£ transitions.

We have the following convergence result, which is proved in Appendix B.

Proposition 4 Let Assumptions 1-6 hold, and let {0y} be the sequence of parameter vec-
tors generated by the above described algorithm. Then, A(0y) converges and

lim VA(6;) =0,

k—o0

with probability 1.

The algorithm of this section is similar to the algorithm of the preceding one, except
that 0 is continually updated in the course of a regenerative cycle. Because of the dimin-
ishing stepsize, these incremental updates are asymptotically negligible and the difference
between the two algorithms is inconsequential. Given that the algorithm of the preceding
section converges, Proposition 4 is hardly surprising. The technique in our convergence
proof use is similar to the one in [CR94]. However, mapped into the context of parame-
terized Markov reward processes, [CR94| assumes that the transition probabilities p;;(6)
are independent of 6 (the one-stage rewards g;(#) can still depend on €). The situation
here is more general and a separate proof is needed.

14

5 An Algorithm that may Reduce the Variance

When the length of a regeneration cycle is large, the vector z; will also become large
before it is reset to zero, resulting in high variance for the updates. (This is a generic
difficulty associated with likelihood ratio methods.) For this reason, it may be preferable
to introduce a forgetting factor a € (0,1) and update z; according to

ol = 0, if 111 = 1%,
+ azg + Likik+1 (0x), otherwise.

This modification, which resembles the algorithm introduced in [JSJ95], can reduce the
variance of a typical update, but introduces a new bias in the update direction. Given
that gradient-type methods are fairly robust with respect to small biases, this modification
may result in improved practical performance; see the numerical results in Section 7.

Similar to [JSJ95], this modified algorithm can be justified if we approximate the
differential reward with

T
v;(0) = Ey [Z o (gi, (0) — X(0)) | io = z] ,
k=0

where T' = min{k > 0 | i, = i*} (which is increasingly accurate as a 1 1), use the estimate

T
5, (0,3) = 3 oF (g:, (0) =),
k=n
instead of Eq. (7), and then argue similar to Section 3. The analysis of this algorithm is
carried out in [Mar98] and, with less detail, in [MT99].

6 Markov Decision Processes

In this section, we indicate how to apply our methodology to Markov decision processes.
An important feature, which is evident from the formulas provided at the end of this
section, is that the algorithm is “model-free:” as long as the process can be simulated or
is available for observation, explicit knowledge of the transition probabilities p;;(6) is not
needed.

We consider a Markov Decision Processes [Ber95a, Put94] with finite state space S =
{1,..., N} and finite action space U = {1,..., M}. At any state i, the choice of a control
action u € U determines the probability p;j(u) that the next state is j. The immediate
reward at each time step is of the form g;(u), where 7 and w is the current state and action,
respectively.

A (randomized) policy is defined as a mapping

w8 [0, 1M,
with components p,(7) such that

> pu(i)=1, Vi€S.
uelU

15

Under a policy i, and whenever the state is equal to i, action w is chosen with probability
iy (2), independent of everything else. If for every state i there exists a single u for which
iy (7) is positive (and, therefore, unity), we say that we have a pure policy.

For problems involving very large state spaces, it is impossible to even describe an
arbitrary pure policy p, since this requires a listing of the actions corresponding to each
state. This leads us to consider policies described in terms of a parameter vector 8 =
(01,...,0K), whose dimension K is tractably small. We are interested in a method that
performs small incremental updates of the parameter . A method of this type can work
only if the policy has a smooth dependence on 6, and this is the main reason why we
choose to work with randomized policies.

We allow 6 to be an arbitrary element of R%X. With every # € RX, we associate
a randomized policy p(0), which at any given state i chooses action u with probability
pu(7,0). Naturally, we require that every p,(7,6) be nonnegative and that Y, < (4, 6) =
1. Note that the resulting transition probabilities are given by

pij(0) = puli, O)pij(u), (23)

uelU

and the expected reward per stage is given by

gi(0) = > puli,0)g;(u).

uelU

The objective is to maximize the average reward under policy p(6), which is denoted by
A(f). This is a special case of the framework of Section 2. We now discuss the various
assumptions introduced in earlier sections.

In order to satisfy Assumption 1, it suffices to assume that there exists a state ¢* which
is recurrent under every pure policy, a property which is satisfied in many interesting
problems. In order to satisfy Assumption 2, it suffices to assume that the policy has a
smooth dependence on 6; in particular, that u,(i,0) is twice differentiable (in) and has
bounded first and second derivatives. Finally, Assumption 3 is implied by the following
condition.

Assumption 7 For every i and u, there exists a bounded function L,(i,0) such that
This assumption can be satisfied in a number of ways:

(a) Consider a smoothly parametrized function r,(7, #) that maps state-action pairs (7, u)
to real numbers, and suppose that

exp(ry(7,0)) .
> exp(ry(i,0))

U’u(ia 0) =

Assumption 7 is satisfied once we assume that r,(7,#) has bounded first and second
derivatives. This particular form is common in the neural network literature: the
ry(%,0) are the outputs of a neural network with input (i,u) and internal weights 6,
and an action u is selected by a randomized “soft maximum.”

16

(b) We may artificially restrict to policies for which there exists some € > 0 such that
:U‘u(zag) Z €, Viauao'

Such policies introduce a minimal amount of “exploration,” and ensure that every
action will be tried infinitely often. This can be beneficial because the available ex-
perience with simulation-based methods for Markov decision processes indicates that
performance can substantially degrade in the absence of exploration: a method may
stall within a poor set of policies for the simple reason that the actions corresponding
to better policies have not been sufficiently explored.

Since Y, cpr pu(2,0) = 1 for every 6, we have >, .y Vi (4,60) = 0, and
Vagi(0) = > Viuu(i,0)(gi(w) — A(6)).
uelU

Furthermore,

> Vpij(0)vi(0) =Y D V(i O)pij(u)v; (6).

jES jESUEU

Using these relations in the formula for VA(#) provided by Proposition 1, and after some
rearranging, we obtain

where

Giu(®) = (gi(u) = X0) + > pij(u)v;(0)

jes
T—1

= Ey | Y (95, (ug) — A(0)) | io = i,up = ul,
k=0

and where i, and wy, is the state and control at time k. Thus, g;,(6) is the differential
reward if control action v is first applied in state i, and policy u(0) is followed thereafter.
It is the same as Watkins’ Q-factor [Wat89], suitably modified for the average reward case.

From here on, we can proceed as in Section 3 and obtain an algorithm that updates 6
at the times t,, that state ¢:* is visited. The form of the algorithm is

0m+1 = O+ 'YmFm(ema 5\m)a

N . tmy1—1 B

Attt = Am+mvm D, (i, (un) — Am),

n=tm
where .)
5 " Vb, (in, Om)
Fm 0m7>\m = Qin,unn-—’a
() n;:m fhu, (i, Om)
and
tmgr—1)
Ginun = O (9 (ur) = Am).
k=n

Similar to Section 4, an on-line version of the algorithm is also possible. The convergence
results of Sections 3 and 4 remain valid, with only notation changes in the proof.

