> Problem Set 6
> 2.772/BE. 011
> Dill \& Bromberg: $10.1,10.3,10.6,10.11$
10.1
a)

$$
\begin{aligned}
q & =\sum_{l} W(l) e^{-E_{1} / k T} \\
& =1+e^{-\varepsilon_{0} / k T}+\gamma e^{-2 \varepsilon_{0} / k T}
\end{aligned}
$$

b) In order to get the average energy $\langle\varepsilon\rangle=\sum_{l} \varepsilon_{l} p_{l}$, we need the probabilities first.

$$
\begin{aligned}
p_{1} & =\frac{1}{q}, p_{2}=\frac{e^{-\varepsilon_{0} / k T}}{q}, p_{3}=\frac{\gamma e^{-\varepsilon_{0} / / r T}}{q} \\
\langle\varepsilon\rangle & =(0) \frac{1}{q}+\left(\varepsilon_{0}\right) \frac{e^{-\varepsilon_{0} / k T}}{q}+\left(2 \varepsilon_{0}\right) \frac{e^{-2 \varepsilon_{0} / k T}}{q} \\
& =\frac{\varepsilon_{0} e^{-\varepsilon_{0} / k T}}{q}\left(1+2 \gamma \frac{e^{-\varepsilon_{0} / k T}}{q}\right)
\end{aligned}
$$

c) The probabilities are given by:

$$
\begin{aligned}
& p_{1}^{*}=\frac{1}{1+e^{-1}+e^{-2}}=0.665 \\
& p_{2}^{*}=\frac{e^{-1}}{1+e^{-1}+e^{-2}}=0.245 \\
& p_{3}^{*}=\frac{e^{-2}}{1+e^{-1}+e^{-2}}=0.090
\end{aligned}
$$

d) To get the temperature of interest, just equate the probabilities.

$$
\begin{gathered}
p_{1}=p_{3} \\
\frac{1}{q}=\frac{\gamma e^{-2 \varepsilon_{0} / r u s o_{0}}}{q} \\
\gamma e^{-2 \varepsilon_{0} / k_{0}}=1 \\
-2 \varepsilon_{0} / k T_{0}=\ln 1 / \gamma \\
T_{0}=\frac{2 \varepsilon_{0}}{k \ln \gamma}=\frac{2(2 \mathrm{kcal} / \mathrm{mol})}{(2 \mathrm{cal} / \mathrm{mol} \cdot \mathrm{~K}) \ln 1000}=289.5 \mathrm{~K}
\end{gathered}
$$

e)

$$
\begin{aligned}
\frac{\varepsilon_{0}}{k T} & =\frac{2000 \mathrm{cal} / \mathrm{mol}}{(2 \mathrm{cal} / \mathrm{mol} \cdot \mathrm{~K})(289.5 \mathrm{~K})}=3.454 \\
q & =1+e^{-\varepsilon_{0} / \mathrm{kr}}+\gamma e^{-2 \varepsilon_{0} / k T}=1+e^{-3.454}+1000 e^{-6.908}=2.032 \\
p_{1}^{*} & =\frac{1}{q}=\frac{1}{2.032}=0.492 \\
p_{2}^{*} & =\frac{e^{-\varepsilon_{0} / k T}}{q}=\frac{e^{-3.454}}{2.032}=0.016 \\
p_{3}^{*} & =\frac{\gamma e^{-2 \varepsilon_{0} / k T}}{q}=1000 \frac{e^{-6.908}}{2.032}=0.492
\end{aligned}
$$

10.3
a) In order to determine the partition function and the probabilities, it is important to remember to adjust the energies so the lowest energy state is 0 . If you forget to do this, the partition function does not tell you the number of attainable states, though the probabilities all work out correctly.

$$
q=1+e^{-\left(q_{1}-\varepsilon_{0}\right) / / k T}=1+e^{\frac{-1200 c a l / / m a l}{[z a l / m o t K K} /(300 K)}=1+e^{-2}=1.135
$$

b) Again, to determine the probabilities, we need to use the adjusted energy values.

$$
\begin{aligned}
& p_{0}=\frac{1}{q}=0.88 \\
& p_{1}=\frac{e^{-2}}{q}=0.12
\end{aligned}
$$

Now we're trying to calculate the average energy, so we need to use the actual energy values.

$$
\begin{aligned}
\langle\varepsilon\rangle & =p_{0} \varepsilon_{0}+p_{1} \varepsilon_{1} \\
& =(0.88)(600 \mathrm{cal} / \mathrm{mol})+(0.12)(1800 \mathrm{cal} / \mathrm{mol}) \\
& =744 \mathrm{cal} / \mathrm{mol}
\end{aligned}
$$

10.6

In this question, we're given that our system has energy levels uniformly separated by ε_{0}. The question is perhaps unclear, but we are meant to assume that we have an infinite number of energy levels $\varepsilon_{i}=\left\{0, \varepsilon_{0}, 2 \varepsilon_{0} \ldots\right\}$. We need to calculate $p_{0}=\frac{1}{q}$. So what is q ?

$$
q=\sum e^{-q / / \pi}=\sum e^{-i / 6 / T}=\sum\left(e^{-x / \tau / T}\right)^{i}
$$

If we substitute $x=\left(e^{-\varepsilon / k T}\right)$, we can see that $q=\sum x^{i}$ is just the sum of an infinite geometric series.

$$
\begin{aligned}
q & =\sum x^{i} \\
& =\frac{1}{1-x} \\
& =\frac{1}{1-e^{-\varepsilon k / k T}} \\
p & =1-e^{-\varepsilon / k T} \\
& =1-e^{\frac{-3.32010^{-20} J}{\left(1.30710^{-23} / / k\right)(300 K)}} \\
& =0.9996
\end{aligned}
$$

So more than 99.9% of all particles are in the lowest energy state.

10.11

For this problem we have 3 different macrostates that we need to consider: collapsed $W(c)=1$, partially extended $W(p e)=3$, and extended $W(e)=1$. From example 10.3 we know that $q=1+4 e^{-\varepsilon 0 / k T}$ (both partially extended and extended have the same energy ε_{0}). Now we can compute the probabilities of each of the three states.

$$
\begin{aligned}
p_{c} & =\frac{1}{q} \\
p_{p e} & =\frac{3 e^{-\varepsilon_{0} / k T}}{q} \\
p_{e} & =\frac{e^{-\varepsilon_{0} / k T}}{q}
\end{aligned}
$$

So the average end to end distance is given by:

$$
\begin{aligned}
\langle d\rangle & =p_{c} d_{c}+p_{p e} d_{p e}+p_{e} d_{e} \\
& =\frac{1+3 \sqrt{5} e^{-\varepsilon_{0} / k T}+3 e^{-\varepsilon_{0} / k T}}{1+4 e^{-\varepsilon_{0} / k T}}
\end{aligned}
$$

Plotting this for $\varepsilon=1 \mathrm{kcat} / \mathrm{mol}$ and $\varepsilon=3 \mathrm{kcat} / \mathrm{mol}$ we get:

