Review of Last Lecture

- Phonon spectrum in solids
- Electronic band structure
- Density of states and carrier density

Phonons Dispersion in Crystals

Image removed due to copyright restrictions. Please see Fig. 1a and 2a in Giannozzi, Paolo, et al. "*Ab initio* Calculation of Phonon Dispersions in Semiconductors." *Physical Review B* 43 (March 1991): 7231-7242.

Nanoengineering Group

Nanoengineering Group

Electron Density

Simplified Kinetic Formulation of Thermoelectricity

Nanoengineering Group

Electrical Conduction

Isothermal Electrical Conductor

• Force on electrons

 $\mathbf{F} = -\mathbf{e}\mathbf{E} = \mathbf{m} \cdot \mathbf{d}\mathbf{v}/\mathbf{d}t$

- Collision within time τ
 Drift velocity
 - $v = -e\tau \epsilon/m = -\mu \epsilon$
- Mobility

$$\mu = \frac{e\,\tau}{m}$$

Nanoengineering Group

Electrical Field E

Mean free path

$$\Lambda = au_{V_{\uparrow}^{th}}$$

Thermal velocity

→X

• Current density and Ohm's law

$$\mathbf{J}_{e} = -en\mathbf{v} = ne^{2}\tau \mathbf{\mathcal{E}}/m$$

$$\mathbf{J}_{e} = \mathbf{\sigma}\mathbf{\mathcal{E}} = \mathbf{\sigma}\left(-\frac{d\phi}{dx}\right)$$

Electrostatic Potential

Coupled Charge Transport

• Electrical current density:

$$J_{ex} = -\frac{1}{2} \Big[(ev_x n)_{x-v_x\tau} - (ev_x n)_{x+v_x\tau} \Big] + \sigma \Big(-\frac{d\varphi}{dx} \Big)$$

$$= ev_x^2 \tau \frac{dn}{dx} + \sigma \frac{d\varphi}{dx} \qquad n = 2 \Big(\frac{2\pi m^* \kappa_B T}{h^2} \Big)^{3/2} \exp \Big(-\frac{E_c - \mu}{k_B T} \Big)$$

$$= \frac{1}{3} ev^2 \tau \frac{n}{k_B T} \Big(\frac{d(\mu - E_c)}{dx} + \frac{E_c - \mu}{T} \frac{dT}{dx} \Big) + \sigma \Big(-\frac{d\varphi}{dx} \Big)$$

$$= \sigma \Big[-\frac{d\varphi}{dx} + \frac{1}{e} \frac{d(\mu - E_c)}{dx} \Big] + \frac{1}{3} ev^2 \tau \frac{n(E_c - \mu + 3k_B T/2)}{k_B T^2} \Big(-\frac{dT}{dx} \Big)$$

Nanoengineering Group

Coupled Charge Transport

Nanoengineering Group

Coupled Electron Heat Transport

- Thermodynamics $dU = \delta q + \mu dN$
- Heat Carried Per Charge:

 $(E-\mu)$

• Electrical heat flux:

$$J_{qx} = -\frac{1}{2} \left\{ \left[(E - \mu) v_x n \right]_{x - v_x \tau} - \left[(E - \mu) v_x n \right]_{x - v_x \tau} \right\} + (E - \mu) v_d n$$
$$= L_{21} \left(-\frac{d\Phi}{dx} \right) + L_{22} \left(-\frac{dT}{dx} \right)$$

Nanoengineering Group

Formal Theory

$$J_{bx}(x) = \sum_{p} \left[\frac{1}{V_{1}} \sum_{k_{x1}=-\infty}^{\infty} \sum_{k_{y1}=-\infty}^{\infty} \sum_{k_{z1}=-\infty}^{\infty} v_{x} bf \right] Distribution Function, Solving Boltzmann Eq.$$

$$b: = e \text{ current flux}; = (E-\mu) \text{ heat flux}$$

$$J_{ex} = L_{11} \left(-\frac{d\Phi}{dx} \right) + L_{12} \left(-\frac{dT}{dx} \right) \qquad \left(-\frac{d\Phi}{dx} \right) = \frac{1}{L_{11}} \left[J_{ex} - L_{12} \left(-\frac{dT}{dx} \right) \right]$$

$$J_{qx} = L_{21} \left(-\frac{d\Phi}{dx} \right) + L_{22} \left(-\frac{dT}{dx} \right) \qquad J_{qx} = \left(\frac{L_{21}}{L_{11}} J_{ex} \right) + \frac{L_{22}L_{11} - L_{12}L_{21}}{L_{11}} \left(-\frac{dT}{dx} \right)$$
Onsager Relation: $L_{21}=TL_{12}$
Peltier Heat Conduction Heat

Transport Coefficients

$$L_{11} = \sigma = -\frac{e^2}{3} \int v^2 \tau \frac{\partial f_o}{\partial E} D(E) dE$$

$$L_{12} = \frac{e}{3T} \int v^2 \tau \left(E - E_f \right) \frac{\partial f_o}{\partial E} D(E) dE$$

$$L_{22} = -\frac{1}{3T} \int \left(E - E_f \right)^2 v^2 \tau \frac{\partial f_o}{\partial E} D(E) dE$$

Wiedmann Franz Law

$$L = \frac{k_e}{\sigma T} = \frac{\pi^2}{3} \left(\frac{\kappa_B}{e}\right)^2 = 2.45 \times 10^{-8}$$
(W.Q K⁻²)

However, in semiconductors Lorentz number depends on n

Nanoengineering Group

Multiple Bands

$$S = \frac{S_a \sigma_a + S_b \sigma_b}{\sigma_a + \sigma_b}$$

$$k = k_L + k_a + k_b + (S_a - S_b)^2 T \frac{\sigma_a \sigma_b}{\sigma_a + \sigma_b}$$

Bipolar contribution

Nanoengineering Group

Property Examples

Images removed due to copyright restrictions. Please see Fig. 2a,b in Poudel, Bed, et al. "High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys." *Science* 320 (May 2, 2008): 634-638.

$$\sigma = \frac{e^2}{3} \int \tau \mathbf{v}^2 \mathbf{D}(\mathbf{E}) (-\partial f_{eq} / \partial \mathbf{E}) d\mathbf{E}$$

$$\propto \left(\mathbf{k}_{\rm B} T \right)^{\gamma+3/2} \exp \left(-\frac{E_c - \mu}{k_B T} \right)$$
For nondegenerate semiconductor only

- Optimal thermoelectric materials are usually degenerate
- Multiband transport important at high temperatures, leading to decreasing Seebeck coefficient with increasing temperature

MIT OpenCourseWare http://ocw.mit.edu

2.997 Direct Solar/Thermal to Electrical Energy Conversion Technologies Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.