17

7 Experimental Results for an Admission Control Problem

In this section, we describe some numerical experiments with a call admission control
problem. This problem arises when a service provider with limited resources (bandwidth)
has to accept or reject incoming calls of several types, while taking into account current
congestion. The objective is to maximize long-term average revenue. More details on the
experiments reported here can be found in [Mar98].

7.1 Problem Formulation

Consider a communication link with a total bandwidth of B units, which supports a finite
set {1,2,..., M} of different service types. Each service type is characterized by its band-
width requirement b(m), its call arrival rate «(m), and its average holding time 1/8(m),
where we assume that the calls (customers) arrive according to independent Poisson pro-
cesses, and that the holding times are exponentially (and independently) distributed.
When a new customer requests a connection, we can decide to reject, or, if enough band-
width is available, to accept the customer. Once accepted, a customer of class m seizes
b(m) units of bandwidth for the duration of the call. Whenever a call of service type m
gets accepted, we receive an immediate reward of ¢(m) units. The reward ¢(m) can be
interpreted as the price customers of service type m are paying for using b(m) units of
bandwidth of the link for the duration of the call. The goal of the link provider is to
exercise call admission control in a way that maximizes the long term revenue.

Using uniformization, the problem is easily transformed into a discrete-time Markov
decision process. The state can be taken to be of the form i = (s(1),...,s(M),w), where
s(m) denotes the number of active calls of type m, and w indicates the type of event that
triggers the next transition (a departure or arrival of a call, together with the type of the
call). If w indicates an arrival of a call of class m and if there is enough free bandwidth
to accommodate it, there are two available decisions, namely, u, (accept) or u, (reject).

We consider randomized policies of the following form. If there is an arrival of a call
of class m, we accept it with probability

1
u .70 - .
o (60) = T b = 8(m)
Here, s-b =73, s(m)b(m) is the currently occupied bandwidth and é(m), the mth com-
ponent of A, is a policy parameter. Note that

p, (1,0) > 0.5 if and only if s-b < 6(m).

Thus, 6(m) can be interpreted as a “fuzzy” threshold on system occupancy, which deter-
mines whether type m calls are to be admitted or rejected.

In our experiments, we consider a link with a total bandwidth of 10 units, and three
different call types. The detailed parameters are given in Table 1. The number of link
configuarions (i.e., possible choices of s that do not violate the link capacity constraint)
turns out to be 286.

Any state (s,w) in which s = (0,...,0) and w corresponds to an arrival of a new call,
is recurrent under any policy, and can therefore play the role of +*. Even for moderately
loaded systems, the time between consecutive visits to such a state can be extremely large,
in which case we expect our methods to be very slow.

18

0.9

Average Reward
o
@
&

o
@

0.75 I I I I I I I I I
0 10 20 30 40 50 60 70 80 90 100
Iteration Steps

BoR B e
[S ™)
T T
~

\
\

\

\
\

\
\

\

|

Parameters
15
\
\

~ o ©
T

I I I I I I I I I
0 10 20 30 40 50 60 70 80 90 100
Iteration Steps

Figure 1: Parameter vectors and average rewards (computed exactly) of the corresponding
admission control policies, obtained by the idealized gradient algorithm. The solid, dashed,
and dash-dot line correspond to the threshold values 6y, 85, and 3, associated with service
types 1, 2, and 3, respectively.

7.2 Results
Optimal Policy

Since the state space is relatively small, an optimal policy can be obtained using standard
dynamic programming methods [Ber95a]. The optimal average reward is equal to 0.8868.
(Of course, the optimal average reward within the restricted class of randomized policies
that we have introduced earlier will have to be less than that.) Under an optimal policy,
customers of type 2 and 3 are accepted whenever there is available bandwidth. Customers
of type 1 are accepted only if the currently used bandwidth does not exceed 7.

Idealized Gradient Algorithm

For such a small example, we can numerically calculate VA(6), for any given 6, which
allows us to implement the idealized algorithm

Or1 = Ok + 7 VA(O)

of Section 2.2. The evolution of this algorithm, starting with 6, = (8,8,8), is shown
in Figure 1. After 100 iterations, we have 0199 = (7.5459,11.7511,12.8339), and the
corresponding average reward is equal to 0.8808, which is very close to optimal. The
probabilities of accepting a new call are given in Figure 2.

Simulation-Based Algorithm that Updates at Every Time Step

We implemented a streamlined version of the algorithm given Section 4, where we reset the
vector zj not only at visits to the recurrent state i*, but at visits to all states i = (s,w) for
which s = (0,...,0). A justification of this modification, which does not change the mean

19

Probability of accepting a call of service type 1
15 T T T T T

05 -

. n
0 1 2 3 4 5 6 7 8 9 10
Probability of accepting a call of service type 2

15 T T T T T

05 B

0 I I I I I I I I I
0 1 2 3 4 5 6 7 8 9 10

Probability of accepting a call of service type 3
15 T T T T T

05 -

Figure 2: Probabilities of accepting a new call, as a function of the already oc-
cupied bandwidth, under the control policy associated with the parameter vector
(7.5459,11.7511, 12.8339) obtained by the idealized gradient algorithm.

direction of the update, is given in [Mar98]. We started with the same initial parameter
0 = (8,8,8), and the initial estimate of the average reward Ao was set to 0.78. The scaling
factor in the update equation was chosen to be n = 0.1. The corresponding trajectories
of the parameter vectors and average reward are given in Figure 3. We have the following
observations:

1. The algorithm makes rapid progress in the beginning, improving the average reward
from 0.78 to 0.87 within the first 1 - 10° iteration steps.

2. After 1-10° iterations, the algorithm makes only slow progress obtaining after 8-10°
iterations the parameter vector

0g.106 = (7.3540,10.6850, 11.7713)

which corresponds to an admission control policy with an average reward of 0.8789.
This average reward still slightly below the average reward of 0.8808 obtained by
the idealized gradient algorithm.

3. The fluctuations in the estimate of the average reward remain small and the perfor-
mance of the control policies never deteriorates.

This behavior is not unlike the idealized algorithm (see Figure 1), where the average reward
improves rapidly in the beginning, but only slowly in the later iterations.

The probabilities of accepting a new call under the control policy obtained with the
simulation-based algorithm are given in Figure 4.

Modified Simulation-Based Algorithm

We finally consider the modified algorithm of Section 5, using a forgetting factor of a =
0.99. As expected, it makes much faster progress; see Figure 5.

20

Iteration Steps X 106

Parameters

Iteration Steps x 10°

Figure 3: Parameter vectors, and estimates of the average reward, obtained by the
simulation-based algorithm. The scaling factor for the iteration steps is 10.

Probability of accepting a call of service type 1
T

15 T T T T
1 4
05- i
0 I I I I I I I I
0 1 2 3 4 5 6 7 8 9 10
Probability of accepting a call of service type 2
15 T T T T T
1 4
051 B
0 I I I I I I I I I
0 1 2 3 4 5 6 7 8 9 10
Probability of accepting a call of service type 3
15 T T T T T
1 4
05 -
0 I I I I I I I I I
0 1 2 3 4 5 6 7 8 9 10

Figure 4: Probabilities of accepting a new call, given as a function of the used band-
width on the link, under the control policy associated with the parameter vector
(7.3540,10.6850, 11.7713) obtained by the simulation-based algorithm.

21

Average Reward

0.76 I I I I I I I I I
0 1 2 3 4 5 6 7 8 9 10

Iteration Steps x 10°

= = =
o = N

Parameters
©

7 I I I I I I I I I
0 1 2 3 4 5 6 7 8 9 10

Iteration Steps x 10°

Figure 5: Parameter vectors, and estimates of the average reward, obtained by modified
simulation-based algorithm using a discount factor o = 0.99. The scaling factor for the
iteration steps is 10°.

After 10° iterations, we obtain a parameter vector of @ = (7.3553,10.6034, 11.6073) and
an average reward of 0.8785, which is essentially the same as for the unmodified algorithm
after 8 - 108 iterations. Thus, the use of a forgetting factor speeds up convergence by an
order of magnitude, while introducing a negligible bias.

8 Conclusions

We have presented a simulation-based method for optimizing a Markov Reward Process
whose transition probabilities depend on a parameter vector 6, or a Markov Decision
Process in which we restrict to a parametric set of randomized policies. The method
involves simulation of a single sample path. Updates can be carried out either when the
recurrent state ¢* is visited, or at every time step. We have also proposed a modified,
possibly more practical method, and have provided some encouraging numerical results.

Regarding further research, there is a need for more computational experiments in
order to delineate the class of practical problems for which this methodology is useful. In
particular, further analysis and experimentation is needed for the modified on-line algo-
rithm of Section 5. In addition, the possibility of combining such methods with “learning”
(function approximation) of the differential reward function needs to be explored. On the
technical side, it may be possible to extend the results to the case of an infinite state
space, and to relate the speed of convergence to the mixing time of the underlying Markov
chains.

22

Acknowledgments

We are grateful to Oliver Mihatsch for suggesting the form of Assumption 3, and the
referees for many suggestions for improving the paper.

References

[Ber95a]

D. P. Bertsekas, Dynamic Programming and Optimal Control, Athena Scientific,
Belmont, MA, 1995.

[Ber95b] D. P. Bertsekas, Nonlinear Programming, Athena Scientific, Belmont, MA, 1995.

[Bor97]

[BSA83)]

[BT96]

[BT97]

[CC97)

[CR94]

[CWOS]

[Del96]

[FHO4]

[Gla91]

[GGY2]

V.S. Borkar, “Stochastic Approximation with Two Time Scales,” Systems and
Control Letters, Vol. 29, pp. 291-294, 1997.

A. Barto, R. Sutton, and C. Anderson, “Neuron-Like Elements that Can Solve
Difficult Learning Control Problems,” TEEE Trans. on Systems, Man and Cy-
bernetics, Vol. 13, pp. 835-846, 1983.

D. P. Bertsekas and J. N. Tsitsiklis, Neuro-Dynamic Programming, Athena
Scientific, Belmont, MA, 1996.

D. P. Bertsekas and J. N. Tsitsiklis, “Gradient Convergence in Gradient Meth-
ods,” Lab. for Info. and Decision Systems Report LIDS-P-2301, Massachusetts
Institute of Technology, Cambridge, MA, 1997.

X. R. Cao and H. F. Chen, “Perturbation Realization, Potentials, and Sensitivity
Analysis of Markov Processes,” IEEE Transactions on Automatic Control, Vol.
42, pp. 1382-1393, 1997.

E. K. P. Chong and P. J. Ramadage, “Stochastic Optimization of Regenerative
Systems Using Infinitesimal Perturbation Analysis,” IEEE Trans. on Automatic
Control, Vol. 39, pp. 1400-1410, 1994.

X. R. Cao and Y. W. Wan, “Algorithms for Sensitivity Analysis of Markov
Systems through Potentials and Perturbation Realization,” IEEE Trans. on
Control Systems Technology, Vol. 6, pp. 482-494, 1998.

B. Delyon, “General Results on the Convergence of Stochastic Algorithms,”
IEEE Trans. on Automatic Control, Vol. 41, pp. 1245-1255, 1996.

M. C. Fu and J. Hu, “Smoothed Perturbation Analysis Derivative Estimation
for Markov Chains,” Operations Research Letters, Vol. 15, pp. 241-251, 1994.

P. Glasserman, Gradient Estimation Via Perturbation Analysis, Kluwer Aca-
demic, Boston, 1991.

P. Glasserman and P. W. Glynn, “Gradient Estimation for Regenerative Pro-
cesses,” Proceedings of the 1992 Winter Simulation Conference, pp. 280-288,
1992.

23

[Gly86]

[Gly87]

[GI89)]

[HC91]

[7SJ95]

[KBYS]

[KT99]

[LEc90]

[Lju77]

[Mar98]

[MT99]

[Put94]

[SBYS]

[SMS99]

[Tes92]

[THY5]

P. W. Glynn, “Stochastic Approximation for Monte Carlo Optimization,” Pro-
ceedings of the 1986 Winter Simulation Conference, pp. 285-289, 1986.

P. W. Glynn, “Likelihood Ratio Gradient Estimation: an Overview,” Proceed-
ings of the 1987 Winter Simulation Conference, pp. 366-375, 1987.

P. W. Glynn and D. L. Iglehart, “Importance Sampling for Stochastic Simula-
tion,” Management Science, Vol. 35, No. 11, pp. 1367-1392, 1989.

Y. C. Ho and X. R. Cao, Perturbation Analysis of Discrete Event Systems,
Kluwer Academic Publisher, Boston, MA, 1991.

T. Jaakkola, S. P. Singh, and M. I. Jordan, “Reinforcement Learning Algo-
rithm for Partially Observable Markov Decision Problems,” Advances in Neural
Information Processing Systems, Vol. 7, pp. 345-352, Morgan Kaufman, San
Francisco, CA, 1995.

V. R. Konda and V. S. Borkar, “Actor-Critic Like Learning Algorithms for
Markov Decision Processes,” submitted.

V. R. Konda and J. N. Tsitsiklis, “Actor-Critic Algorithms,” to appear in the
Proceedings of the 1999 Neural Information Processing Systems Conference.

P. L’Ecuyer, “A Unified View of the IPA, SF, and LR Gradient Estimation
Techniques,” Management Science, Vol. 36, No. 11, pp. 1364-1383, 1990.

