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1 Value Iteration 

Using value iteration, starting at an arbitrary J0, we generate a sequence of {Jk } by 

Jk+1 = TJk , ∀ integer k ≥ 0. 

We have shown that the sequence Jk → J∗ as k → ∞, and derived the error bounds 

||Jk − J∗||∞ ≤ αk ||J0 − J∗||∞ 

Recall that the greedy policy uJ with respect to value J is defined as TJ = TuJ J . We also denote uk = uJk 

as the greedy policy with respect to value Jk. Then, we have the following lemma. 

Lemma 1 Given α ∈ (0, 1), 
1 ||Juk − Jk||∞ ≤ 

1 − α
||TJk − Jk||∞ 

Proof: 

Juk − Jk	 = (I − αPuk )
−1 guk − Jk 

= (I − αPuk )
−1 (guk + αPuk Jk − Jk ) 

= (I − αPuk )
−1 (TJk − Jk ) 

∞
= 

� 
αtP t (TJk − Jk )uk 

t=0 
∞� 

αtP t 
uk 

e||TJk − Jk||∞≤ 
t=0 
∞

=	
� 

αt e||TJk − Jk||∞ 

t=0 
e 

= 
1 − α

||TJk − Jk||∞ 

where I is an identity matrix, and e is a vector of unit elements with appropriate dimension. The third 

equality comes from TJk = guk + αPuk Jk, i.e., uk is the greedy policy w.r.t. Jk, and the forth equality holds 
ebecause (I− αPuk )

−1 = 
�∞

αtP t . By switching Juk and Jk, we can obtain Jk − Jukt=0 uk 
≤ 1−α ||TJk − Jk||∞, 

and hence conclude 
e 

TJK − JK|Juk − Jk | ≤ 
1 − α

| | 
or, equivalently, 

1 ||Juk − Jk ||∞ ≤ 
1 − α

||TJk − Jk ||∞. 
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Theorem 1 
2 ||Juk − J∗||∞ ≤ 

1 − α
||Jk − J∗||∞ 

Proof: 

||∞ = uk − J∗ uk − Jk + Jk − J∗||J ||J ||∞ 

uk
≤ ||J

1 
− Jk ||∞ + ||Jk − J∗||∞ 

≤ 
1 − α

||TJk − J∗ + J∗ − Jk ||∞ + ||Jk − J∗||∞ 

1 − Jk ||∞) + ||Jk − J∗≤ 
1 − α 

(||TJk − J∗||∞ + ||J∗ ||∞ 

2 ≤ 
1 − α

||Jk − J∗||∞ 

The second inequality comes from Lemma 1 and the third inequality holds by the contraction principle. 2 

2 Optimality of Stationary Policy 

Before proving the main theorem of this section, we introduce the following useful lemma. 

Lemma 2 If J ≤ TJ , then J ≤ J∗. If J ≥ TJ , then J ≥ J∗. 

Proof: Suppose that J ≤ TJ . Applying operator T on both sides repeatedly k − 1 times and by the 

monotonicity property of T , we have 

.J ≤ TJ ≤ T 2J ≤ · · · ≤ T k J

For sufficiently large k, T k J approaches to J∗. We hence conclude J ≤ J∗. The other statement follows the 

same argument. 2 

We show the optimality of the stationary policy by the following theorem. 

Theorem 2 Let u = (u1, u2, . . .) be any policy and let u∗ ≡ uJ∗ 
1 . Then, 

Ju ≥ Ju∗ = J∗. 

Moreover, let u be any stationary policy such that TuJ∗ = TJ∗. 2 Then, Ju(x) > J∗(x) for at least one state 

x ∈ S. 

Proof: Since g and J are finite, there exists a real number M satisfying ||gu||∞ ≤ M and ||J∗· ||∞ ≤ M . 
Define 

Jk = Tu1 T . . . Tuk J
∗.u u2 

1That is, J∗ = TJ∗ = Tu∗ J∗.

2That is to say that u is not a greedy policy w.r.t. J∗.
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Then 
1 

u − Ju||∞ ≤ M(1 + 
1 − α

)αk → 0 as k → ∞.||Jk 

If u = (u∗, u∗, . . . ), then 

u∗ − Jk 0 as k → ∞.||J u∗ ||∞ → 

Thus, we have Jk 
u∗ = Tu

k ∗ J∗ = T k−1(TJ∗) = T k−1J∗ = J∗. Therefore Ju∗ = J∗. For any other policy, for u∗ u∗ 

all k, 

1 
u − M 

�
1 − α 

� 

αkJu 1 + ≥ Jk 

1 
= Tu1 . . . Tuk J

∗ −M 

�
1 + 

1 − α 

� 

αk 

≥TJ∗ 

�
1 

� 

αkTu1 . . . Tuk−1 TJ∗ 1 + ≥ ���� −M 
1 − α 

=J∗ 

1 
. . . ≥ J∗ 

�
1 + 

1 − α 

� 

αk − M≥ 

Therefore Ju ≥ J∗. Take a stationary policy u such that TuJ∗ = TJ∗, i.e. TuJ∗ ≥ TJ∗, and ∃ at least one 

state x ∈ S such that (TuJ∗)(x) > (TJ∗)(x). Observe 

J∗ = TJ∗ ≤ TuJ∗ 

Applying Tu on both sides and by the monotonicity property of T , or applying Lemma 2, 

J∗ ≤ TuJ∗ ≤ T 2J∗ ≤ T kJ∗ Juu u → 

and J∗(x) < Ju(x) for at least one state x. 2 

3 Policy Iteration 

The policy iteration algorithm proceeds as follows. 

