

Nanoengineering Group

# **Property Examples**

Images removed due to copyright restrictions. Please see Fig. 2a, b in Poudel, Bed, et al. "High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys." *Science* 320 (May 2, 2008): 634-638.

 $\sigma = \frac{e}{3} \int \tau \mathbf{v}^2 \mathbf{D}(\mathbf{E}) (-\mathcal{J}_{eq}/\partial \mathbf{E}) d\mathbf{E}$   $\propto (\mathbf{k}_{\rm B}T)^{\gamma+3/2} \exp\left(-\frac{E_c - \mu}{k_B T}\right)$ For nondegenerate semiconductor only

- Optimal thermoelectric materials are usually degenerate
- Multiband transport important at high temperatures, leading to decreasing Seebeck coefficient with increasing temperature





# **Combined Electronic and Phononic Thermal Conductivity**

 $k = k_L + k_a + k_b + (S_a)$ 

#### Bipolar Contribution

Image removed due to copyright restrictions.

Please see Fig. 4 in Poudel, Bed, et al. "High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys." *Science* 320 (May 2, 2008): 634-638.

Nanoengineering Group

# **Thermoelectric Figure of Merit**

$$ZT = \frac{\sigma S^2 T}{k_e + k_p} = \frac{S^2}{\frac{k_e}{\sigma T} + \frac{k_p}{\sigma T}} = \frac{S^2}{L + \frac{k_p}{\sigma T}}$$

$$L = L(n) \approx 2.45 \times 10^{-3}$$

In Metal, S~10  $\mu$ V/K  $\frac{k_p}{\sigma T} \leq L$ ZT~0.01

**Good Thermoelectric Materials**  $4 \times 10^{-8}$ S~200 μV/K, ZT = $k_p \sim 1 W/mK$ , σ~10<sup>5</sup> S/m

Nanoengineering Group

$$2.45 \times 10^{-8} + 3 \times 10^{-8}$$

# **Properties vs. Carrier Density**

Image removed due to copyright restrictions. Please see Fig. 3 in Minnich, A. J., et al. "Bulknanostructured Thermoelectric Materials: Current Research and Future Prospects." *Energy and Environmental Science* 2 (2009): 466-479.

Nanoengineering Group

.

# Classical Thermoelectric Materials

Nanoengineering Group

-WARREN M. ROHSENOW HEAT AND MASS TRANSFER LABORATORY, MIT

nerry to



Minnich et al., Energy and Environmental Sci., Aug. 2009

-warren M. ROHSENOW HEAT AND MASS TRANSFER LABORATORY, MIT Nanoengineering Group

# **P-type and N-type**

Image removed due to copyright restrictions. Please see Fig. B2a,b in Snyder, G. Jeffrey, and Eric S. Toberer. "Complex Thermoelectric Materials." *Nature Materials* 7 (February 2008): 105-114.



it 2. sol En







- Better mobility
- Lower phonon thermal conductivity

From H.J. Goldsmid

Nanoengineering Group

Huang and Kaviany, PRB, 77, 125209 (2008)

 $-Te^{(1)}]-[Te^{(1)}-Bi-Te^{(2)}-Bi-Te^{(1)}]-[Te^{(1)}-Bi-Te^{(2)}-Bi-Te^{(1)}]-[Te^{(1)}-Bi-Te^{(2)}-Bi-Te^{(1)}]-[Te^{(1)}-Bi-Te^{(2)}-Bi-Te^{(1)}]-[Te^{(1)}-Bi-Te^{(2)}-Bi-Te^{(1)}]-[Te^{(1)}-Bi-Te^{(2)}-Bi-Te^{(1)}]-[Te^{(1)}-Bi-Te^{(2)}-Bi-Te^{(1)}]-[Te^{(1)}-Bi-Te^{(2)}-Bi-Te^{(1)}]-[Te^{(1)}-Bi-Te^{(2)}-Bi-Te^{(1)}]-[Te^{(1)}-Bi-Te^{(2)}-Bi-Te^{(1)}]-[Te^{(1)}-Bi-Te^{(2)}-Bi-Te^{(1)}]-[Te^{(1)}-Bi-Te^{(1)}]-[Te^{(1)}-Bi-Te^{(1)}]-[Te^{(1)}-Bi-Te^{(1)}]-[Te^{(1)}-Bi-Te^{(1)}]-[Te^{(1)}-Bi-Te^{(1)}]-[Te^{(1)}-Bi-Te^{(1)}]-[Te^{(1)}-Bi-Te^{(1)}]-[Te^{(1)}-Bi-Te^{(1)}]-[Te^{(1)}-Bi-Te^{(1)}]-[Te^{(1)}-Bi-Te^{(1)}]-[Te^{(1)}-Bi-Te^{(1)}]-[Te^{(1)}-Bi-Te^{(1)}]-[Te^{(1)}-Bi-Te^{(1)}]-[Te^{(1)}-Bi-Te^{(1)}]-[Te^{(1)}-Bi-Te^{(1)}]-[Te^{(1)}-Bi-Te^{(1)}]-[Te^{(1)}-Bi-Te^{(1)}]-[Te^{(1)}-Bi-Te^{(1)}]-[Te^{(1)}-Bi-Te^{(1)}]-[Te^{(1)}-Bi-Te^{(1)}]-[Te^{(1)}-Bi-Te^{(1)}]-[Te^{(1)}-Bi-Te^{(1)}]-[Te^{(1)}-Bi-Te^{(1)}]-[Te^{(1)}-Bi-Te^{(1)}]-[Te^{(1)}-Bi-Te^{(1)}]-[Te^{(1)}-Bi-Te^{(1)}]-[Te^{(1)}-Bi-Te^{(1)}]-[Te^{(1)}-Bi-Te^{(1)}]-[Te^{(1)}-Bi-Te^{(1)}]-[Te^{(1)}-Bi-Te^{(1)}]-[Te^{(1)}-Bi-Te^{(1)}]-[Te^{(1)}-Bi-Te^{(1)}]-[Te^{(1)}-Bi-Te^{(1)}]-[Te^{(1)}-Bi-Te^{(1)}]-[Te^{(1)}-Bi-Te^{(1)}]-[Te^{(1)}-Bi-Te^{(1)}]-[Te^{(1)}-Bi-Te^{(1)}]-[Te^{(1)}-Bi-Te^{(1)}]-[Te^{(1)}-Bi-Te^{(1)}]-[Te^{(1)}-Bi-Te^{(1)}]-[Te^{(1)}-Bi-Te^{(1)}]-[Te^{(1)}-Bi-Te^{(1)}]-[Te^{(1)}-Bi-Te^{(1)}]-[Te^{(1)}-Bi-Te^{(1)}]-[Te^{(1)}-Bi-Te^{(1)}]-[Te^{(1)}-Bi-Te^{(1)}]-[Te^{(1)}-Bi-Te^{(1)}]-[Te^{(1)}-Bi-Te^{(1)}]-[Te^{(1)}-Bi-Te^{(1)}]-[Te^{(1)}-Bi-Te^{(1)}]-[Te^{(1)}-Bi-Te^{(1)}]-[Te^{(1)}-Bi-Te^{(1)}]-[Te^{(1)}-Bi-Te^{(1)}]-[Te^{(1)}-Bi-Te^{(1)}]-[Te^{(1)}-Bi-Te^{(1)}]-[Te^{(1)}-Bi-Te^{(1)}]-[Te^{(1)}-Bi-Te^{(1)}]-[Te^{(1)}-Bi-Te^{(1)}]-[Te^{(1)}-Bi-Te^{(1)}]-[Te^{(1)}-Bi-Te^{(1)}]-[Te^{(1)}-Bi-Te^{(1)}]-[Te^{(1)}-Bi-Te^{(1)}]-[Te^{(1)}-Bi-Te^{(1)}]-[Te^{(1)}-Bi-Te^{(1)}]-[Te^{(1)}-Bi-Te^{(1)}]-[Te^{(1)}-Bi-Te^{(1)}]-[Te^{(1)}-Bi-Te^{(1)}]-[Te^{(1)}-Bi-Te^{(1)}]-[Te^{(1)}-Bi-Te^{(1)}]-[Te^{(1)}-Bi-Te^{(1)}]-[Te^{(1)}-Bi-Te^{(1)}]-[Te^{(1)}-Bi-Te$ 

Nanoengineering Group

-WARREN M. ROHSENOW HEAT AND MASS TRANSFER LABORATORY, MIT

Image removed due to copyright restrictions. Please see Fig. 1 (left) in Huang, Bao-Ling, and Massoud Kaviany. "*Ab initio* and Molecular Dynamics Predictions for Electron and Phonon Transport in Bismuth Telluride." *Physical Review B* 77 (2008): 125209.