L. Ljung, “Analysis of Recursive Stochastic Algorithms,” IEEE Trans. on Au-
tomatic Control, Vol. 22, pp. 551-575, 1977.

P. Marbach, “Simulation-Based Optimization of Markov Decision Processes,”
doctoral thesis, Dept. of EECS, MIT, Cambridge, MA, 1998.

P. Marbach and J. N. Tsitsiklis, “Simulation-Based Optimization of Markov
Reward Processes: Implementation Issues,” in Proceedings of the 1999 IEEE
Conference on Decision and Control, Phoenix, AZ, December 1999.

M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming, Wiley, New York, NY, 1994.

R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction, MIT
Press, Cambridge, MA, 1998.

R. S. Sutton, D. McAllester, S. Singh and Y. Mansour, “Policy Gradient Methods
for Reinforcement Learning with Function Approximation,” to appear in the
Proceedings of the 1999 Neural Information Processing Systems Conference.

G. J. Tesauro, “Practical Issues in Temporal Difference Learning,” Machine
Learning, Vol. 8, pp. 257-277, 1992.

V. Tresp and R. Hofmann, “Missing and Noisy Data in Nonlinear Time-Series
Prediction,” in Neural Networks for Signal Processing, S. F. Girosi, J. Mahoul,
E. Manolakos and E. Wilson, eds., IEEE Signal Processing Society, New York,
New York, 1995, pp. 1-10.

24

[Wat89] C. Watkins, “Learning from Delayed Rewards,” Ph.D. Thesis, Cambridge Uni-
versity, UK, 1989.

A Proof of Proposition 3

In this appendix, we prove convergence of the algorithm

0m+1 = 0m+’ymFm(0maj\m)7

tmgp1—1

Amt1 = 5\m"i_T/'Ym Z (gzn(em) _S‘M)a

n=tm

where
tmg1—1

Frn(OmsAm) = D2 (910 (O An) Li 11 (Om) + V94, (0m))
n=tm
~ tm+171 ~
5,00 = Y (0.0 =), m=twt Lt -1,
k=n
and N
v, (0,2) = 0.

For notational convenience, we define the augmented parameter vector r, = (Hm,jxm),
and write the update equations in the form

Tmt+l = Tm + ')’mHm('rm)a

where
Hpy(rm) = bmy1 -1 - : (24)
e n Z (Gin (Bm) — Am)
n=tm,
Let

Fom = {00, Aoy i0,01,. .. ir, }
stand for the history of the algorithm up to and including time ¢,,. Using Proposition 2
and Eq. (17), we have
E[Hyp(rm) | Fm] = h(rm),

where

[Eo[TIVA®) + G(O)(A(0) — A)
NEg[T](A(0) — A)
We then rewrite the algorithm in the form

Tm+l = Tm + 'Ymh('rm) + Em, (25)

h(r)

where
em = Ym(Hm(rm) — h(rm))
and note that
Elep | Fn] = 0.
The proof rests on the fact that £, is “small,” in a sense to be made precise, which will
then allow us to mimic the heuristic argument of Section 3.3.

25

A.l

Preliminaries

In this subsection, we establish a few useful bounds and characterize the behavior of &,,.

Lemma 2

(a) There exist constants C and p < 1 such that

Py(T = k) < CpF, Yk, 6,

where the subscript 0 indicates that we are considering the distribution of the length
of the regeneration cycle Tp, = tpy1—tm under a particular choice of 8. In particular,
Ey[T] and E[T?) are bounded functions of 6.

(b) The function G(0) is well defined and bounded.

(¢c) The sequence Am is bounded, with probability 1.

(d) The sequence h(ry,) is bounded, with probability 1.

Proof:

(a)

For any transition probability matrix P € P, and because of Assumption 1, the
probability of reaching i* in N steps is bounded below by some positive ¢(P), for
every initial state. Furthermore, €(P) can be taken to be a continuous function of P.
Using the compactness of P, we have €* = minp 3 €(P) > 0, and the result follows
with p = (e*)'/V.

Note that
tm+1—1

> H(tm+1 - n)Lz’n,lin(H)H

n=tm+1

where C'is a bound on [|L;;(0)|| (cf. Assumption 3). The right-hand side is bounded
by the result of part (a). It follows that the expectation defining G(6) exists and is
a bounded function of 6.

E, < CEy[T?,

Using Assumption 4 and part (a) of this lemma, we obtain

< 00,

(0]
E lz '77271(tm+1 - tm)2
m=1

which implies that vy, (t,+1 — tm) converges to zero, with probability 1. Note that
5‘m+1 < (1= ym(tmtr — tm))j‘m + Ym (tm+1 — tm)C,

where C'is an upper bound on g;(0). For large enough m, we have vy, (tm+1—tm) < 1,
and A\, 11 < max{\,,C}, from which it follows that the sequence A, is bounded
above. By a similar argument, the sequence A, is also bounded below.

Consider the formula that defines h(r). Parts (a) and (b) show that Ey_[T] and
G(6y,) are bounded. Also, A(#y,) is bounded since the g;(€) are bounded (Assump-
tion 2). Furthermore, VA(6,,) is bounded, by Lemma 1. Using also part (c) of this
lemma, the result follows. a

26

Lemma 3 There exists a constant C (which is random but finite with probability 1) such
that
E[“5m||2 | Fm] < 0772n’ vV om,

and the series), ey converges with probability 1.

Proof: Recall that g;, (6,,) and A, are bounded with probability 1 (Assumption 2 and
Lemma 2(c)). Thus, for n = t,,, ..., tme1 — 1, we have |, (0, A)| < C(tms1 —tm), for some
constant C. Using this bound in the definition of F,(6,,, S\m), we see that for almost all
sample paths, we have

HFm(Om, S‘M)“ S C(tm+1 - tm)2,

for some new constant C. Using Lemma 2(a), the conditional variance of F, (6, Am),
given F,,, is bounded. Similar arguments also apply to the last component of H,,(ry,).
Since e, = Y (Hm (rm) — E[Hpm (rm) | Fm]), the first statement follows.

Fix a positive integer ¢ and consider the sequence

min{M(c),n}

wy, = Z Em,
m=1
where M (c) is the first time m such that E[||len||? | Fm] > ¢¥2,. The sequence w¢ is
a martingale with bounded second moment, and therefore converges with probability 1.
This is true for every positive integer c¢. For (almost) every sample path, there exists some
¢ such that M(c) = co. After discarding a countable union of sets of measure zero (for
each c, the set of sample paths for which w¢, does not converge), it follows that for (almost)
every sample path, >, e, converges. a

We observe the following consequences of Lemma 3. First, €, converges to zero with
probability 1. Since 7, also converges to zero and the sequence h(r,,) is bounded, we
conclude that

lim (By1—0pm) = 0, lim (A(fyr1)—A(6m)) = 0, lim (Amst—Am) = 0,

im
m—o0 m—o0 m—o0

with probability 1.