1. Start with policy u0, k=0; 

2. Evaluate Juk = g + αPuk Juk ;uk 

3. Let uk+1 = uJ ;uk 

4. If uk+1 = uk stop; otherwise, go back to Step 2. 

Note that Step 2 aims at getting a better policy for each iteration. Since the set of policies is finite, the 

algorithm will terminate in finite steps. We state this concept formally by the following theorem. 

Theorem 3 Policy iteration converges to u∗ after a finite number of iterations. 
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Proof: If uk is optimal, then we are done. Now suppose that uk is not optimal. Then 

TJuk ≤ Tuk J = Jukuk 

with strict inequality for at least one state x. Since Tuk+1 J = TJuk and Juk = Tuk J , we have 

. 

uk	 uk 

Juk = Tuk Juk ≥ TJuk = Tuk+1 Juk ≥ Tn Juk → Juk+1 as n →∞

Therefore, policy uk+1 is an improvement over policy uk . 2 

uk+1 

In step 2, we solve J = g + αPuk Juk , which would require a significant amount of computations. We 

thus introduce another algorithm which has fewer iterations in step 2. 
uk uk 

3.1 Asynchronous Policy Iteration 

The algorithm goes as follows. 

1. Start with policy u0, cost-to-go function J0, k = 0 

2. For some subset Sk ⊆ S, do one of the following 

(i) value update	 (Jk+1)(x) = (T Jk)(x),∀ k ,x ∈ Suk 

(ii) policy update	 uk+1(x) = uJk (x),∀ kx ∈ S

3. k = k + 1; go back to step 2 

Theorem 4 If Tu0 J0 ≤ J0 and infinitely many value and policy updates are performed on each state, then 

lim Jk = J∗. 
k→∞ 

Proof: We prove this theorem by two steps. First, we will show that 

J∗ ≤ Jk+1 ≤ Jk, ∀ k. 

This implies that Jk is a nonincreasing sequence. Since Jk is lower bounded by J∗, Jk will converge to some 

value, i.e., Jk � ¯ . Next, we will show that Jk will converge to J∗, i.e., J ̄= J∗.J as k →∞

Lemma 3 If Tu0 J0 ≤ J0, the sequence Jk generated by asynchronous policy iteration converges. 

Proof: We start by showing that, if Tuk Jk ≤ Jk, then Tuk+1 Jk+1 ≤ Jk+1 ≤ Jk. Suppose we have a value 

update. Then, 

k , Jk+1(x) = (T Jk )(x) ≤ Jk (x) 
� 

Jk+1 ≤ Jk
∀x ∈ S uk 

∀x / k , Jk+1(x) = Jk(x)∈ S

Thus, 
k(T Jk+1)(x) = (T Jk+1)(x) ≤ (Tuk Jk)(x) 

� 
= Jk+1(x), ∀x ∈ S

uk+1 uk ≤ Jk(x) = Jk+1(x), ∀x / k∈ S

4 



Now suppose that we have a policy update. Then Jk+1 = Jk. Moreover, for x ∈ Sk, we have 

(T Jk+1)(x) = (T Jk )(x)uk+1 uk+1 

= (TJk )(x) 

≤ (Tuk Jk )(x) 

≤ Jk(x) 

= Jk+1(x). 

The first equality follows from Jk = Jk+1, the second equality and first inequality follows from the fact that 
uk+1(x) is greedy with respect to Jk for x ∈ Sk, the second inequality follows from the induction hypothesis, 
and the third equality follows from Jk = Jk+1. For x �∈ Sk, we have 

(T Jk+1)(x) = (T Jk)(x)uk+1 uk 

≤ Jk (x) 

= Jk+1(x). 

The equalities follow from Jk = Jk+1 and uk+1(x) = uk (x) for x �∈ Sk , and the inequality follows from the 

induction hypothesis. 
Since by hypothesis Tu0 J0 ≤ J0, we conclude that Jk is a decreasing sequence. Moreover, we have 

Tuk Jk ≤ Jk , hence Jk ≥ J ≥ J∗, so that Jk is bounded bellow. It follows that Jk converges to some limit 
¯ 

uk 

J . 2 

Lemma 4 Suppose that Jk � J̄ , where Jk is generated by asynchronous policy iteration, and suppose that 
there are infinitely many value and policy updates at each state. Then J ̄= J∗. 

¯Proof: First note that, since TJk ≤ Jk , by continuity of the operator T , we must have TJ ̄ ≤ J . Now 
¯ ¯suppose that (TJ)(x) < J(x) for some state x. Then, by continuity, there is an iteration index ¯ k such that 

¯ ¯(TJk)(x) < J̄(x) for all k ≥ k. Let k�� > k� > k correspond to iterations of the asynchronous policy iteration 

algorithm such that there is a policy update at state x at iteration k�, a value update at state x at iteration 

k��, and no updates at state x in iterations k� < k < k��. Such iterations are guaranteed to exist since 

there are infinitely many value and policy update iterations at each state. Then we have uk�� (x) = uk� +1(x), 
Jk�� (x) = Jk� (x), and 

Jk�� +1(x) = (Tuk�� Jk�� )(x) 

= (Tuk� +1 
Jk�� )(x) 

≤ (Tuk� +1 
Jk� )(x) 

= (TJk� )(x) 

< ¯ J. 

The first equality holds because there is a value update at state x at iteration k��, the second equality holds 
because uk�� (x) = uk� +1(x), the first inequality holds because Jk is decreasing and Tuk� +1 

is monotone and 

the third equality holds because there is a policy update at state x at iteration k�. 
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We have concluded that Jk�� +1 < J ̄. However by hypothesis Jk J ̄, we have a contradiction, and it must 
¯ ¯follow that TJ ̄= J , so that J = J ∗. 

↓ 
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