
GENETIC ALGORITHMS 
 
We will study a simple example, that of deciding the optimal way to paint a number of 
windows NW using NCOL different colors (for example, for 4 windows and a choice of 
4 different colors, one of many possible ways to paint these windows is 1432, where 1 
stands for BLUE, 2 for YELLOW, 3 for RED, 4 for GREEN).  
As we explained in class, there are the following phases in a genetic algorithm solution of 
an optimization problem: 

1. First decide on a sequence of “genes” that describe a solution, such as the one we 
gave above, 1432.  For all the convergence properties to hold, we ought to use 
dyadic notation (0 and 1) so this is a deviation from the formal procedure.  Had 
we decided to go the formal way, BLUE would be 00, YELLOW 01, RED 10, 
and GREEN 11, hence the sequence 1432 would become 00111001, i.e. a longer 
sequence. 

2. Second, we decide on a number for the population size NPOP.  The genes of each 
population sample are randomly selected. 

3. Third, we rank each sample, using an evaluator.  This means there is a way to 
place a “grade” on each sequence of genes.  In our example, let’s say the ideal 
combination is BLUE, BLUE, YELLOW, YELLOW, or 1122:  Then a choice of 
1432 would get, for example, a grade of 1 because only one window is “correctly” 
chosen. 

4. Now is the time for gene-crossing.  We select two samples of the population (the 
parents) – they can be two samples of the population chosen randomly, or we may 
choose the two highest ranking ones, then the two next highest ranking -- or any 
variation in between such methods.  Next, randomly “exchange” the genes of the 
two parents.  For example, with a random number generator we select the first 
gene to be from parent one if the number is less than 0.5, otherwise it is from the 
second parent; continue for the second gene, and so on.  This process generates a 
new sample, an offspring.  We generate several offsprings. 

5. Next is time for mutation.  First we choose a probability of mutation PMUT:  For 
each gene of every offspring we decide with a random number generator whether 
we will mutate or not.  If we mutate, then we exchange that particular gene 
randomly with another one (if it is BLUE we mutate it randomly to RED, or 
GREEN, or YELLOW). 

6. Next we use the evaluator for the offsprings to rank them, and put together 
parents and offsprings to form the new population.  We throw away the bottom 
performers out of the group and retain the top NPOP samples (from the combined 
group of parents and offsprings).  Next we go back to step 4 and repeat until we 
decide that we have converged. 

Convergence is usually defined when a large number of the population samples have the 
same genes and a high grade (Say half the population).  It is possible to have reached a 
local maximum – if we are not sure, for example, what a perfect score is (in our example 
we do, but there are cases when the evaluator gives relative scores only).  Mutation is a 
way to move out of a local maximum, so it may pay to use, at least initially, a high 
probability of mutation, but it may also slow down convergence by moving solutions 
randomly around. 
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EXAMPLE 1:  We have four windows (NWIND=4), 3 colors (NCOL=3), a population 
size of eight (NPOP=8), and a probability of mutation 10% (PMUT=0.1).  The ideal 
combination is: 2132. 
 
Only four new offsprings are produced in each gene-crossing and mutation iteration.  As 
an example, let’s see the gene crossing and mutation in iteration 1 out of a population of 
eight, ranked as    3    2    2    2    1    0    0    0: 
 
(a) Select as parents the first and third (in order of ranking): 
     Genes of first:       2    1    2    2 
     Genes of second:   2    1    1    1 
     Offspring               2    1    2    1 
(b) Next select the second and fourth: 
      Genes of second 1    1    1    2 
      Genes of fourth 2    2    3    3 
      Offspring  1    2    3    2 
And so on (since the probability of mutation is low, none of the genes above was 
mutated). 
 
The progress of convergence is as follows: 
 
 ITERATION    HIGHEST GRADE   MID-POPULATION     # OF SAMPLES  
        GRADE  WITH PERFECT GRADE   
           1            3             2             0 
           2            3             2             0 
           3            3             2             0 
           4            3             3             0 
           5            3             3             0 
           6            3             3             0 
           7            3             3             0 
           8            3             3             0 
           9            3             3             0 
          10            4             3             1 
          11            4             3             1 
          12           4             3             2 
          13            4             3             3 
          14            4             4             4 
          15           4             4             4 
           
Convergence has been achieved practically at the 14th iteration.  Four new offsprings are 
generated in each iteration, hence 14*4=56 evaluations were made.  With an exhaustive 
search, 34=81 evaluations would be needed, so this is not a complex enough problem for 
genetic algorithms. 
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EXAMPLE 2: Next we consider a more complex problem with 10 windows 
(NWIND=10) and a choice of 4 colors (NCOL=4) for each windw, and mutation 
probability of 10%.  The ideal combination is: 2132441124.  Here is how the solution 
evolves with a population of 50 (NPOP=50): 
 
ITERATION    HIGHEST GRADE   MID-POPULATION     # OF SAMPLES  
        GRADE  WITH PERFECT GRADE   
           1            6             2             0 
           2            6             3             0 
           3            7             4             0 
           4            7             5             0 
           5            7             6             0 
           6            8             6             0 
           7            9             7             0 
           8            9             7             0 
           9            9             7             0 
          10           10             8             1 
          11           10             8             1 
          12           10             8             2 
          13           10             9             3 
          14           10             9             5 
          15           10             9             9 
          16           10             9            13 
          17           10             9            22 
          18           10            10            25 
 
The algorithm has converged after 18 iterations, when half the population has a perfect 
score of 10.  In each iteration 25 new offsprings are generated (half the population) 
requiring for convergence an evaluation of 18*25=450 samples; an exhaustive search 
would require 410=1,048,576 evaluations.  Here genetic algorithms have a clear 
advantage, by a factor of at least 2,000. 
 
DISCUSSION 
The choice of population size, mutation probability (which may change from a high value 
in the beginning to a low value as iterations progress), and algorithm for choosing 
parents, affect the success and speed of convergence of genetic algorithms so 
experimentation is usually needed. 
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