A.2 Convergence of)\, and \(0,,)

In this subsection, we prove that A, and A(0p,) converge to a common limit. The flow of
the proof is similar to the heuristic argument of Section 3.3.

We will be using a few different Lyapunov functions to analyze the behavior of the
algorithm in different “regions.” The lemma below involves a generic Lyapunov function
¢ and characterizes the changes in ¢(r) caused by the updates

Tma1l = Tm + Ymh(rm) + em-

Let D, = {(A,\) € RE+! | || < ¢}. We are interested in Lyapunov functions ¢ that are
twice differentiable and for which ¢, V¢, and V?¢ are bounded on D, for every c. Let ®
be the set of all such Lyapunov functions. For any ¢ € ®, we define

em(®) = P(rm+1) — ¢(rm) — YmVd(rm) - hrm),

where for any two vectors a, b, we use a - b to denote their inner product.

27

Lemma 4 If ¢ € @, then the series Y, em(p) converges with probability 1.

Proof: Consider a sample path of the random sequence {r, }. Using part (c) of Lemma 2,
and after discarding a set of zero probability, there exists some c such that r,, € D, for
all m. We use the Taylor expansion of ¢(r) at rp,, and obtain

em(®) = d(Tms1) — d(rm) — Y Ve(rm) - h(rm)

Vo(rm) - (rmy1 — Tm) + M||rmy1 — 7"m||2 — YmVo(rm) - h(rm)
= Vé(rm) - em + Mlrpmp — Tm“2a

IN

where M is a constant related to the bound on the second derivatives of ¢(-) on the set
D.. A symmetric argument also yields

Vo(rm) em — M||rmy1 — T’m“2 < éem(d)-

Using the boundedness of V¢ on the set D., the same martingale argument as in the
proof of Lemma 3 shows that the series Y, Vé(ry,) - €, converges with probability 1.
Note that ||rm+1 — rmll = |[Ymh(rm) + eml|, which yields

Irm1 = rmll* < 295 |h(rm) 1 + 2llen 1.

The sequence h(ry,) is bounded (Lemma 2) and +2, is summable (Assumption 4). Fur-
thermore, it is an easy consequence of Lemma 3 that e, is also square summable. We
conclude that ||7,,+1 —]| is square summable, and the result follows. 0

 From now on, we will concentrate on a single sample path for which the sequences
em and e, (@) (for the Lyapunov functions to be considered) are summable. Accordingly,
we will be omitting the “with probability 17 qualification.

The next lemma shows that if the error A, — A(fp,) in estimating the average reward
is positive but small, then it tends to decrease. The proof uses A — A(f) as a Lyapunov
function.

Lemma 5 Let L be such that ||G(6)|| < L for all 8, and let
P(r) = ¢(0, 1) = X = A(0).

We have ¢ € ®. Furthermore, if 0 < X — A\0) < n/L?, then

V(r) - h(r

~—

<0.

Proof: The fact that ¢ € ® is a consequence of Lemma 1. We now have
Ve(r) - h(r) = =n(X = A(0)) Eo[T] = [IVAB)II* Eo[T] + (A = A(8)) V() - G(0).

Using the inequality |a - b| < ||a]|? + ||b]|?, to bound the last term, and the fact E[T] > 1,
we obtain

V(r) - h(r) < —n(x = A0)) + L*(A = A(6))%,
which is nonpositive as long as 0 < A\ — A(9) < n/L>. O

In the next two lemmas, we establish that if |Am — A(0yn)| remains small during a
certain time interval, then A;, cannot decrease by much. We first introduce a Lyapunov
function that captures the behavior of the algorithm when A = ().

28

Lemma 6 As in Lemma 5, let L be such that ||G(0)|| < L. Let also
$(r) = (0, 7) = X(8) — (L*/m)(A(0) — V)*.
We have ¢ € ®. Furthermore, if |\(0) — X| < n/4L?, then
Vo(r) - hir) > 0.
Proof: The fact that ¢ € ® is a consequence of Lemma 1. We have
Vog(0,A) = (1 — (22 /n)(A(8) — X)) VA(O),
and N N
Vi$(0,2) = (2L% /n)(A(0) — X).
Therefore, assuming that |A(8) — A| < n/4L?, and using the Schwartz inequality, we obtain
Ver)-hr) = (1- L /mA0) - 1) (IVAO)PE[T] + (A6) = MG(O) - VA®))
+2L2(\(0) — N\)2Ep[T]
| 3 . -
> SIVAO)IF = SIA0) = AILIVAWD)] +2L2(A(0) — V)*
> 0.

|

Lemma 7 Consider the same function ¢ as in Lemma 6, and the same constant L. Let
a be some positive scalar smaller than n/4L%. Suppose that for some integers n and n',
with n' > n, we have

IA(On) — Al < «, IA0,) — A\| <
and y 0
|>\(0m)—>\m|§m, m=n+1,...,n —1
Then,
N N n'—1
A > A = 20((LPafn) +1) + 3 en(®).

Proof: Using Lemma 6, we have
Vo(rm) - h(rm) >0, m=n,...,n —1.
Therefore, for m =n,...,n' — 1, we have

P(rmi1) = ¢(rm) + ¥mVd(rm) - h(rm) + em(9)
> P(rm) +em(9),

and
n'—1

G(rar) > (rn) + D em(d)- (26)

m=n

Note that [¢(rn) — M| < (L2e2/n) + @, and |¢p(rn) — Ap| < (L202 /1) + o Using these
inequalitites in Eq. (26), we obtain the desired result. O

29

Lemma 8 We have liminf,, o |A(0,,) — 5\m| =0.

Proof: Suppose that the result is not true, and we will derive a contradiction. Since
AOm+1) — M0y,) and 5\m+1 - converge to zero, there exists a scalar ¢ > 0 and an
integer n, such that either A(0,,) — A > €, or A(0p) — A < —e, for all m > n. Without
loss of generality, let us consider the first possibility.

Recall that the update equation for \ is of the form

5‘m+1 = 5‘m + nymEo,, [T](A(OM) - 5‘m) + dm,

where dp, is the last component of the vector &,,, which is summable by Lemma 3. Given
that A(6m) — A stays above e, the sequence 7y, (A(0m) — Am) sums to infinity. As 6, is
summable, we conclude that \,, converges to infinity, which contradicts the fact that it is

bounded. O

The next lemma shows that the condition A(6,,) > Ay iS satisfied, in the limit.
Lemma 9 We have liminf,, o (A(0,,) — S\m) > 0.

Proof: Suppose the contrary. Then, there exists some ¢ > 0 such that the inequality

Am — ANOnm) > €
holds infinitely often. Let 8 = min{e,n/ L?}, where L is the constant of Lemma 5. Using
Lemma 8, we conclude that A, — A\(6,,) crosses infinitely often from a value smaller than

(/3 to a value larger than 23/3. In particular, there exist infinitely many pairs n,n’, with
n' > n, such that

1 ~ 2

and) 5
gﬁgﬁm—x%ﬁgga m=n+1,...,n —1.

