Lecture Note 3

1 Value Iteration

Using value iteration, starting at an arbitrary J_0 , we generate a sequence of $\{J_k\}$ by

$$J_{k+1} = TJ_k, \forall \text{ integer } k \ge 0.$$

We have shown that the sequence $J_k \to J^*$ as $k \to \infty$, and derived the error bounds

$$||J_k - J^*||_{\infty} \le \alpha^k ||J_0 - J^*||_{\infty}$$

Recall that the greedy policy u_J with respect to value J is defined as $TJ = T_{u_J}J$. We also denote $u_k = u_{J_k}$ as the greedy policy with respect to value J_k . Then, we have the following lemma.

Lemma 1 Given $\alpha \in (0, 1)$,

$$||J_{u_k} - J_k||_{\infty} \le \frac{1}{1 - \alpha} ||TJ_k - J_k||_{\infty}$$

Proof:

$$J_{u_{k}} - J_{k} = (I - \alpha P_{u_{k}})^{-1} g_{u_{k}} - J_{k}$$

$$= (I - \alpha P_{u_{k}})^{-1} (g_{u_{k}} + \alpha P_{u_{k}} J_{k} - J_{k})$$

$$= (I - \alpha P_{u_{k}})^{-1} (TJ_{k} - J_{k})$$

$$= \sum_{t=0}^{\infty} \alpha^{t} P_{u_{k}}^{t} (TJ_{k} - J_{k})$$

$$\leq \sum_{t=0}^{\infty} \alpha^{t} P_{u_{k}}^{t} e||TJ_{k} - J_{k}||_{\infty}$$

$$= \sum_{t=0}^{\infty} \alpha^{t} e||TJ_{k} - J_{k}||_{\infty}$$

where I is an identity matrix, and e is a vector of unit elements with appropriate dimension. The third equality comes from $TJ_k = g_{u_k} + \alpha P_{u_k} J_k$, i.e., u_k is the greedy policy w.r.t. J_k , and the forth equality holds because $(I - \alpha P_{u_k})^{-1} = \sum_{t=0}^{\infty} \alpha^t P_{u_k}^t$. By switching J_{u_k} and J_k , we can obtain $J_k - J_{u_k} \leq \frac{e}{1-\alpha} ||TJ_k - J_k||_{\infty}$, and hence conclude

$$|J_{u_k} - J_k| \le \frac{e}{1 - \alpha} |TJ_K - J_K|$$

or, equivalently,

$$||J_{u_k} - J_k||_{\infty} \le \frac{1}{1 - \alpha} ||TJ_k - J_k||_{\infty}.$$

Theorem 1

$$||J_{u_k} - J^*||_{\infty} \le \frac{2}{1-\alpha}||J_k - J^*||_{\infty}$$

Proof:

$$\begin{aligned} ||J_{u_k} - J^*||_{\infty} &= ||J_{u_k} - J_k + J_k - J^*||_{\infty} \\ &\leq ||J_{u_k} - J_k||_{\infty} + ||J_k - J^*||_{\infty} \\ &\leq \frac{1}{1 - \alpha} ||TJ_k - J^* + J^* - J_k||_{\infty} + ||J_k - J^*||_{\infty} \\ &\leq \frac{1}{1 - \alpha} (||TJ_k - J^*||_{\infty} + ||J^* - J_k||_{\infty}) + ||J_k - J^*||_{\infty} \\ &\leq \frac{2}{1 - \alpha} ||J_k - J^*||_{\infty} \end{aligned}$$

The second inequality comes from Lemma 1 and the third inequality holds by the contraction principle. \Box

2 Optimality of Stationary Policy

Before proving the main theorem of this section, we introduce the following useful lemma.

Lemma 2 If $J \leq TJ$, then $J \leq J^*$. If $J \geq TJ$, then $J \geq J^*$.

Proof: Suppose that $J \leq TJ$. Applying operator T on both sides repeatedly k-1 times and by the monotonicity property of T, we have

$$J \le TJ \le T^2J \le \dots \le T^kJ.$$

For sufficiently large k, $T^k J$ approaches to J^* . We hence conclude $J \leq J^*$. The other statement follows the same argument.

We show the optimality of the stationary policy by the following theorem.

Theorem 2 Let $u = (u_1, u_2, ...)$ be any policy and let $u^* \equiv u_{J^*}^{1}$. Then,

$$J_u \ge J_{u^*} = J^*.$$

Moreover, let u be any stationary policy such that $T_u J^* \neq T J^*$.² Then, $J_u(x) > J^*(x)$ for at least one state $x \in S$.

Proof: Since g. and J are finite, there exists a real number M satisfying $||g_u||_{\infty} \leq M$ and $||J^*||_{\infty} \leq M$. Define

$$J_u^k = T_{u_1} T_{u_2} \dots T_{u_k} J^*.$$

¹That is, $J^* = TJ^* = T_{u^*}J^*$.

²That is to say that u is not a greedy policy w.r.t. J^* .

Then

$$||J_u^k - J_u||_{\infty} \le M(1 + \frac{1}{1 - \alpha})\alpha^k \to 0 \text{ as } k \to \infty.$$

If $u = (u^*, u^*, ...)$, then

$$||J_{u^*} - J_{u^*}^k||_{\infty} \to 0 \text{ as } k \to \infty.$$

Thus, we have $J_{u^*}^k = T_{u^*}^k J^* = T_{u^*}^{k-1}(TJ^*) = T_{u^*}^{k-1}J^* = J^*$. Therefore $J_{u^*} = J^*$. For any other policy, for all k,

$$J_{u} \geq J_{u}^{k} - M\left(1 + \frac{1}{1 - \alpha}\right)\alpha^{k}$$

$$= T_{u_{1}} \dots \underbrace{T_{u_{k}}J^{*}}_{\geq TJ^{*}} - M\left(1 + \frac{1}{1 - \alpha}\right)\alpha^{k}$$

$$\geq T_{u_{1}} \dots T_{u_{k-1}}\underbrace{TJ^{*}}_{=J^{*}} - M\left(1 + \frac{1}{1 - \alpha}\right)\alpha^{k}$$

$$\geq \dots \geq J^{*} - M\left(1 + \frac{1}{1 - \alpha}\right)\alpha^{k}$$

Therefore $J_u \ge J^*$. Take a stationary policy u such that $T_u J^* \ne T J^*$, i.e. $T_u J^* \ge T J^*$, and \exists at least one state $x \in S$ such that $(T_u J^*)(x) > (T J^*)(x)$. Observe

$$J^* = TJ^* \le T_u J^*$$

Applying T_u on both sides and by the monotonicity property of T, or applying Lemma 2,

$$J^* \le T_u J^* \le T_u^2 J^* \le T_u^k J^* \to J_u$$

and $J^*(x) < J_u(x)$ for at least one state x.

3 Policy Iteration

The policy iteration algorithm proceeds as follows.

- 1. Start with policy u_0 , k=0;
- 2. Evaluate $J_{u_k} = g_{u_k} + \alpha P_{u_k} J_{u_k}$;
- 3. Let $u_{k+1} = u_{J_{u_k}}$;
- 4. If $u_{k+1} = u_k$ stop; otherwise, go back to Step 2.

Note that Step 2 aims at getting a better policy for each iteration. Since the set of policies is finite, the algorithm will terminate in finite steps. We state this concept formally by the following theorem.

Theorem 3 Policy iteration converges to u^* after a finite number of iterations.

Proof: If u_k is optimal, then we are done. Now suppose that u_k is not optimal. Then

$$TJ_{u_k} \le T_{u_k}J_{u_k} = J_{u_k}$$

with strict inequality for at least one state x. Since $T_{u_{k+1}}J_{u_k} = TJ_{u_k}$ and $J_{u_k} = T_{u_k}J_{u_k}$, we have

$$J_{u_k} = T_{u_k} J_{u_k} \ge T J_{u_k} = T_{u_{k+1}} J_{u_k} \ge T_{u_{k+1}}^n J_{u_k} \to J_{u_{k+1}} \text{ as } n \to \infty.$$

Therefore, policy u_{k+1} is an improvement over policy u_k .

In step 2, we solve $J_{u_k} = g_{u_k} + \alpha P_{u_k} J_{u_k}$, which would require a significant amount of computations. We thus introduce another algorithm which has fewer iterations in step 2.

3.1 Asynchronous Policy Iteration

The algorithm goes as follows.

- 1. Start with policy u_0 , cost-to-go function J_0 , k = 0
- 2. For some subset $S_k \subseteq S$, do one of the following

(i) value update $(J_{k+1})(x) = (T_{u_k}J_k)(x), \forall x \in \mathcal{S}_k,$ (ii) policy update $u_{k+1}(x) = u_{J_k}(x), \forall x \in \mathcal{S}_k$

3. k = k + 1; go back to step 2

Theorem 4 If $T_{u_0}J_0 \leq J_0$ and infinitely many value and policy updates are performed on each state, then

$$\lim_{k \to \infty} J_k = J^*$$

Proof: We prove this theorem by two steps. First, we will show that

$$J^* \le J_{k+1} \le J_k, \quad \forall k.$$

This implies that J_k is a nonincreasing sequence. Since J_k is lower bounded by J^* , J_k will converge to some value, i.e., $J_k \searrow \overline{J}$ as $k \to \infty$. Next, we will show that J_k will converge to J^* , i.e., $\overline{J} = J^*$.