# **Unit Cell**

## **Electronic Band Structure**

Images removed due to copyright restrictions.

Please see: Fig. 1 (right) in Huang, Bao-Ling, and Massoud Kaviany. "*Ab initio* and Molecular Dynamics Predictions for Electron and Phonon Transport in Bismuth Telluride." *Physical Review B* 77 (2008): 125209.

Fig. 4a in Larson, P., S. D. Mahanti, and M. G. Kanatzidis. "Electronic Structure and Transport of Bi2Te3 and BaBiTe3." *Physical Review B* 61 (March 2000): 8162-8171.

Larson et al., PRB, 61, 8261 (2000)

#### Nanoengineering Group

# **Figure of Merit**

Image removed due to copyright restrictions. Please see Fig. 16 in Huang, Bao-Ling, and Massoud Kaviany. "Ab initio and Molecular Dynamics Predictions for Electron and Phonon Transport in Bismuth Telluride." *Physical Review B* 77 (2008): 125209.

Nanoengineering Group

# **SiGe Alloys**

Abeles Virtual Crystal Model

#### **Rayleigh Scattering**

Image removed due to copyright restrictions. Please see Fig. 2 in Abeles, B. "Lattice Thermal Conductivity of Disordered Semiconductor Alloys at High Temperatures." *Physical Review* 131 (September 1963): 1906-1911.

$$\tau_p^{-1} = \frac{\omega^4 \delta^3 \Gamma}{4\pi v^3}$$

#### **Disorder Parameter**

$$\Gamma = x(1-x) \left[ \left( \frac{\Delta M}{M} \right)^2 + \varepsilon \left( \frac{\Delta \delta}{\delta} \right)^2 \right]$$

-WARREN M. ROHSENOW HEAT AND MASS TRANSFER LABORATORY, MIT

Nanoengineering Group

# **Commercial Materials**

- P-type: Bi<sub>2-x</sub>Sb<sub>x</sub>Te<sub>3</sub>
  N-type: Bi<sub>2</sub>Sb<sub>3-x</sub>Se<sub>x</sub>
  Doping mainly by defects
  - antisites, vacancies

# Oxides

ب م ۲

Images removed due to copyright restrictions. Please see Fig. 2, 3 in Koumoto, Kunihito, Ichiro Terasaki, and Ryoji Funahashi. "Complex Oxide Materials for Potential Thermoelectric Applications." *MRS Bulletin* 31 (March 2006): 206-210.

Nanoengineering Group

، با می ر جمع جار

-WARREN M. ROHSENOW HEAT AND MASS TRANSFER LABORATORY, MIT

# Half Heusler

Image removed due to copyright restrictions. Please see Fig. 4 in Nolas, George S., Joe Poon, and Mercouri Kanatzidis. "Recent Developments in Bulk Thermoelectric Materials." *MRS Bulletin* 31 (March 2006): 199-205.

Nanoengineering Group

٠

# **Other Bulk Materials**

Image removed due to copyright restrictions. Please see Fig. 2 in Snyder, G. Jeffrey, and Eric S. Toberer. "Complex Thermoelectric Materials." *Nature Materials* 7 (February 2008): 105-114.

All Classical Materials Used Alloy Scattering

Bi<sub>2</sub>Te<sub>3</sub> with Sb<sub>2</sub>Te<sub>3</sub> and Bi<sub>2</sub>Se<sub>3</sub>
PbTe with PbSe
Si with Ge

Nanoengineering Group

# Institutional Method

#### Structure

#### Properties

Formula TPn<sub>3</sub> T = transition metal (Co,Ir,Rh,Fe,Ni) Pn = pnicogen (P,As,Sb) space group Im3 8 formula units/cell



| @ 300K                                       | p-CoSb <sub>3</sub> | p-IrSb <sub>3</sub>  |
|----------------------------------------------|---------------------|----------------------|
| S [μV/K]                                     | 138                 | 72                   |
| $\mu_{\text{Hall}} [\text{cm}^2/\text{V-s}]$ | 1944                | 1320                 |
| p [cm <sup>-3</sup> ]                        | $4.4 \ 10^{18}$     | $1.1 \times 10^{19}$ |
| ρ [mΩ-cm]                                    | 0.74                | 0.44                 |
| к [W/m-K]                                    | 11.8                | 16.0                 |
| optical gap [eV]                             | 0.5                 | 1.4                  |
| a <sub>0</sub> [nm]                          | 0.9034              | 0.9250               |

#### References

J-P Fleurial, T. Caillat and A. Borshchevsky, AIP Press, 40-44 (1995); J.-P. Fleurial, A. Borshchevsky, T. Caillat, D. Morelli and G. P. Meisner, 15th International Conf. on Thermoelectrics (1996) 91-95; G. A. Slack and V.G. Tsoukala, J. Appl. Phys. 76 (1994) 1665.

Nanoengineering Group

# **Phonon Rattlers**

Images removed due to copyright restrictions. Please see Fig. 3, 4, 6 in Sales, B. C., et al. "Filled Skutterudite Antimonides: Electron Crystals and Phonon Glasses." *Physical Review B* 56 (December 1997): 15081-15089

ectonnier

Nanoengineering Group

.

# Nanostructuring Nanostructuring 2.991 Copyrigect 2.991 Copyrigect 5.01 2.991 Energy 5.901 2.991 Energy

Nanoengineering Group



Nanoengineering Group

### Superlattice Structures with Enhanced ZT

Images removed due to copyright restrictions. Please see

Fig. 1 in Springholz, G., et al. "Self-Organized Growth of Three-Dimensional Quantum-Dot Crystals with fcc-like Stacking and a Tunable Lattice Constant." *Science* 282 (October 23, 1998): 734-737.

Fig. 2 in Harman, T. C., et al. "Quantum Dot Superlattice Thermoelectric Materials and Devices." *Science* 297 (September 27, 2002): 2229-2232.

Fig. 5a in Venkatasubramanian, Rama, et al. "Thin-film Thermoelectric Devices with High Room-temperature Figures of Merit." *Nature* 413 (October 11, 2001): 597-602.

Fig. 4a in Venkatasubramanian, Rama, et al. "Low-temperature Organometallic Epitaxy and its Applications to Superlattice Structures in Thermoelectrics." *Applied Physics Letters* 75 (August 1999): 1104-1106.

| PbTe/PbTeSe   | Quantum Dot |
|---------------|-------------|
| Superlattices | d'a         |

Ternary: ZT=1.3-1.6 Quaternary: ZT=2 ∆T=43.7 K, Bulk ∆T=30.8 K T.C. Harman, Science, 2002

∆T=32.2 K, ZT ~2-2.4

R. Venkatasubramanian, Nature, 2001

| PbTe/PbSeTe Nanost                                         | ructure   | Bulk            | Bi <sub>2</sub> Te <sub>3</sub> /Sb <sub>2</sub> Te <sub>3</sub> | Superlattice  | Bulk         |
|------------------------------------------------------------|-----------|-----------------|------------------------------------------------------------------|---------------|--------------|
| Power Factor (µW/cmK <sup>2</sup> )<br>Conductivity (W/mK) | 32<br>0.6 | 28              |                                                                  | 40<br>0.5     | 50.9<br>1.26 |
| Nanoengineering Group                                      | -WARRE    | 5<br>N M. ROHSE | NOW HEAT AND MASS                                                | TRANSFER LABO | RATORY, MIT  |

#### Heat Conduction Mechanisms in Superlattices





#### **Major Conclusions:**

- Ideal superlattices do not cut off all phonons due to pass-bands
- Individual interface reflection is more effective
- Diffuse phonon interface scattering is crucial

**Periodic Structures Are Not Necessary, Nor Optimal!**Nanoengineering Group –WARREN M. ROHSENOW HEAT AND MASS TRANSFER LABORATORY, MIT



Nanoengineering Group -WARREN M. ROHSENOW HEAT AND MASS TRANSFER LABORATORY, MIT

# **Nanostructured Bi<sub>2</sub>Te<sub>3</sub>**



Images removed due to copyright restrictions.