We use the Lyapunov function

and note that

P(rn) = dlrn) + 3 (27)

For m =n,...,n' —1, we have 0 < A\ — \(#) < 8 < n/L%. Lemma 5 applies and shows
that Vé(ry,) - A(ry) < 0. Therefore,

n'—1 n'—1
Bru) = (ra) + 3 (T V(i) - h(rm) + em(@)) < Blra) + > em(®).
m=n m=n
By Lemma 4, ", em(¢) converges, which implies that ?,;;TIL em(¢) becomes arbitrarily
small. This contradicts Eq. (27) and completes the proof. O

We now continue with the central step in the proof, which consists of showing that
limy, 00 (A (@) — Am) = 0. Using Lemma 9, it suffices to show that we cannot have

30

lim sup,, o0 (A(Om) — A m) > 0. The main idea is the following. Whenever A(6;,) becomes
significantly larger than Am, then X, is bound to increase significantly. On the other hand,
by Lemma 7, whenever \(6,,) is approximately equal to Am, then A, cannot decrease by
much. Since A, is bounded, this will imply that A(fy,) can become significantly larger
than X, only a finite number of times.

Lemma 10 We have lim, o0 (A(0,,) — S\m) =0.

Proof: We will assume the contrary and derive a contradiction. By Lemma 9, we
have liminf,_,o0(A(@m) — Am) > 0. So if the desired result is not true, we must have
lim sup,,, , o (A\(@m) — Am) > 0, which we will assume to be the case. In particular, there is
some A > 0 such that \(0,,) — Am > A, infinitely often. Without loss of generality, we as-
sume that A < n/4L?, where L is the constant of Lemmas 5 and 6. Let o > 0 be some small
constant (with v < A/2), to be specified later. Using Lemma, 9, we have A(6,,,) — A > —cx
for all large enough m. In addition, by Lemma 8, the condition |A(6,,) — Ap| < o holds
infinitely often. Thus, the algorithm can be broken down into a sequence of cycles, where
in the beginning and at the end of each cycle we have |A(6,,) —Am| < o, while the condition
A(0m) — A > A holds at some intermediate time in the cycle.

We describe the stages of such a cycle more precisely. A typical cycle starts at some
time N with [A(0x)—An| < a. Let n” be the first time after time N that A(6,)— A > A.
Let n' be the last time before n” such that A(6,) — Ay < A/2. Let also n be the last time
before n/ such that A(6,) — A, < . Finally, let n" be the first time after n” such that
IA(@m) — Apm| < @. The time n'” is the end of the cycle and marks the beginning of a
new cycle.

Recall that the changes in 6, and Am converge to zero. For this reason, by taking N
to be large enough, we can assume that A(6,,) — 5\” > 0. To summarize our construction,
we have N <n <n’ <n” <n, and

MON) — In] <
0§>\(9n) A < @
IA(Orm) — Am| < A, m=N,...,n" —1,
~ A
)\(On/) — Ay < 5,
)x(@nu) — S\nu > A
a<>\(9m)—5\m§A, m=n+1,...,n" -1,
A 3
igk(ﬁm)—)\mSA, m=n'+1,...,n" —1,

Our argument will use the Lyapunov functions

~ 2
$(r) = $(0,3) = A(0) — (L*/m) (A(0) = X)",

where L is as in Lemma 5 and 6, and

We have
em(®) = ¢(rm+1) — P(rm) — YmVd(rm) - h(rm),

and we define ,,(¢)) by a similar formula. By Lemma 4, the series >, ¢,(¢) and
> €m (1) converge. Also, let

5m = >\m+1 - >\m - 77')’mE0m [T](A(Om) - >\m)

We observe that d,, is the last component of €, and therefore, the series), d,, converges
and lim,, o d,,, = 0. Finally, let C' be a constant such that |Vi(ry,) - h(ry,)| < C, for all
m, which exists because 1) € ® and because the sequences h(r,,) and Am are bounded.

Using the above observations, we see that if the beginning time N of a cycle is chosen
large enough, then for any k, k' such that N < k < k', we have

A
< _
’YkC > 323
k' 2
A
< -
m=Fk
kl
A
Z Sm(z/)) S 3_23
m=Fk
k' 2
A
) < n—.
mz::k m = 3o

Finally, we assume that o has been chosen small enough so that

2

2t (20 fn) < miec

Using the fact that A(0,/41) — A1 > A/2, we have

A(on’) — Ay = A(on’+1) - >‘n’+1 + ’YnIVQ/)(T’n/) : h(rn’) + e (Q/)) >

=

Furthermore, we have

g < ((A(Qn”) - 5‘n”) - (A(Qn’) - 5‘”'))
= —(rpr) +1p(rw)
n''—1 n''—1
= = > W Ve(rm) h(rm) — Y em(®)
n''—1

IN
N
)
Q
+
w
&,

which implies that

”il A A
Tm =90 T 320"
m=n

Then,

' —1 1
m=n m=n
~ n'—1 ~ ' —1
> Xt Y 1 AOm) = Am) + Y O
s (A A) (A4 2
= T\ 9e " 32¢)\2 " 16) " "sC
- A2
> An"”’?%-

We have sh0~wn so far that 5\m has a substantial increase between time n and n'”’. We
now show that), can only have a small decrease in the time between N and n. Indeed,
by Lemma 7, we have

n—1
An > An —2(a+ L) + Y em(9).
m=N
By combining these two properties, we obtain
_ _ 5 o 2 A2
At > AN — 2 L —n— —
w2 A= 2at Lhat) —nges e
. A2
> A —.
> AN+ 180

We have shown that)\, increases by a positive amount during each cycle. Since Am
is bounded above, this proves that there can only be a finite number of cycles, and a
contradiction has been obtained. a

Lemma 11 The sequences Ay and A(0,) converge.

Proof: Consider the function ¢(r) = A(6) — (L?/n)(A(0) — \)?, and the same constant L
as in Lemma 6. Let a be a scalar such that 0 < o < n/(4L?). By the preceding lemma
and by Lemma 4, there exists some N such that if N < n <n’, we have

|)‘(0n) - >‘n| < a,
and
n'—1
Z em(d)| < «
Using Lemma 6,
n'—1
GOn) > $0n) + > em(e) > ¢(0n) —, N <n <,
m=n

33

MOn) = (L2 /) AOnr) = Aw)* = MO2) = (L7 /m)(A(62) = X)* = «,

which implies
AOn) > M6, — (L?a? /1) — a, N <n<n

Therefore,
liminf A(6,/) > \(6,) — (L*a? /1) — a, N <mn,

n/—o0 -

and this implies that

. . . 2 9 .
lim inf A(6m) 2> limsup A(8m) — (L%e”/n) — a.