Lemma 3 If $T_{u_0}J_0 \leq J_0$, the sequence J_k generated by asynchronous policy iteration converges.

Proof: We start by showing that, if $T_{u_k}J_k \leq J_k$, then $T_{u_{k+1}}J_{k+1} \leq J_{k+1} \leq J_k$. Suppose we have a value update. Then,

$$\forall x \in \mathcal{S}_k, \quad J_{k+1}(x) = (T_{u_k}J_k)(x) \le J_k(x)$$

$$\forall x \notin \mathcal{S}_k, \quad J_{k+1}(x) = J_k(x)$$

$$J_{k+1} \le J_k$$

Thus,

$$(T_{u_{k+1}}J_{k+1})(x) = (T_{u_k}J_{k+1})(x) \le (T_{u_k}J_k)(x) \begin{cases} = J_{k+1}(x), & \forall x \in \mathcal{S}_k \\ \le J_k(x) = J_{k+1}(x), & \forall x \notin \mathcal{S}_k \end{cases}$$

Now suppose that we have a policy update. Then $J_{k+1} = J_k$. Moreover, for $x \in S_k$, we have

(

$$T_{u_{k+1}}J_{k+1})(x) = (T_{u_{k+1}}J_k)(x)$$

= $(TJ_k)(x)$
 $\leq (T_{u_k}J_k)(x)$
 $\leq J_k(x)$
= $J_{k+1}(x).$

The first equality follows from $J_k = J_{k+1}$, the second equality and first inequality follows from the fact that $u_{k+1}(x)$ is greedy with respect to J_k for $x \in S_k$, the second inequality follows from the induction hypothesis, and the third equality follows from $J_k = J_{k+1}$. For $x \notin S_k$, we have

$$(T_{u_{k+1}}J_{k+1})(x) = (T_{u_k}J_k)(x)$$

 $\leq J_k(x)$
 $= J_{k+1}(x).$

The equalities follow from $J_k = J_{k+1}$ and $u_{k+1}(x) = u_k(x)$ for $x \notin S_k$, and the inequality follows from the induction hypothesis.

Since by hypothesis $T_{u_0}J_0 \leq J_0$, we conclude that J_k is a decreasing sequence. Moreover, we have $T_{u_k}J_k \leq J_k$, hence $J_k \geq J_{u_k} \geq J^*$, so that J_k is bounded below. It follows that J_k converges to some limit \overline{J} .

Lemma 4 Suppose that $J_k \searrow \overline{J}$, where J_k is generated by asynchronous policy iteration, and suppose that there are infinitely many value and policy updates at each state. Then $\overline{J} = J^*$.

Proof: First note that, since $TJ_k \leq J_k$, by continuity of the operator T, we must have $T\overline{J} \leq \overline{J}$. Now suppose that $(T\overline{J})(x) < \overline{J}(x)$ for some state x. Then, by continuity, there is an iteration index \overline{k} such that $(TJ_k)(x) < \overline{J}(x)$ for all $k \geq \overline{k}$. Let $k'' > k' > \overline{k}$ correspond to iterations of the asynchronous policy iteration algorithm such that there is a policy update at state x at iteration k', a value update at state x at iteration k'', and no updates at state x in iterations k' < k < k''. Such iterations are guaranteed to exist since there are infinitely many value and policy update iterations at each state. Then we have $u_{k''}(x) = u_{k'+1}(x)$, $J_{k''}(x) = J_{k'}(x)$, and

$$J_{k''+1}(x) = (T_{u_{k''}}J_{k''})(x)$$

= $(T_{u_{k'+1}}J_{k''})(x)$
 $\leq (T_{u_{k'+1}}J_{k'})(x)$
= $(TJ_{k'})(x)$
 $< \overline{J}.$

The first equality holds because there is a value update at state x at iteration k'', the second equality holds because $u_{k''}(x) = u_{k'+1}(x)$, the first inequality holds because J_k is decreasing and $T_{u_{k'+1}}$ is monotone and the third equality holds because there is a policy update at state x at iteration k'.

We have concluded that $J_{k''+1} < \overline{J}$. However by hypothesis $J_k \downarrow \overline{J}$, we have a contradiction, and it must follow that $T\overline{J} = \overline{J}$, so that $\overline{J} = J^*$.