Please see: Fig. 2e in Joshi, Giri, et al. "Enhanced Thermoelectric Figure of Merit in Nanostructured p-type Silicon Germanium Bulk Alloys." *Nano Letters* 8 (2008): 4670-4674.

Fig. 3d in Wang, X. W., et al. "Enhanced Thermoelectric Figure of Merit in Nanostructured n-type Silicon Germanium Bulk Alloy." *Applied Physics Letters* 93 (2008): 193121.

Poudel et al., Science, 320, 634, 2008

Nanoengineering Group

#### **Thermoelectric Properties: Bi<sub>2</sub>Te<sub>3</sub>**

Images removed due to copyright restrictions. Please see Fig. 2a, b, d, e in Poudel, Bed, et al. "High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys." *Science* 320 (May 2, 2008): 634-638.

Nanoengineering Group

•



Images removed due to copyright restrictions. Please see Fig. 3, 4 in Hsu, Kuei Fang, et al. "Cubic AgPbmSbTe(2+m): Bulk Thermoelectric Materialswith High Figure of Merit." *Science* 303 (February 6, 2004): 818-821.

Nanoengineering Group

# I-V-VI<sub>2</sub> Group

$$\kappa_L = A \frac{\bar{M}\theta^3 \delta}{\gamma^2 n^{2/3} T}$$

Thermal Expansion

-Bulk Modulus

Molar Volume

 $\gamma = \frac{3\beta BV_m}{C_V}$ 

Gruneisen Parameter Image removed due to copyright restrictions. Please see Fig. 2 in Morelli, D. T., V. Jovovic, and J. P. Heremans. "Intrinsically Minimal Thermal Conductivity in Cubic I-V-VI2 Semiconductors." *Physical Review Letters* 101 (July 2008): 035901.

Nanoengineering Group

Images removed due to copyright restrictions. Please see Fig. 1, 2, 3 in Rhyee, Jong Soo, et al. "Peierls Distortion as a Route to High Thermoelectric Performance in In4Se(3-d) Crystals." *Nature* 459 (June 18, 2009): 965-968.

# Charge Density Wave Peierls Instability

Rhyee et al., Nature, 459, 965 (2009)

Nanoengineering Group

# **Electron Quantization**





# Semiconductor

$$S \propto \frac{1}{qT} \frac{\int \pi \mathbf{v}^2 D(E)(E - E_F)(-\partial f_{eq}/\partial E)dE}{\int \pi \mathbf{v}^2 D(E)(-\partial f_{eq}/\partial E)dE} \propto \langle E - E_f \rangle$$

 $\sigma \propto \int \tau \mathbf{v}^2 \mathbf{D}(\mathbf{E}) (-\partial f_{eq}/\partial \mathbf{E}) d\mathbf{E}$ 

Maximize S<sup>2</sup> $\sigma$ , reducing k<sub>e</sub>



Nanoengineering Group

-WARREN M. ROHSENOW HEAT AND MASS TRANSFER LABORATORY, MIT



Nanoengineering Group

# **Experimental Proof of Principle**

Image removed due to copyright restrictions. Please see Fig. 1a in Hicks, L. D., et al. "Experimental Study of the Effect of Quantum-well Structures on the Thermoelectric Figure of Merit." *Physical Review B* 53 (April 1996): R10493-R10496.



Hicks and Dresselhaus (1993)

#### Nanoengineering Group

# Sample Calculation

By J.S. Heremans  $K_p=2$  W/mK d=2.5 nm m\*=0.15m



Nanoengineering Group

12.55'

Courtesy of Joseph P. Heremans. Used with permission.

# **Potential Pitfalls**

![](_page_38_Figure_1.jpeg)

Interface roughness scattering reducing τ Tunneling between layers reduces sharp DOS features

Nanoengineering Group –WARREN M. ROHSENOW HEAT AND MASS TRANSFER LABORATORY, MIT

# **Resonant Levels**

Images removed due to copyright restrictions. Please see Fig. 1, 3 in Heremans, Joseph P., et al. "Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States." *Science* 321 (July 2008): 554-557.

Heremans et al., Science, 321, 554 (2008)

Nanoengineering Group

![](_page_40_Figure_0.jpeg)

Nanoengineering Group

MIT OpenCourseWare http://ocw.mit.edu

2.997 Direct Solar/Thermal to Electrical Energy Conversion Technologies Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.