Since « can be chosen arbitrarily small, we have lim inf,, o A(0y,) > limsup,, o A(Om),

and since the sequence A(0y,) is bounded, we conclude that it converges. Using also Lemma,

10, it follows that A,, converges as well. a

A.3 Convergence of VA(6,,)

In the preceding subsection, we have shown that A(6,,) and Am converge to a common
limit. It now remains to show that VA(6,) converges to zero.
Since A(6,) — Ay, converges to zero, the algorithm is of the form

9m+1 =0, + 7mE0m [T](Vk(gm) + em) + €m,

where e, converges to zero and ¢,, is a summable sequence. This is a gradient method
with errors, similar to the methods considered in [Del96] and [BT97]. However, [Del96]
assumes the boundedness of the sequence of iterates, and the results of [BT97] do not
include the term e,,. Thus, while the situation is very similar to that considered in these
references, a separate proof is needed.

We will first show that lim inf,, o ||[VA(0r,)]| = 0. Suppose the contrary. Then, there
exists some € > 0 and some N such that ||VA(0,,)] > € for all m > N. In addition, by
taking N large enough, we can also assume that ||ey,|| < €/2. Then, it is easily checked
that

N

VAW - (VAWO) +) 2 5
Let ¢(r) = A(f). Note that ¢ € &. We have

AOm+1) = AOm) + YmEp, [TIVA(Or) - (VA(On) + em) + em(d)
2
€
> ANOm) + 'Ym? + em(9)- (28)
Since &, (¢) is summable (Lemma 4), but ,, v, = 00, we conclude that A(6,,) converges
to infinity, which is a contradiction.
Next we show that limsup,,_ . [|[VA(0)]| = 0. Suppose the contrary. Then, there
exists some € > 0 such that ||[VA(6,)| > € for infinitely many indices n. For any such n,

34

let n' be the first subsequent time that ||VA(0,)|| < €/2. Then,

(e

< V@) = [IVAE)l
< [VA(BR) = VAG)|l
< CHTTL - 'rn’H

n'—1 n'—1

= C Z Y h(rm) + Z Em

n'—1

D em
m=n

IN

n'—1
C Y Ymllh(rm)l| +C

‘ ?

for some constant C, as V2\(6) is bounded (Lemma 1). Recall that || (r,,)| is bounded by
some constant B. Furthermore, when n is large enough, the summability of the sequence
em yields C| ?,;;TIL em|| < €/4. This implies that ”m,;,ll Ym > €/4CB. By an argument
very similar to the one that led to Eq. (28), it is easily shown that there exists some 3 > 0
such that

A(n) = A(0n) + B,

which contradicts the convergence of the sequence A(6,,). O

B Proof of Proposition 4

In this section, we prove the convergence of the on-line method introduced in Section 4,
which is described by

Ory1 = O+ (Vgikwk) + (93, (Ok) — S\k)zk)a

Xev1 = N+ 17590, (0k) — Me),
0, if g1 = "
P+ 2 VPisinss (9k) , otherwise.
Pigigyq (0k)

The proof has many common elements with the proof of Proposition 3. For this reason, we
will only discuss the differences in the two proofs. In addition, whenever routine arguments
are used, we will only provide an outline.

As in Appendix A, we let 7, = (0, S\k) Note, however, the different meaning of the
index k which is now advanced at each time step, whereas in Appendix A it was advanced
whenever the state i* was visited. We also define an augmented state zx = (ig, 2k).

We rewrite the update equations as

Tkt = Tk + VR (zE, 7)),
where

Vi, (0k) + (93, (Ok) — M) 2k] _ (29)

Bloere) = l n(gik(gk)_j‘k)

35

Consider the sequence of states (ig, i1, . ..) visited during the execution of the algorithm.
As in Section 3, we let ¢, be the mth time that the recurrent state ¢* is visited. Also, as

in Appendix A, we let N
Fm = {00, 20,50, --,01,, }

stand for the history of the algorithm up to and including time %,,.

The parameter 0y keeps changing between visits to state ¢*, which is a situation some-
what different than that considered in Lemma 2(a). Nevertheless, using Assumption 5, a
similar argument applies and shows that for any positive integer s, there exists a constant

Dy such that
E(tms1 —tm)’ | Fm] < Ds.

We have

tmg1—1

Ttppr = Tty T Z Vi Rz, 1)
k=tm

= Ttm + :}’Imh(rtm) + Em,

where ¥, and ¢, are given by
tmg1—1

Ym = Z V>

k=t
Em= D W (R(fﬂk,Tk) - E(Ttm)) ;

and h is a scaled version of the function h in Appendix A, namely,
e | YO+ E300) N
) = 5 = ~
o[T] n(2©) = X)

We note the following property of the various stepsize parameters.

Lemma 12

(a) For any positive integer s, we have

(b) We have

with probability 1.

Proof: (a) ;From Eq. (30), and because v, is F,,-measurable, we have

E[’YtQm (tmy1 —tm)’] = E ['YthE[(th —tm)® | ‘7:m]] < E['YtQm]Ds-

36

(30)

(31)

(32)

(33)

Hence,
o0

o0
ZE')’t (tm+1 —)]SDSZ'YI%<007
k=1

and the result follows.
(b) By Assumption 4, we have

oo o0
D Am =D =00
m=1 k=1
Furthermore, since the sequence 7 is nonincreasing (Assumption 5), we have

'??n < 'Yth (tma1 — tm)Q-

Using part (a) of the lemma, we obtain that >.°°_; 42 has finite expectation and is there-
fore finite with probability 1. O

Without loss of generality, we assume that 7y, < 1 for all k. Then, the update
equation for A, implies that |Ax| < max{|X\o|,C}, where C is a bound on |g;(#)|. Thus,
|A| is bounded by a deterministic constant, which implies that the magnitude of h(ry) is
also bounded by a deterministic constant.

We now observe that Eq. (31) is of the same form as Eq. (25) that was studied in
the preceding appendix, except that we now have r; in place of r,, ¥, in place of
Ym» and h(ry,,) in place of h(ry,). By Lemma 12(b), the new stepsizes satisfy the same
conditions as those imposed by Assumption 4 on the stepsizes 7, of Appendix A. Also, in
the next subsection, we show that the series) e, converges. Once these properties are
established, the arguments in Appendix A remain valid and show that A(6;) converges,
and that VA(6;,,) converges to zero. Furthermore, we will see in the next subsection that
the total change of 6, between consecutive visits to i* converges to zero. This implies that
A(0k) converges and that V() converges to zero, and Proposition 4 is established.

B.1 Summability of ¢, and Convergence of the Changes in 6,

This subsection is devoted to the proof that the series) e, converges, and that the
changes of 0 between visits to ¢* converge to zero.

We introduce some more notation. The evolution of the augmented state xy = (i, 2x)
is affected by the fact that 0, changes at each time step. Given a time t,, at which ¢* is
visited, we define a “frozen” augmented state i = (if’, z}') which evolves the same way
as zy except that 6y is held fixed at 6, until the next visit at ¢*. More precisely, we let
mf:n = x¢,,. Then, for £ > t,, + 1, we let zf evolve as a time-homogeneous Markov chain
with transition probabilities p;;(6;,,). We also let t5, ., = min{k > ¢, | if =i*} be the
first time after ¢,, that 25 is equal to 7*, and

Z5+1 = Zk +LF F (Otm)

We start by breaking down ¢, as follows:

tmg1—1

em =Y (R(xk,rk)—ﬁ(nm))
k—tm

37

where

g1 —1
g%) = Z (’th_’)’k)h(rtm)v
k=tm
tf‘n+1*1
e = > [R("Ekartm)—h(”m)]’
k=tm
g1 —1 N
= e Y[Rl =)
k=tm
tﬂ+1*1
— Z {R(wﬁ,rtm) — h(Ttm)] ;
k=tm
tm+1_1
8%) = Y. Z [R(.’E]g, 'rk;) R(-’Eka Ttm)]
k=tm
tny1—1
e = 3" (v — W) Rlwp, i)
k=tm

(n)

We will show that each one of the series », em
bility 1.

We make the following observations. The ratio L;,;, () is bounded because of
Assumption 3. This implies that between the times ¢, and t,, 1 that * is visited, the
magnitude of zj is bounded by C(#,,+1—t.,) for some constant C. Similarly, the magnitude
of z[' is bounded by C(tf || —t,). Using the boundedness of Ak and h(ry,), together with
the update equations for 6; and S\k, we conclude that there exists a (deterministic) constant
C, such that for every m, we have

,n=1,...,5, converges with proba-

IR@r i)l < Cltmar —tm), k€ {tms .o tmg1 — 1}, (34)

IRzt i)l < Cltmpy —tm)y k€ {tmyoo tppyn — 1}, (35)

Ire =l < Co (bt — tm)? k€ {tmy- o tmgr — 1}, (36)

IR(@k,7e,) = Rz,)l < Cay (gt — tm)®, K€ {tmy- oot — 1} (37)

(1)

Lemma 13 The series), €m converges with probability 1.

Proof: Let B be a bound on ||i(r)||. Then, using Assumption 5, we have

tmg1—1

1< B D" (W = W) < BAY, (s =t
k=tm

Then, Lemma 12(a), implies that), ||€,(%) || has finite expectation, and is therefore finite
with probability 1. O

Lemma 14 The series), 67(73) converges with probability 1.

38

Proof: When the parameters 8 and A are frozen to their values at time tm, the total

th -1 - . . Lo
update y,7" R(xf,r,,) coincides with the update Hy,(ry,) of the algorithm studied in
Appendix A. Using the discussion in the beginning of that appendix, we have E[H,,(r,) |
Fm] = h(ry,,). Furthermore, observe that

F
[

E| > hlry,) | Fn| = h(r,)Ey,, [T] = h(r,).
k=t

Thus, E[ag) | Fin] = 0. Furthermore, using Eq. (34), we have
E[HE%?HZ |]:m] < 07t2m (tm+1 - tm)4'

Using Lemma 12(a), we obtain

oo
E [Z Ie@)1?] < oo.
m=1
Thus,), 55,3) is martingale with bounded variance and, therefore, converges. O

Lemma 15 The series), 552) converges with probability 1.

Proof: The proof is based on a coupling argument. For k = t,,,...,tn+1 — 1, the two
processes zjp and :JckF can be defined on the same probability space as follows. Suppose
that i and sz are both equal to some particular state . We partition the unit interval
into N subintervals, each of length p;;(0;), j =1,..., N. The next state i;4; is obtained
by generating a uniform random variable U and selecting the state j associated with the
particular subinterval into which U belongs. The same random variable U is used to
select il 41, except that we now have a partition into subintervals of length pi;(0F). The
probability that U causes i;,1 and sz 41 to be different is bounded by N max; ; |p;; (k) —
pi;(0F)|. Using the assumption that the transition probabilities depend smoothly on 6, as
well as Eq. (36), we obtain

P(igyy # ikt i = i) < B0k — 07| < Bllrg — 71,1l < BOV,, (tmg1 — tm)?, - (38)

for some constants B and C.
We define &, to be the event

Em = {xkF # xp, for some k = t,,, ..., t;my1}-
Using Eq. (38), we obtain
tm+1—1
2 _ 3
P(&m | tm;tmt1) < BC Z Ve (bmt1 — tm)” = BCOY,, (tmg1 — tm)”.
k=tm

Note that if the event &£,, does not occur, then 555’;) = 0. Thus,

Bl | tmy tmr1] = PEm | trms tms) BN tmy tnsrs Ea)-

39

Since h(ry) is bounded, and using also the bounds (34)-(35), we have
e < Yem C (i1 =) + (tgr — tn)?),
for some new constant C'. We conclude that
Ellle@ 1 | tms trt 1 Em] < Yo O (bt = tn)? + El(tirss = tm)? | s a1, Em)).
Now, it is easily verified that

2E[(t£+1 - tm+1)2 | tmv tm+17 Em] + 2(tm+1 - tm)2
C(tm+1 - tm)27

E[(tgl-l—l - tm)2 | tmatm+175m]) S
<

for some new constant C. By combining these inequalities, we obtain

E[Ilé‘%?i)ll | tmatm—l—lagm] < C'th(tm-i-l - tm)Qa

and
E[leD N | ta, tms1] < BCY} (tmt1 — tm)®,

for some different constant C. Using Lemma 12(a), >,, Heg) || has finite expectation, and
is therefore finite with probability 1. O

(4)

Lemma 16 The series), em converges with probability 1.

Proof: Using Eq. (37), we have

g1 —1
||5£7%)|| < VYt Z CYty (tmy1 — tm)3 = C')’tQm (tma1 — tm)4-
k=t

Using Lemma 12(a), Y, ||€£3) || has finite expectation, and is therefore finite with proba-
bility 1. O

(5)

Lemma 17 The series), em converges with probability 1.

Proof: Using Assumption 5 and the bound (34) on ||R(zk, k)|, we have

tm+1—1
||€£7§,)|| < Cltmy1 — tm) Z (Ve — k) < AC'Yth (tma1 — tm)p+1-
k=tm

Using Lemma 12(a), Y, ||€,(q§) || has finite expectation, and is therefore finite with proba-
bility 1. 0

We close by establishing the statement mentioned at the end of the preceding subsec-
tion, namely, that the changes in r (and, therefore, the changes in 6 as well) between
visits to the recurrent state i* tend to zero as time goes to infinity. Indeed, Eq. (34) es-
tablishes a bound on ||ry — ¢, || for & =ty ..., tmy1 — 1, which converges to zero because
of Lemma 12(a).

40

